
.Configuring+the+Test+Scope+v10.4.0
In this section:

Overview
Testing a Single Project in a Solution
Testing a Single Directory of Files in a Project
Testing a Single Source File
Testing a Single Project Under a Solution Folder
Testing a Single Source File When No Solution is Provided
Fine-tuning the Scope
Specifying Additional Assemblies

Overview
The test scope refers to the file or set of files for testing. Use the switch followed by a path in the solution to define the scope. Do not use file -resource
system paths to define the scope. Use the Visual Studio Solution Explorer path instead.

If you are running analysis from your IDE, a source file that is open in the active editor has higher priority than resources defined with Solution Explorer
and only this file will be analyzed.

Testing a Single Project in a Solution

dottestcli.exe -solution "C:\Devel\FooSolution\FooSolution.sln"
-resource "FooSolution/QuxProject"
-config "builtin://Demo" -report "C:\Report"

Testing a Single Directory of Files in a Project

dottestcli.exe -solution "C:\Devel\FooSolution\FooSolution.sln"
-resource "FooSolution/BarProject/QuxDirectory"
-config "builtin://Demo"

Testing a Single Source File

dottestcli.exe -solution "C:\Devel\FooSolution\FooSolution.sln"
-resource "FooSolution/BarProject/QuxDirectory/BazFile.cs"
-config "builtin://Demo"

Testing a Single Project Under a Solution Folder

dottestcli.exe -solution "C:\Devel\FooSolution\FooSolution.sln"
-resource "FooSolution/BarSolutionFolder/QuxProject"
-config "builtin://Demo" -report "C:\Report"

Testing a Single Source File When No Solution is Provided
Because the name of the solution is unknown, the solution path should start with :/

dottestcli.exe -project "C:\Devel\FooSolution\FooProject.csproj"
-resource "/FooProject/BarDirectory/QuxFile.cs"
-config "builtin://Demo" -report "C:\Report"

Fine-tuning the Scope
Use the -include and -exclude switches to apply additional filters to the scope.

-include instructs dotTEST to test only the files that match the file system path; all other files are skipped.
-exclude instructs dotTEST to test all files except for those that match the file system path.

If both switches are specified, then all files that match , but not those that match patterns are tested.-include -exclude

These switches accept file system paths and ANT-style wildcards. This is in contrast to the switch, which accepts the solution path and ANT--resource
style wildcards.

The following example shows how to exclude all files under directories :*.Tests

dottestcli.exe -solution "C:\Devel\FooSolution\FooSolution.sln"
-exclude "C:\Devel\FooSolution*.Tests***.*"
-config "builtin://Demo" -report "C:\Report"

You can specify a file system path to a list file (*.lst) to include or exclude files in bulk. Each item in the *.lst file is treated as a separate entry.

Specifying Additional Assemblies
Use the switch to specify a path to additional assemblies needed to resolve dependencies of the analyzed projects. ANT-style wildcards and -reference
relative paths to the current working directory are accepted.

Examples

-reference C:\MySolution\ExternalAssemblies*.dll
-reference C:\MySolution\ExternalAssemblies*.exe
-reference C:\MySolution\ExternalAssemblies***.dll
-reference C:\MySolution\ExternalAssemblies***.dll

Use the switch if you receive an "Unable to find reference assembly" message.-reference

	.Configuring+the+Test+Scope+v10.4.0

