
1.

2.

Generating Test Cases for Regression Testing and
Exception Finding
You can capture functional snapshots in test cases for regression testing. Test cases can also identify conditions that could result in exceptions, which
may result in system and application instability, security vulnerabilities (such as denial of service attacks), poor performance and application response time,
and frequent down time.

Sections include:

About Automated Test Case Generation
Generating Test Cases
Customizing Generation Options

About Automated Test Case Generation
C++test automatically generates test cases according to the parameters defined in the Test Configuration’s Generation tab. These test cases use a format
similar to the popular CppUnit format.

With the default settings, C++test generates one test suite per source/header file. It can also be configured to generate one test suite per function or one
test suite per source file (see for details).Customizing Generation Options

Safe stub definitions are automatically-generated to replace "dangerous" functions, which includes system I/O routines such as , , rmdir() remove() ren
, etc. In addition, stubs can be automatically generated for missing function and variable definitions (see ame() Understanding and Customizing Automated

 for details). User-defined stubs can be added as needed (see for details).Stub Generation Adding and Modifying Stubs

Generating Test Cases
The general procedure for test case generation is:

Identify or create a Test Configuration with your preferred test generation settings.
For a description of preconfigured Test Configurations, see .Built-in Test Configurations
For details on how to create a custom Test Configuration, see the . Details Configuring Test Configurations and Rules for Policies
on C++test-specific options are available at .Configuring Test Configurations

Run the Test Configuration
For details on testing from the GUI, see . Testing from the GUI
For details on testing from the command line, see .Testing from the Command Line Interface

Generating Tests to Verify New Functionality

If you want to verify the functionality of new code, we recommend that you automatically generate 1- 2 tests per function to start.

After you generate and execute these tests, you can then extend the test suite with user-defined test cases as described in Extending and Modifying
.the Test Suite

Generating Tests for Regression Testing

If you want to create a snapshot of the code’s current behavior to establish a regression testing baseline (e.g., if you are confident that the code is
behaving as expected), you can run a test using the "Unit Testing> Generate Regression Base" built-in Test Configuration. When this Test
Configuration is run, C++test will automatically verify all outcomes.

These tests can then be run automatically, on a regular basis (e.g., every 24 hours) to verify whether code modifications change or break the
functionality captured in the regression tests. If any changes are introduced, these test cases will fail in order to alert the team to the problem.

During subsequent tests C++test will report tasks if it detects changes to the behavior captured in the initial test. Verification is not required.

https://docs.parasoft.com/display/CPPDESKV1042/Executing+Test+Cases
https://docs.parasoft.com/display/CPPDESKV1042/Executing+Test+Cases
https://docs.parasoft.com/display/CPPDESKV1042/Adding+and+Modifying+Stubs
https://docs.parasoft.com/display/CPPDESKV1042/Built-in+Test+Configurations
https://docs.parasoft.com/display/CPPDESKV1042/Configuring+Test+Configurations+and+Rules+for+Policies
https://docs.parasoft.com/display/CPPDESKV1042/Configuring+Test+Configurations
https://docs.parasoft.com/display/CPPDESKV1042/Testing+from+the+GUI
https://docs.parasoft.com/display/CPPDESKV1042/Testing+from+the+Command+Line+Interface
https://docs.parasoft.com/display/CPPDESKV1042/Extending+and+Modifying+the+Test+Suite
https://docs.parasoft.com/display/CPPDESKV1042/Extending+and+Modifying+the+Test+Suite

2.

3.

4.

Review the generated test cases.
For details, see . Reviewing Automatically-Generated Test Cases

(Optional) Fine-tune test generation settings as needed.
For details, see . Generation Tab Settings - Defining How Test Cases are Generated

Customizing Generation Options
You can control a number of generation options by customizing the options in the Test Configuration’s Generation tab.

Controlling the Test Suite’s File Name, Location, and Layout

The generated test suite’s file name, location, and granularity/layout can be controlled by customizing options in the Test Configuration’s Generation>
 tab.Test suite

To change the default test suite output settings, first select one of the following three pre-defined output and layout options from the Test suite output file
 box:and layout

Create one test suite per function
Create one test suite per source/header file
Create one test suite per source file

If the option is selected, a test suite generated for the sample ATM project (included in the examples directory) would Create one test suite per function
look like this:

Tip - Generating Tests from the Test Case Explorer

You can generate tests for a project directly from the Test Case Explorer (which can be opened by choosing Parasoft> Show
). Just right-click the project node in the Test Case Explorer, then choose the desired test View> Test Case Explorer

generation Test Configuration from the or shortcut menu. Test History Test Using

For details about the Test Case Explorer, see .Exploring the C++test UI

https://docs.parasoft.com/display/CPPDESKV1042/Reviewing+Automatically-Generated+Test+Cases
https://docs.parasoft.com/display/CPPDESKV1042/Generation+Tab+Settings+-+Defining+How+Test+Cases+are+Generated
https://docs.parasoft.com/pages/viewpage.action?pageId=50502346

If the option is selected, a test suite generated for the sample ATM project (included in the examples Create one test suite per tested source/header
directory) would look like this:

After selecting one of these options, you can customize the pattern as needed (for instance, to generate tests into the source location). You can use the
following variables when you are customizing the pattern:

${test_ext} - C++test-specific extension of a test suite file (.cpp).
${file_name-} File name.
${file_base_name-} File name without extension.
${file_ext-} File extension.
${file_loc-} File location.
${file_loc_rel-} File location relative to the project root.
${file_uid-} File unique identifier.
${function_name-} Tested function name.
${function_uid-} Tested function unique identifier (hash-code computed from the function signature/mangled name).
${src_file_name-} Name of context (source) file. (A "context file" is a source file that describes the compilation unit in which the given tested
function is defined).
${src_file_base_name-} Name of context (source) file without extension.
${src_file_ext-} Extension of context (source) file.
${src_file_loc-} Context (source) file location.
${src_file_loc_rel-} Context (source) file location relative to the project root.
${src_file_uid-} Source (context) Context file unique identifier (hash-code computed from the source file location).

Key

file = The source/header file where the tested function is defined.
source file = The source file that defines a compilation unit where the tested function is defined.

Appending or Replacing Existing Tests

You can also control whether C++test will append or replace existing tests if the generated test file has the same name and location as an existing test
suite file. This behavior is determined by the setting, which provides the following options:When generating tests for code with an existing test suite

Add tests for functions without tests: C++test will generate test cases for functions without tests. The existing tests will not be affected or
modified.
Add tests for all functions: C++test will generate test cases for all functions. The existing tests will not be affected or modified.
Replace the existing test suite: C++test will generate test cases for all functions. The existing test suite will be removed and then replaced with
the new one.

Common Test Generation Goals

The following table explains how to configure the Test Configuration’s generation options to accomplish common test generation goals. Options covered
include the tab’s option and the tab’s Generation> General Generate tests for code Generation> Test suite When generating tests for a code with

option. an existing test suite

Goal Settings

To generate an initial set of tests For , enable . Specify additional Generate tests for code Without test suites
parameters (function access level, output file location/name etc.).

Warning

Removing some variables can lead to overlapping test suites. C++test will alert you to this by displaying the error message "Test suite output
file pattern is ambiguous."

C++test uses the following internal checks and restrictions related to changing the basic patterns for location of generated tests:

All automatically generated tests are of "included" type (the test suite file is "glued "together with the given source file/compilation unit).
It tries to prevent cases where test cases for functions from different compilation units would be placed in the same test suite file
(because it is not possible to correctly glue such a test suite file with original source file).
C++test has different variables (which are resolved based on the file under test, its name, its location etc.) that can be used to make
the test suite file pattern unambiguous (in terms of the item above).
One commonly-used strategy is to generate a test suite file into a file/location that has the original file name/location in it. This the
default pattern:

${project_loc}/tests/autogenerated/${file_loc_rel}/
TestSuite_${file_base_name}_${file_ext}.${test_ext}

This is not ambiguous because ${file_loc_rel} and ${file_base_name} variables are used (even though there are a number of files with
the same name in the project, their location will be different—and that location will be a part of the test suite file name/location).
There are also other available variables—for example, ${file_uid}, ${src_file_uid}—that can be used instead of the ${file_loc_rel} /
${file_base_name} pair while keeping the pattern unambiguous. These variables are resolved into a hash code of the original file
location. For example, a pattern like

${project_loc}/tests/autogenerated/
TestSuite_${file_base_name}_${file_uid}_${file_ext}.${test_ext}

will result in the following test suite:

ATM/tests/autogenerated/TestSuite_Account_d7a5efc6_hxx.cpp

How does C++test determine if there are existing test cases for a given function?

It looks for the CPPTEST_CONTEXT and CPPTEST_TEST_SUITE_INCLUDED_TO markers inside the test suite file.

To update an existing automatically-generated test suites with tests
for new functions (do not generate new test suites)

For , enable Generate tests for code With up-to-date test suites With out-of-
.date test suites

For , enable When generating tests for a code with an existing test suite Add
.tests for functions without tests

Specify additional parameters (function access level, output file location/name
etc.).

To synchronize automatically-generated tests with the current code
- append missing tests, create missing test suites

For , enable , Generate tests for code Without test suites With up-to-date test
, and .suites With out-of-date test suites

For , enable When generating tests for a code with an existing test suite Add
.tests for functions without tests

Specify additional parameters (function access level, output file location/name
etc.).

To fully reset existing automatically-generated tests For , enable , Generate tests for code Without test suites With up-to-date test
, and .suites With out-of-date test suites

For , enable When generating tests for a code with an existing test suite Repl
.ace the existing test suite

Specify additional parameters (function access level, output file location/name
etc.).

Choosing the Layout Option That Suit Your Goals

This section explains how to configure the option (in the Test Configuration’s tab) to suit Test suite output file and layout Generation> Test suite
various layout needs. To help you understand how each option discussed translates to actual projects, we show how it would affect the following sample
project:

MyProject
 Header Files
 MyClass.h // contains foo() definition
 Source Files
 MyClass.cpp // contains bar() and goo() definitions

To generate a single test suite file for each function, keep tests in a separate directory

Use ${project_loc}/tests/${file_loc_rel}/${file_name}/
TestSuite_${function_name}.${test_ext}

Sample layout:

MyProject
 Header Files
 MyClass.h
 Source Files
 MyClass.cpp
 tests
 Header Files
 MyClass.h
 TestSuite_foo.cpp // contains tests for foo()
 Source Files
 MyClass.cpp
 TestSuite_bar.cpp // contains tests for bar()
 TestSuite_goo.cpp // contains tests for goo()

To generate a single test suite file for each source/header file, keep tests in a separate directory

Note

C++test keeps all auto-generated tests in the original project location. The appropriate directory structure (similar to the Solution Explorer view)
will be created automatically, using the project directory as a root location.

Use ${project_loc}/tests/${file_loc_rel}/
TestSuite_${file_base_name}_${file_ext}.${test_ext}

Sample layout:

MyProject
 Header Files
 MyClass.h
 sSource Files
 MyClass.cpp
 tests
 Header Files
 TestSuite_MyClass_h.cpp // contains tests for foo()
 Source Files
 TestSuite_MyClass_cpp.cpp // contains tests for bar() and goo()

To generate a single test suite file for each source/header file, keep tests with the tested files

Use ${project_loc}/${file_loc_rel}/tests/
TestSuite_${file_base_name}_${file_ext}.${test_ext}

Sample layout:

 Header Files
 MyClass.h
 tests
 TestSuite_MyClass_h.cpp // contains tests for foo()
 Source Files
 MyClass.cpp
 tests
 TestSuite_MyClass_cpp.cpp // contains tests for bar() and goo()

	Generating Test Cases for Regression Testing and Exception Finding

