
Creating a Project Using an Existing Build System
In this section:

Introduction
About Build Data Files (.bdf)
Using cpptestscan or cpptesttrace to Create a Build Data File
Importing Project Using Build Data File with the GUI Wizard
Creating a Project from the Command Line
Integrating C/C++test into a CMake Build

Introduction
To automatically create a project using an existing build system, C/C++test requires information about the build process of an existing code base. To
provide C/C++test with necessary data, you can use the or utility shipped with C/C++test to create a C/C++test project cpptestscan cpptesttrace
that you would normally build using build tools such as GNU make, CMake, or QMake. The utilities utilities output a build data file that includes build
information required by C/C++test (see for details). Alternatively, you can first build a project and then configure it manually About Build Data Files (.bdf)
using the information collected by the utilities.

If you use CMake, you can define a C/C++test project directly in the CMake build file. This allows you to automatically generate the C/C++test project
during the build with CMake – without having to run or . See for details.cpptestscan cpptesttrace Integrating C/C++test into a CMake Build

About Build Data Files (.bdf)
Build information, such as the working directory, command line options for the compilation, and link processes of the original build, are stored in a file
called the build data file. The following example is a fragment from a build data file:

------- cpptestscan v. 9.4.x.x -------
working_dir=/home/place/project/hypnos/pscom
project_name=pscom
arg=g++
arg=-c
arg=src/io/Path.cc
arg=-Iinclude
arg=-I.
arg=-o
arg=/home/place/project/hypnos/product/pscom/shared/io/Path.o

The build data file can be used as a source of information about project source files, compiler executable, compiler options, linker executable, and options
used to build the project. There are three ways to use the build data file to create a project:

Manually setting up 'Use options from the build data file' as the options source for the project and selecting appropriate build data file (see Creatin
).g a Project from the GUI

Using the GUI to automatically import a project. See .Importing project using Build Data File with the GUI wizard
Using the command line to automatically import a project. See .Importing a Project from the Command Line

Using or to Create a Build Data Filecpptestscan cpptesttrace
The and executables are located in the C++test installation directory. They collect information from the build process of an cpptestscan cpptesttrace
existing code base, generate build data files with the information, and append information about each execution into a file.

The utility is used as a wrapper for the compiler and/or linker during the normal build. To use with an existing build, build the cpptestscan cpptestscan
code base with as the prefix for the compiler / linker executable of an existing build to build the code base. This can be done in two ways:cpptestscan

Modify the build command line to use as the wrapper for the compiler/linker executablescpptestscan
If you don’t want to (or cannot) override the compiler variable on the command line, embed in the actual make file or build script.cpptestscan

Note

Required environment variables can also be stored in the build data file if the following apply:

Your build system sets up the required environment variables for the compiler / linker to work correctly
These variables are not available in the environment when run C++tests.

See description of the option below.'--cpptestscanEnvInOutput'

https://docs.parasoft.com/display/CPPTESTPROEC20201/Creating+a+Project+from+the+GUI
https://docs.parasoft.com/display/CPPTESTPROEC20201/Creating+a+Project+from+the+GUI
https://docs.parasoft.com/display/CPPTESTPROEC20201/Importing+an+Existing+Visual+Studio+6.0+Project#ImportinganExistingVisualStudio6.0Project-Import_cl

To use with an existing build, build the code base with as the prefix for the entire build command. will cpptesttrace cpptesttrace cpptesttrace
trace the compiler and linker processes executed during the build and store them in the build data file.

In both cases, you need to either add the C++test installation directory to your PATH environment variable, or specify the full path to either utility.

Additional options for and are summarized in the following table. Options can be set directly for the cpptestscan cpptesttrace cpptestscan
command or via environment variables. Most options can be applied to or by changing the prefix in command line.cpptestscan cpptesttrace

Basic usage:cpptestscan

Windows: cpptestscan.exe [options] [compile/link command]
Linux: cpptestscan [options] [compile/link command]

Basic usage:cpptesttrace

Windows: cpptesttrace.exe [options] [build command]
Linux: cpptesttrace [options] [build command]

Option Environment
Variable

Description Default

--
cpptestsca
nOutputFil
e=
<OUTPUT_FI
LE>

--
cpptesttra
ceOutputFi
le=
<OUTPUT_FI
LE>

CPPTEST_SCAN_
OUTPUT_FILE)

Defines file to append build information to. cpptestscan.bdf

--
cpptestsca
nProjectNam

e=<PROJECT
_NAME>

--
cpptesttra
ceProjectN
am
e=<PROJECT
_NAME>

CPPTEST_SCAN_
PROJECT_NAME

Defines suggested name of the C++test project. name of the
current
working
directory

--
cpptestsca
nRunOrigCm
d=
[yes|no]

--
cpptesttra
ceRunOrigCm

d=[yes|no]

CPPTEST_SCAN_
RUN_ORIG_CMD

If set to "yes", original command line will be executed. yes

--
cpptestsca
nQuoteCmdLi

neMode=
[all|sq|no
ne]

--
cpptesttra
ceQuoteCmdL

ineMode=
[all|sq|no
ne]

CPPTEST_SCAN_
QUOTE_CMD_LIN
E_MODE

Determines the way C++test quotes parameters when preparing cmd line to run.

all: all params will be quoted

none: no params will be quoted

sq: only params with space or quote character will be quoted

cpptestscanQuoteCm dLineMode is not supported on Linux

all

--
cpptestsca
nCmdLinePre

fix=
<PREFIX>

--
cpptesttra
ceCmdLineP
re
fix=<PREFI
X>

CPPTEST_SCAN_
CMD_LINE_PREFIX

If non-empty and running original executable is turned on, the specified command will be prefixed to the original
command line.

[empty]

--
cpptestsca
nEnvInOutp
ut
=[yes|no]

--
cpptesttra
ceEnvInOut
put
=[yes|no]

CPPTEST_SCAN_
ENV_IN_OUTPUT

Enabling dumps the selected environment variables and the command line arguments that outputs the file. For
advanced settings use – cpptestscanEnvFile and – cpptestscanEnvars options

no

--
cpptestsca
nEnvFile=<E

NV_FILE>

--
cpptesttra
ceEnvFile=
<E
NV_FILE>

CPPTEST_SCAN_
ENV_FILE

If enabled, the specified file keeps common environment variables for all build commands; the main output file
will only keep differences. Use this option to reduce the size of the main output file. Use this option with –
cpptestscanEnvInOut put enabled

[empty]

--
cpptestsca
nEnvars=
[*|<
ENVAR_NAME
>,...]

--
cpptesttra
ceEnvars=
[*|<
ENVAR_NAME
>,...]

CPPTEST_SCAN_
ENVARS

Selects the names of environment variables to be dumped or '*' to select them all. Use this option with
– cpptestscanEnvInOut put enabled.

*

--
cpptestsca
nUseVariab
le
=
[VAR_NAME=
VALUE,...]

--
cpptesttra
ceUseVaria
ble
=
[VAR_NAME=
VALUE,...]

CPPTEST_SCAN_
USE_VARIABLE

Replaces each occurence of "VALUE" string in the scanned build information with the "${VAR_NAME}" variable
usage.

[empty]

--
cpptesttra
ceTraceComm
and

CPPTEST_SCAN_T
RACE_COMMAND

Defines the command names that will be traced when collecting build process information. These names,
specified as regular expressions, should match original compiler / linker commands used in the build process.

Example: Modifying GNU Make Build Command to Using cpptestscan

Assuming that a make-based build in which the compiler variable is CXX and the original compiler is g++:

 make -f </path/to/makefile> <make target> [user-specific options] CXX="cpptestscan --cpptestscanOutputFile=
/path/to/name.bdf --cpptestscanProjectName=<projectname> g++"

This will build the code as usual, as well as generate a build data file (name.bdf) in the specified directory.

1.

2.

Example: Modifying GNU Make Build Command Using cpptesttrace

Assume that a regular make-based build is executed with:

 make clean all

you could use the following command line:

 cpptesttrace --cpptesttraceOutputFile=/path/to/name.bdf --cpptesttraceProjectName=<projectname> make clean
all

This will build the code as usual and generate a build data file (name.bdf) in the specified directory.

Example: Modifying GNU Makefile to use cpptestscan

If your Makefile uses CXX as a variable for the compiler executable and is normally defined as CXX=g++, you can redefine the variable:

 ifeq ($(BUILD_MODE), PARASOFT_CPPTEST)
 CXX="/usr/local/parasoft/cpptestscan --cpptestscanOutputFile=<selected_location>/MyProject.bdf --
cpptestscanProjectName=MyProject g++"
 else
 CXX=g++
 endif

Next, run the build as usual and specify an additional BUILD_MODE variable for make:

 make BUILD_MODE=PARASOFT_CPPTEST

The code will be built and a build data file (MyProject.bdf) will be created. The generated build data file can then be used to create a project from the GUI
or from the command line.

Example: Using cpptesttrace with CMake build

Assuming that you have a CMake-based build, you can produce a build data file using cpptesttrace:

Run the original CMake command to use CMake to generate make files. For example:

cmake -G "Unix Makefiles" ../project_root

Setup environment variables for making sure to use an absolute path for the output file:cpptestscan

Note

When the build runs in multiple directories:

If you do not specify output file, then each source build directory will have its own .bdf file. This is good for creating one project per
source directory.
If you want a single project per source tree, then a single .bdf file needs to be specified, as shown in the above example.

Note

If the compiler and/or linker executable names do not match default cpptesttrace command patterns, they you will need to use --
cpptesttraceTraceCommand option described below to customize them. Default cpptestscan command trace patterns can be seen by
running 'cpptesttrace --cpptesttraceHelp' command.

Note

The cpptestscan and cpptesttrace utilities can be used in the parallel build systems where multiple compiler executions can be done
concurrently. When preparing Build Data File on the multicore machine, for example, you can pass the -j <number_of_parallel_jobs>
parameter to the GNU make command to build your project and quickly prepare the Build Data File.

The following examples demonstrate how to create a .bdf file for CMake projects using or . For complex cpptestscan cpptesttrace
scenarios and unit testing, consider integrating C/C++test into a CMake build using the C/C++test extension for CMake. See Integrating C

./C++test into a CMake Build

2.

3.
4.

1.

a.

b.
c.

2.

3.

4.

5.

6.

export CPPTEST_SCAN_PROJECT_NAME=my_project
export CPPTEST_SCAN_OUTPUT_FILE=$PROJ_ROOT/cpptestscan.bdf

Make sure the executable is available on the PATH.cpptesttrace
Run the project build normally but with as a wrapper. For example if normal build command is make clean all for the build with cpptesttrace
'cpptesttrace' the command will be cpptesttrace make clean all

A build data file will be generated in the location defined by the CPPTEST_SCAN_OUTPUT_FILE variable. If the varialbe is isn’t set, the build data file(s)
will be generated in the Makefiles’ locations.

Example: Using cpptestscan with CMake build

All scripts and commands are bash-based – adapt them as needed for different shells.

Assuming a CMake-based build, do the following to produce a build data file using cpptestscan:

Use CMake to re-generate make files with the 'cpptestscan' used as a compiler prefix. Make sure the ‘cpptestscan’ executable is available on the
PATH.

If original CMake command is , then you need to get rid of existing CMake cache cmake -G “Unix Makefiles” ../project_root
and run cmake overriding compiler variables. The following example assumes 'gcc' is used as a C compiler and 'g++' as a C++ compiler
executable:

rm CMakeCache.txt
CC="cpptestscan gcc" CXX="cpptestscan g++" cmake -G "Unix Makefiles" ../project_root

Look in the CMakeCache.txt file to see if CMAKE_*_COMPILER variables point to cpptestscan.
If the make files are re-generated, jump to step 5. Continue if failed in the boot-strap phase because the compiler wasn’t cmake
recognized.

Prepare the wrapper scripts that will behave like a CMake compiler by creating the following BASH scripts. In this example, we cpptestscan
assume 'gcc' is used as a C compiler and 'g++' as a C++ compiler executable:

>cat cpptest_gcc.sh
#!/bin/bash
cpptestscan gcc --cpptestscanRunOrigCmd=no $* > /dev/null 2>&1 gcc $*
exit $?

>cat cpptest_g++.sh
#!/bin/bash
cpptestscan g++ --cpptestscanRunOrigCmd=no $* > /dev/null 2>&1 g++ $*
exit $?

The first script invokes to extract options without running the compiler. The second script runs the actual compiler so that cpptestscan
the entire script looks and acts like a compiler in order to be “accepted” by CMake.

Give the scripts executable attributes and place them in a common location so they are acces-sible to everyone who needs to scan make files.
Make sure the and the scripts are available on the PATH.cpptestscan
Use CMake to re-generate make files with the scripts used as compilers by extending the original CMake command with options that re-generate
make files from the prepared scripts.

Original CMake command is then you need to get rid of existing CMake cache cmake -G “Unix Makefiles” ../project_root
and run cmake overriding compiler vari-ables. In the following example, we assume 'gcc' is used as a C compiler and 'g++' as a C++
compiler executable:

rm CMakeCache.txt
cmake -G "Unix Makefiles" -D CMAKE_C_COMPILER=cpptest_gcc.sh -D CMAKE_CXX_COMPILER=cpptest_g++.sh
../project_root

Look in the CMakeCache.txt file to see if CMAKE_*_COMPILER variables point to prepared wrappers.
Setup environment variables for ; make sure to use an absolute path for the out-put BDF file:cpptestscan

export CPPTEST_SCAN_PROJECT_NAME=my_project
export CPPTEST_SCAN_OUTPUT_FILE=$PROJ_ROOT/cpptestscan.bdf

Run the project build normally without overwriting any make variables. Build data files(s) will be generated in location defined by the
CPPTEST_SCAN_OUTPUT_FILE variable or - if not set -in location of Makefiles.

1.

2.

Using cpptestscan or cpptestrace with other Build Systems

For non-make based build systems, usage of cpptestscan and cpptesttrace is very similar to the examples shown above. Typically, a compiler is defined
as a variable somewhere in the build scripts. To create a Build Data File from that build system using cpptestscan, prefix the original compiler executable
with cpptestscan. To create a Build Data File from that build system using cpptesttrace, prefix whole build command line with cpptesttrace.

Importing Project Using Build Data File with the GUI Wizard
Once you have used or to generate a build data file for code you want to test in C++test, you can use the Project Creation cpptestscan cpptesttrace
wizard to create a C++test project.

To create a project from a build data file:

Open the wizard by choosing , select , then click . The wizard’s first File> New> Project C++test> Create project from a build data file Next
page will display.
Complete the first wizard page, then click .Next

In the field, enter or browse to the location of the build data file that was previously created (as described in Build data file Using
).cpptestscan or cpptesttrace to Create a Build Data File

In the section, specify where you want the projects created. There are two possibilities: workspace and external Project location
location. If workspace is chosen, the projects will be created in subdirectories within the workspace location. If external location is
chosen, single projects will be created directly in that location. If multiple projects are created, then subdirectories for each project will be
created in the specified external location.

For details on the available project creation options and their impacts, see Working with C++test Projects
In the section, specify the compiler family. The other options will be set automatically.Compiler settings

To get a list of valid compiler family values, use the switch to -list-compilers cpptestcli

Note

By default CMake-generated make files only print information about performed actions without actual compiler/linker command lines. Add
“VERBOSE=1” to the make command line to see executed compiler/linker command lines.

When should I use cpptestscan?

It is highly recommended that the procedures to prepare a build data file are integrated with the build system. In this way, generating the build
data file can be done when the normal build is performed without additional actions.

To achieve this, prefix your compiler and linker executables with the cpptestscan utility in your Makefiles / build scripts.

When should I use cpptesttrace?

Use cpptesttrace as the prefix for the whole build command when modifying your Makefiles / build scripts isn’t possible or when prefixing your
compiler / linker executables from the build command line is too complex.

Custom compiler prerequisite

If you are using a custom compiler, add it as described in Configuring Testing with the Cross Compiler starting the wizard. before

https://docs.parasoft.com/display/CPPTESTPROEC20201/Project+Creation+Overview#ProjectCreationOverview-WorkingwithC++testProjects
https://docs.parasoft.com/display/CPPTESTPROEC20201/Configuring+Testing+with+the+Cross+Compiler

2.

3. In the second wizard page, which displays a project tree with the projects that will be created, verify the project’s structure and content, making
modifications as needed.

The first level lists all projects that will be created. To change the project’s name or link additional folders to the project, right-click the
project name and choose the appropriate shortcut menu command.
The second level lists all folders that will be linked. To change a folder`s name or prevent it from being included in the project, right-click
the folder name and choose the appropriate shortcut menu command.
Deeper in the tree, you will see all folders and files which are present in linked folders. A green marker is used to indicate files
referenced in the .bdf file.

3.

4. (Optional) In the third wizard page, set Path Variables if needed.
If you want Path Variables used in linked folders, check Use Path Variable to define linked folder locations (if applicable).
To use a pre-defined Path Variable, select it from the box. Path Variable list
To use a custom Path Variable, choose from the box, then manually enter the Path Variable name and value Custom Path Variable list
in corresponding fields.

1.
a.
b.

c.
2.

a.

b.

1.
a.
b.

c.

2.

a.
b.

Click C++test will create the specified project(s) in the specified location. The project(s) will include all source files whose options were scanned, Finish.
and project properties should be set up appropriately.

Creating a Project from the Command Line
You can also create a BDF-based projects in command line mode by using the switch to . -bdf <cpptestscan.bdf> cpptestcli

If you want to perform analysis (e.g., static analysis and/or test generation) immediately after the project is created, ensure that the cpptestcli command
uses -config to invoke the preferred Test Configuration. For example:

cpptestcli -data "</path/to/workspace>" -resource "<projectname>" -config "team://Team Configuration" -
localsettings "</path/to/name.properties>" -bdf "</path/to/name.bdf>"

If you simply want to create the project (without performing any analysis), omit -config. For example:

cpptestcli -data "</path/to/workspace>" -resource "<projectname>" -localsettings "</path/to/name.properties>" -
bdf "</path/to/name.bdf>"

Note that -config "util/CreateProjectOnly", which was previously used for creating a project without testing, is no longer used in the current version of
C++test. The fake Test Configuration "util/CreateProjectOnly" is no longer supported.

You can define custom project settings in a plain text options file, which is passed to using the switch. Settings can be cpptestcli -localsettings
specified in the options file as described in .Local Settings (Options) Files

Examples

The following examples demonstrate how to create a C++test project from the command line using . They use C++test’s ATM example, cpptestscan
which is available in the directory<INSTALL_DIR>/examples/ATM

The examples use a make-based build; however, a .bdf file can be produced from any build system.

Assumptions and Prerequisites

The executable should be included on $PATH (it is located in C++test's installa-tion directory).cpptestscan
The executable should be included on $PATH (it is located in C++test's installa-tion directory).cpptestcli
g++ is assumed to be the original compiler executable.
The workspace and .bdf file locations have to be entered in a format supported by the given shell/command prompt. For example:

/home/MyWorkspace on UNIX/Cygwin
c:\home\MyWorkspace on Windows
c:/home/MyWorkspace on Cygwin

To create a project without performing any testing, omit -config
To create and test the new project, use the appropriate test configuration (e.g.).-config Must-HaveRules
A full project rebuild will be performed ("clean all") to ensure that all objects are built in the make run

Example 1 - Creating a C++test project in the workspace location with default settings

Create a build data file (.bdf) based on the original Makefile as follows:
Go to the directory.<INSTALL_DIR>/examples/ATM
Build the ATM project while prefixing the original compiler executable with the executable:cpptestscan
> make CC="cpptestscan g++" clean all
Note that a new data file was created in the directory.(cpptestscan.bdf) <INSTALL_DIR>/examples/ATM

Create a C++test project based on the build data file (.bdf) as follows:
Use C++test's CLI mode to create a new project in the workspace:/home/MyWorkspace
> cpptestcli -data /home/MyWorkspace -bdf cpptestscan.bdf
Note that a new C++test project (ATM) was created in MyWorkspace location. It con-tains all the source files and build options of the
original project.<INSTALL_DIR>/examples/ATM

Example 2 - Creating a C++test project in original project's location with "Visual C++ 7.1" set as the
compiler and "myProject" set as the project name

Create a build data file (.bdf) based on the original Makefile as follows:
Go to the directory.<INSTALL_DIR>/examples/ATM
Build the ATM project while prefixing the original compiler executable with the executable:cpptestscan
> make CC="cpptestscan --cpptestscanProjectName=myProject g++" clean all
Note that a new data file was created in the directory. Notice that (cpptestscan.bdf) <INSTALL_DIR>/examples/ATM myProject
was set as project name.

Create a C++test project based on the build data file (.bdf) as follows:
First, override the default settings:

Create a plain text options file named in .opts.properties <INSTALL_DIR>/examples/ATM
Set the compiler family to Visual C++ 7.1 by entering into the bdf.import.compiler.family=vc_7_1 opts.properties
file.

https://docs.parasoft.com/display/CPPTESTPROEC20201/Testing+from+the+Command+Line+Interface#TestingfromtheCommandLineInterface-local_settings

2.

c.

1.
2.

3.
4.

5.
6.

Change the destination project location to the location of the file (which is located in the original project's cpptestscan.bdf
directory) by entering:
bdf.import.location=BDF_LOC into opts.properties file

Next, use C++test's CLI mode to create a new project in the workspace: /home/MyWorkspace
cpptestcli -data /home/MyWorkspace -bdf cpptestscan.bdf -localsettings opts.properties
Finally, note that a New C++test project (myProject) was created in <INSTALL_DIR>/examples/ATM location, containing all the source
files and build options of the original <INSTALL_DIR>/examples/ATM project, having Visual C++ 7.1 set as compiler family.

Notes:

vc_7_1, which is listed among supported compilers, was used in this example. To use a custom compiler, you would need to specify its path in
the C++test Preferences panel See (Configurations> Custom directories> Custom compilers). Configuring Testing with the Cross Compiler
for details.
The variable was used as the project location; this refers to the file's locationBDF_LOC cpptestscan.bdf

The generated build data file can be then used to create a project from the GUI or from the command line.

Integrating C/C++test into a CMake Build
C/C++test ships with an extension for CMake that allows you to define C/C++test projects directly in the build file, using the CMake CMakeLists.txt
syntax. The extension includes the CMake function for defining the C/C++test project, including the project location, cpptest_add_executable()
structure, and content. As a result, the C/C++test project definition files (.project and .parasoft) and a build data file (.bdf) are automatically generated
during the CMake build. When the build completes, you can import the C/C++test project files and the BDF into your workspace to perform analysis and
testing.

Support for CMake integration consists of the following components:

<CPPTEST_INSTALL_DIR>/integration/cmake/cmake/cpptest.cmake – the C/C++test extension for CMake you need to add to the
 build file to provide the C/C++test project definition.CMakeFiles.txt

<CPPTEST_INSTALL_DIR>/integration/cmake/cmake/cpptest.templates/*.in – a set of C/C++test templates for automatically
generated project definition files that allows you to highly customize the extension for CMake.

In addition, the directory includes an example project to demonstrate integration with CMake using <CPPTEST_INSTALL_DIR>/integration/cmake
the C/C++test extension.

Requirements

Linux 64-bit
C/C++test Professional for Linux 64-bit
CMake 3.10 or later

Workflow Overview

Include to your build file.<INSTALL_DIR>/integration/cmake/cmake/cpptest.cmake CMakeLists.txt
Use the function to define a target that represents your C/C++test project (see for cpptest_add_executable() Defining the C/C++test Project
details).
Run CMake with the and commands to generate C/C++test project configuration files.configure build
Import the automatically generated C/C++test projects to your Eclipse workspace via the UI (Import> General> Existing Projects into

) or command line).Workspace (-import <ROOT_FOLDER_OR_PROJECT_FILE>
Create test cases and configure stubs. See for details.Test Creation and Execution
Run unit tests.

If you store your test artifacts, such as test cases or stubs, in a source control system, do not check in the automatically generated project definition files or
build data files (.bdf). These files should be generated every time your CMake project is built.

Defining the C/C++test Project

To enable CMake to automatically generate C/C++test project files, you must define a target that represents your C/C++test project with the cpptest_add
 function. At a minimum, you must must configure:_executable()

the name of the target.
all the source files you want to add to the C/C++test project.
build options and dependencies (external libraries) using regular CMake functions, such as or target_include_directories() target_lin

.k_libraries()

The following options are available:

Option Name Description Default

<target_name> The name of the target. No default. You must always configure
this option.

CPPTEST_COMPIL gcc_9-64

https://docs.parasoft.com/display/CPPTESTPROEC20201/Configuring+Testing+with+the+Cross+Compiler
https://docs.parasoft.com/display/CPPTESTPROEC20201/Test+Creation+and+Execution

1.
2.

3.

4.
5.

6.
7.

ER_ID A target-specific C/C++test compiler identifier. To configure the same compiler for all
your targets, specify the identifier in .cpptest.cmake

CPPTEST_PROJE
CT_NAME

The name of the C/C++test project. The same as the name of the target.

CPPTEST_PROJE
CT_LOC

The location of the C/C++test project. The current folder.

CPPTEST_PROJE
CT_FOLDERS

Additional source folders you want to include in the C/C++test project. You must
specify the name and location of each additional folder.

By default, the C/C++test project only
includes the root directory.

EXCLUDE_FROM_
ALL

If specified, the the current target is excluded form the default target.all Disabled.

SOURCES A list of sources you want to add to the C/C++test project. No default. You must always configure
this option.

TARGETS A list of existing CMake targets. If configured, the list of source files from the specified
targets are added to the C/C++test project.

No default. You must always configure
this option.

cpptest_add_executable(
<target_name>
[CPPTEST_COMPILER_ID <compiler_id>]
[CPPTEST_PROJECT_NAME <test_project_name>]
[CPPTEST_PROJECT_LOC <test_project_location>]
[CPPTEST_PROJECT_FOLDERS <name1=location1> <name2=location2> ...]
[EXCLUDE_FROM_ALL]
SOURCES <src1.cpp> <src2.cpp> ... | TARGETS <target1> <target2> ...
)

Example Integration with CMake

This section demonstates integration with CMake using the example project located in the directory.<CPPTEST_INSTALL_DIR>/integration/cmake

Go to .<CPPTEST_INSTALL_DIR>/integration/cmake
If you use a compiler other than the default GNU GCC 9 (x64), replace the default compiler identifier with your compiler identifier in gcc_9-64 mo

 and .dules/mod1/CMakeLists.txt cmake/cpptest.cmake
Build the example project with the following commands:

> cd <CPPTEST_INSTALL_DIR>/integration/cmake
> mkdir build
> cd build
> cmake ..
> make

CMake will build the project and generate the C/C++test projects. The following CMakeLists.txt files define the C/C++test projects (with different
project layout and configuration options):

- app/CMakeLists.txt
- modules/mod1/CMakeLists.txt
- tests/cpptest_modules/CMakeLists.txt
Open an empty workspace in your IDE where C/C++test is installed.
Choose from the IDE menu and navigate to the the File> Import> General> Existing Projects into Workspace <CPPTEST_INSTALL_DIR>

 directory to import the three automatically generated projects to your IDE./integration/cmake
Generate test cases with the test configuration.builtin://Generate Unit Tests
Execute test cases with the s test configuration.builtin://Run Unit Test

	Creating a Project Using an Existing Build System

