Using Interpreted Data Sources

An interpreted data source is a tabular data source that is regarded by SOAtest as a relational repre-sentation of a Java object graph. An interpreted data
source can be used to facilitate creation of multiple Java objects and object graphs that can be used as test parameter inputs by the EJB Client Tool and
other SOAtest tools. For more information on the EJB Client tool, see EJB Client.

Generating a Data Source from the fields of a Java Bean

To generate a Data Source from the fields of a Java Bean:

1. Do one of the following:
® For test suite level data sources, select the desired test suite node and click the Add Database toolbar button.

[:‘I‘ir'

® For project level data sources, right-click the related project’s Test Case Explorer node, then choose Add New> Data Source.
® For global level data sources, right-click the Test Case Explorer’'s Global Data Sources node, then choose Add New> Data Source.
2. Select Bean Wizard and click Next. The Bean Wizard dialog displays.

% New Data Source !E

Bean Wizard

aenerate a Laka Hource from flelds of a lava Bean

Destination Type |CSY Fik =]

Destinaton Directory IC:'I,Temp'I,CCTaI:ules Browse, ., |

‘Wirite Ower Existing Files? i+ ves Mo

Java Clzss | soakest, payment, CreditCard|

Trace Dependencies? * yes € Mo

(7) < Back Mesxk = | Firishi I Cancel

3. Complete the following options in the Bean Wizard dialog:
® Destination Type: Select the type of table template you would like to create from the drop-down menu.
Destination Directory: Specify where the tables will be written.
Write Over Existing Files: Specify whether you want to overwrite existing files.
Java Class: Specify the class for which you would like to create a tabular representation.
Trace Dependencies: Select either Yes or No for trace dependencies. Selecting Yes prompts SOAtest to generate tables for types of
class member variables “reachable” from the “root” class that you specified in the Java Class field.
4. Click the Next button. The Dependencies dialog displays.
. Select the desired type dependencies from the Generate Table for Classes list.
Click the Finish button to generate the tables. The tables will be created in the designated directory and a data source for each file will be added
to the test suite you selected.

o o

Interpreted Data Source Table Format
The following are the main concepts of the relational to object mapping used by SOAtest:

® An object is a row in a table.
® There are two types of tables:
® Class Tables
® Column for each class member variable
® Row for each instance
® Collection Tables
® Column for table and row of actual object
® Row for each instance

https://docs.parasoft.com/display/FUNCTDEV/.EJB+Client+vSOAVIRT_9.10.2_CTP_3.0.2

Object References

The first column in each table is an identifier for object instances. An object may be referenced by the table name followed by a space, followed by the
object identifier. Identifier column need not necessarily be row numbers, so long as the identifier values are unique within each table.

Values and References

Field values of non-primitive classes are generally specified through object references as described above. However, the extra level of indirection is
unnecessary and cumbersome for values of primitive types. To accommodate an abbreviated form, a built-in support is included for inlining commonly
used types with well-defined string representations. An empty cell in a reference column is interpreted as the null value. An empty cell for a value column is
interpreted as an empty string.

Collections

In order to support variable sized collections, a collection table is introduced. A collection table has a single reference column. An object in the collection is
referenced by the table name followed by a space, followed by the object identifier.

Example

As an example, let us consider an object graph with Cr edi t Car dDOas a root. Cr edi t Car dDO contains instances of Per sonDOand Addr essDOand a Ve
ctor of ActivityDOtype objects.

public cl ass Credit CardDO ext ends Paynent Met hodDO i npl ement s Seri al i zabl e
{

protected String ccNunber;

protected Date expirationDate;

pr ot ect ed Per sonDO ccHol der;

protect ed AddressDO bi | | i ngAddr ess;

protected Vector recentActivity = newVector();

Il set.()/get.() nmethods omtted

public cl ass Paynment Met hodDO i npl enent s Seri al i zabl e {
protected String bankNane;

Il set.()/get.() nmethods omtted

public cl ass AddressDO i npl enent s Seri al i zabl e {
protected String street Address;
protected String city;
protectedint zi pCode;
protected String state;

Il set.()/get.() nmethods omtted

public cl ass PersonDO i npl enents Seri al i zabl e {
protected String firstNane;
protected String | astNang;
Il set.()/get.() nmethods omtted

publicclass ActivityDO inpl ements Serializable {
private float anount;

private String description;

Il set.()/get.() nmethods omtted

The following tables illustrate how the above object graph example can be represented in tabular format:
Table CreditCardDO.csv

soatest.examples.CreditCardDO bankName billingAddress ref ccHolder ref ccNumber expirationDate recentActivityref
1 SampleBank AddressDO 1 PersonDO 1 1234123412341 = 8/31/2005 RecentActivities-1
234

Table AddressDO.csv

soatest.examples.AddressDO city state streetAddress zipCode

Table PersonDO.csv

soatest.examples.PersonDO

Table ActivityDO.csv
soatest.examples.ActivityDO

soatest.examples.ActivityDO

10

Table RecentActivities-1.csv

ActivityDO ref
ActivityDO 1
ActivityDO 2

ActivityDO 3

Los Angeles = CA

firstName

Donald

amount

amount

10

20

30

40

50

60

70

80

90

100

101 E. Huntington Dr.

lastName

Duck

description

description

10 Charge-10
20 Charge-20
30 Charge-30
40 Charge-40
50 Charge-50
60 Charge-60
70 Charge-70
80 Charge-80
90 Charge-90

100 Charge-100

91016

	Using Interpreted Data Sources

