
1.

2.
3.
4.

Monitoring Java Applications
This topic explains how to configure monitoring for any Java application. When a properly-configured Event Monitor tool is placed in the beginning of a test
suite that includes tests which invoke that Java application (directly or indirectly), it will receive and visualize the Java events that take place.

Sections include:

Why Monitor Java Applications?
Application Configuration
SOAtest Configuration
Tips

Why Monitor Java Applications?
By monitoring instrumented Java applications, you can gain visibility into the application’s internal behavior as functional tests execute. This allows you to
better identify the causes of test failures as well as enrich the use case validation criteria in your regression tests. In addition to validating the messages
returned by the system and the intermediate messages/steps monitored via the ESB, you can also validate events within the Java application being
invoked. For example, you can validate that an EJB method call or a remote call to another system is taking place with the expected parameters.

Application Configuration
To configure the application for monitoring, you need to instrument it with Parasoft’s monitoring agent. To do this:

Copy and from insure.jar insureimpl.jar [Jtest_install_dir]/plugins/com.parasoft.xtest.jtest_[version]
 to a directory on the server with the application you wish to instrument./resources/

If the server is running, stop it.
In your startup script, add the to the existing Java arguments. For details, see .-javaagent command javaagent Command Details
Restart the server.

The server will start as usual, but with the specified package classes instrumented. Now, whenever instances of objects are created or methods within the
specified package prefixes are invoked, SOAtest (which can be running from another developer/QA desktop machine) will be able to receive event
notifications in Event Monitor.

javaagent Command Details

Basics

The following invocation-time parameters are required in all situations:

Specifies which port should be used to communicate with the monitored program. Use 5050 to 5099.

Parameter Description

soatest Required for configuring monitoring.

port=
[port_number]

Specifies which port should be used to communicate with the monitored program. Use 5050 to 5099.

instrument=
[class_name.
method_name
(jni _sig)]

Specifies the prefixes of fully-qualified methods to check. For instance, given the , it will com.abc.util.IOUtil.method
instrument all methods in that start with . If given ., it will also instrument those methods and all IOUtil.java method com.abc
methods of classes whose fully qualified name starts with

 You can provide specific class names, or use wildcards to monitor any class in the specified package.com.abc.

See the note below for more details.

Parasoft Jtest Installation is Required

SOAtest provides Java runtime error detection and Java event monitoring capabilities via integration with Parasoft Jtest, which facilitates a broad
range of test and analysis practices for Java.

Before you use SOAtest’s runtime error detection and/or Java event monitoring capabilities, ensure that Jtest is installed on your machine and that
the Jtest Connect license option is enabled. See .Licensing

Contact your Parasoft representative to access Jtest. This cross-product capability requires Jtest and SOAtest to be installed in one of the following
ways:

Jtest and SOAtest plugins installed into the same Eclipse instance, or
Jtest and SOAtest installed via p2 updatesite archives (see for details).Eclipse p2 Update Site Installation

https://docs.parasoft.com/display/SOA9106/Licensing
https://docs.parasoft.com/display/SOA9106/Eclipse+p2+Update+Site+Installation

trace=
[class_name.
method_na me
(jni_sig)]

Specifies the filter for method calls to trace. See the note below for more details.

The following parameters are optional:

Parameter Description

trace_to_xml Tells the monitor to serialize complex Java object into an XML representation. If this option is omitted, only primitive and "toString()"
values of Objects will be returned.

This parameter is strongly recommended for use with Event Monitor. It is not applicable if you are performing only runtime error
detection.

xmlsizelimit=
[integer_valu
e]

Determines the maximum XML size limit in bytes. The default size is 100000 if this option is not specified.
Applies only when trace_to_xml is used.

xmlcolsizelim
it=
[integer_valu
e]

When generating an XML representation of Java objects, determines the maximum number of elements shown for collections/maps
/arrays. The first 100 elements are shown by default.

Applies only when trace_to_xml is used.

xmldeeplimit
=
[integer_valu
e]

When generating an XML representation of Java objects, determines the maximum field depth included for data structures. Fields up to
a depth of 8 are included by default.

Applies only when trace_to_xml is used.

xmlexcl=
[classes_or_f
ields]

':' separated classes or fields to exclude from xml serialization (i.e. xmlexcl=com.acme.A:com.acme.B._field).
Applies only when trace_to_xml is used.

xmlinc=
[classes_or_f
ields]

':' separated classes or fields to always include in xml serialization (i.e.xmlinc=com.acme.A:com.acme.B._field)

Matches for xmlinc take preference over matches for xmlexcl: if something matches xmlinc, it will always be shown— even if xmlexcl
also matches it.

When the pattern matches a class name, 1) fields of that class type or a derived type are excluded from serialization and 2) method
arguments and return values of that type or derived ones will not be serialized to xml.

By default, the monitor excludes classes of the following types:

..........................

Applies only when trace_to_xml is used.

Note - instrument and trace

Instrumentation of a class applies to all of its method bodies; it provides visibility, for example, into what methods that class calls and what
values those methods return.

Tracing is implemented by also instrumenting the caller of the code you want to visibility into. The called code is not instrumented.

For example, assume you want to trace third-party methods called from your code, but not third-party methods called from other third-party
code. In this case, you would instrument your own code, and trace the calls to the third-party code.

More, specifically....

instrument=com.acme.util configures instrumentation for all classes matching . All methods of those classes are com.acme.util
instrumented. In the following code, the method will be instrumented:writeData

package com.acme.util;
class IOUtil {
 int writeData(DataOutputStream dos, Data data) {
 dos.write(data._int);
 dos.write(data._float);
 }
}

instrument=com.acme.util,trace=java.io provides visibility into the calls made by . Instrumentation java.io com.acme.util code
adds calls to the method in order to check which calls to are made by that monitored code.writeData() java.io

1.
2.

xmlsecondsli
mit=
[seconds]

By default, if you are using trace_to_xml, the monitoring will spend only up to 10 seconds to convert a monitored complex Java object to
an XML representation. This is to prevent significant slow-downs in the monitoring agent when monitoring very large objects. If that limit
is reached, then the SOAtest event will show the following message instead of the XML representation of an object:

SKIPPED: converting to XML takes too long: 10 seconds

If you wish to change that 10 second threshold, use the xmlsecondslimit flag. example:

xmlsecondslimit=20

For large objects, the recommended approach is to avoid reaching the threshold in the first place: reduce the XML size by excluding the
fields you are not interested (using the xmlecl option).

trace_excepti
ons
[=exception_
c lass_prefix]

Shows a trace of events related to an exception that was created, thrown, or caught.

_details can be added to get more detail of the events (i.e. the stack trace where the event happens).

terse Configures terse output to the console (stack traces have only 1 element).

For Applications Running from Eclipse or Application Servers

Applications that define their own class loaders (i.e. Eclipse, JBoss and Tomcat) need added to the boot classpath. To monitor those insure.jar
applications, add to the launch VM arguments:

-javaagent:"<path_to_jar>\insure.jar=soatest,port=<port>",trace_to_xml,instrument=<my.pack-age.prefix>,
trace=<my.package.prefix> -Xbootclasspath/a<path_to_jar>\insure.jar

For instance, you may use:

-javaagent:"/home/user/parasoft/insure.jar=soatest,port=5060",trace_to_xml,instru-
ment=com.mycompany.onlinestore,trace=com.mycompany.onlinestore -Xbootclasspath/a:/home/user/parasoft/insure.jar

For other (Standalone) Java Applications

For other (standalone) Java applications, you do NOT need to add to the boot classpath. For instance, you may use:insure.jar

java -javaagent:"C:\Program Files\Parasoft\insure.jar=soatest,port=5050",trace_to_xml,instru-ment=com.mycompany.
myapp,trace=com.mycompany.myapp

SOAtest Configuration
Double-click the tool to open up the tool configuration panel.Event Monitor
In the tab, select as the platform, then specify the hostname where the server resides and the Event Source Instrumented Java Application
port number for the Parasoft agent runtime (5050 by default).

Tips
When your application is first launched with the monitoring agent, we recommend that you per-form an initial run of the desired tests or scenarios
before you start inspecting the reported events. This ensures that the various instrumentation and initialization processes have occurred. It also
helps you obtain more realistic data. The first run’s execution time may be significantly higher than subsequent runs, possibly resulting in timeouts
or other side effects. Subsequent runs will better reflect the real behavior of the monitored system.
Events are received asynchronously from the remote agent; there is no direct correlation between the events received and the test actions that
trigger those events. Since SOAtest Event Monitor displays all the events it receives in chronological order, test events and Java monitoring
events may sometimes be displayed out of order. To reduce the risk of this, you can increase the value for the Event polling delay after each

 execution setting. However, that will cause test execution time to increase (because the Event monitor will make test execution to test finishes
pause after each invocation). Be sure that the value is sufficient for the total test suite execution time. Maximum monitor execution duration
Different systems and environments may have different ideal thresholds for these parameters, so you will often need to tune them on a case-by-
case basis.
One best practice is to start instrumenting and tracing a broader set of packages/classes, then gradually reduce that set. More instrumentation
results in slower application execution and more packages/classes being traced results in too many events being returned. You may adjust those
two parameters and tune them to get the exact kinds of events you are interested in.
When using the trace_to_xml option, you may get very large XML content representing your objects in the Event Monitor—possibly in megabytes
and sometimes reaching the 100,000 bytes size limit (adjustable with x). In these cases, consider using the various xml* mlsizelimit
parameters above to control the content you are interested in and limit the amount of data.

	Monitoring Java Applications

