
Freescale
The following Freescale compilers are supported:

Freescale C/C++ Compiler v. 5.1 for Embedded ARM
Freescale CodeWarrior ANSI-C/cC++ Compiler 5.0.x for HC12
FreeScale CodeWarrior ColdFire v 6.0

Freescale C/C++ Compiler v. 5.1 for Embedded ARM
Compiler acronym: cwarm_5_1
Host OS: Windows
The CodeWarrior IDE is not supported.
Supported practices: static analysis
Support level: Extended

Freescale CodeWarrior ANSI-C/cC++ Compiler 5.0.x for HC12
Compiler acronym: cwhc12_5_0
Host OS: Windows
The CodeWarrior IDE is not supported.
Supported practices: static analysis
Support level: Extended

FreeScale CodeWarrior ColdFire v 6.0
Compiler acronym: cwcf_6_0
Host OS: Windows
Supported languages: c89, c99
Supported practices: static analysis
The CodeWarrior IDE is supported (static analysis only)
Support level: Standard

Additional Support Information
To use any supported distribution, the directory containing the command line compiler driver executable must be included in the environment $PATH
variable.

In C++, non-standard "direct constructor calls", such as in the following example, are not supported:BitSet::BitSet(. . .)

class BitSet { protected:
 enum BS_op {
 BS_and = (int) '&', BS_or = (int) '|',
 };

 BitSet(const BitSet& x, const BitSet& y, enum BS_op op);
 friend BitSet operator & (const BitSet& x, const BitSet& y);
 };
BitSet operator & (const BitSet& x, const BitSet& y)
 {
 return BitSet::BitSet(x, y, BitSet::BS_and);
 }

The Freescale HC(S)12 compiler accepts this non-standard construction. It is used in the C++ header file shipped with the compiler. Code that bitset.h
uses this header file cannot be analyzed; it is currently not supported.

The Freescale HC(S)12 compiler selects an overloaded function with a non-plain char () parameter for a function call signed char, unsigned char
with a plain argument. This is not supported. Example:char

https://docs.parasoft.com/display/CPPDESKE1040/Freescale#Freescale-FreescaleC/C++Compilerv.5.1forEmbeddedARM
https://docs.parasoft.com/display/CPPDESKE1040/Freescale#Freescale-FreescaleCodeWarriorANSI-C/cC++Compiler5.0.xforHC12
https://docs.parasoft.com/display/CPPDESKE1040/Freescale#Freescale-FreeScaleCodeWarriorColdFirev6.0

class istream {
 istream& get(signed char p);
 istream& get(unsigned char p) {
 return get((char)'a');
 }
 };

The Freescale HC(S)12 compiler accepts this construction. It is used in the C++ header file shipped with the compiler. Code that uses this iostream.h
header file cannot be analyzed; it is currently not supported.

In C++, non-standard constructions that use multiple type specifiers, such as int in the following example, are not supported:streamsize

class istream {
 typedef int streamsize;
 istream& read(streamsize int n);
 };

The Freescale HC(S)12 compiler accepts this non-standard construction. It is used in the C++ header file shipped with the compiler. Code iostream.h
that uses this header file cannot be analyzed; it is currently not supported.

In C++, implicit conversions from pointer types to other pointer types are not supported. Example:void*

 class ios {
 int i;
 };
 int vscan(ios* stream = ((void *)0));

The Freescale HC(S)12 compiler accepts this construction. It is used in the C++ header file shipped with the compiler. Code that uses this stream.h
header file cannot be analyzed; it is currently not supported.

The built-in type is not supported. long long double

About Support Levels

Extended: Support has been validated with extended testing and is approved for use in safety-critical software development.
Standard: Support has been validated with standard testing and is approved for use in non-safety critical software development.

	Freescale

