
JMS
 This topic explains how to use the JMS transport with SOAtest, as well as supporting tools and provisioning action tools in Virtualize.

It includes the following sections:

JMS Prerequisites
Configuring JMS Options 
Configuration for Popular JMS Providers
Using Message Selector Filters
JMS Messaging without JNDI
Browsing Queue Contents

JMS Prerequisites
If you are using SOAtest or Virtualize tools as a JMS client, we recommend that SOAtest or Virtualize consult a JNDI provider to make connections to the 
JMS middleware. For this to happen, a JNDI Provider needs to be set up and all necessary jar files (i.e. ones containing the Initial Context) need to be 
added to the SOAtest or Virtualize classpath. (For more information on how to add jars to the classpath, see  ). You will also System Properties Settings
need to supply the names of the connection factory, destination, and reply-to queue that the JNDI provider will look up.

If your JMS setup does not have a JNDI provider that SOAtest or Virtualize can query for an instance of a ConnectionFactory, follow the instructions in JMS
. Alternatively, you can set up a simple file system JNDI provider.  The .jars and documentation for such a provider are available Messaging without JNDI

from the Oracle Java site. Setting up a file system provider is quite easy and the documentation is included in the download.  Once the provider is ready, 
use the piece of simple Java code as described in   to create an instance of the ConnectionFactory to connect to Configuration for Popular JMS Providers
the JMS server using the host and port as arguments. The same should be done for Topics and Queues used by this product. 

Configuring JMS Options 
After selecting   from the Transport drop-down menu within the   tab of an appropriate tool, the following options display in the left pane:JMS Transport

Connection Settings
Queue/Topic
Messaging Model
Messaging Expiration
Message Exchange Pattern
Message Type
Request Message Properties
Response Message Correlation

Connection Settings

Connection Settings contains   and   tabs for  . Settings Properties JNDI Initial Context

The   tab is optional and allows you to specify additional properties to be passed to the JNDI javax.naming.InitalContext constructor (in addition Properties
to the Provider URL and Initial Context factory properties that are specified in the Settings tab). Property values, which can be added by clicking   and Add
completing the Add JMS Property dialog,  can be set to a fixed value, a parameterized value, a scripted value, or a unique value (an automatically-
generated random unique value—no two tool invocations will use the same value).

The   tab contains the following:Settings

Provider URL: Specifies the value of the property named javax.naming.Context.PROVIDER_URL passed to the JNDI javax.naming.InitialContext 
constructor.
Initial Context: Specifies a fully qualified class name string, passed to the JNDI javax.naming.InitialContext constructor as a string value for the 
property named javax.naming.Context.INITIAL_CONTEXT_FACTORY.
Connection Factory: Specifies the JNDI name for the factory This is passed to the lookup() method in javax.naming.InitialContext to create a 
javax.jms.QueueConnectionFactory or a javax.jms.TopicConnectionFactory instance.

In addition to the Settings tab, the Connection Settings also include:

Queue Connection Authentication: Allows users to provide a username and password to create a queue connection. Select the Perform 
 check box and enter the   and   to authenticate the request. If the correct username and password are not Authentication Username Password

used, the request will not be authenticated.The username and password provided here is passed to the createQueueConnection() method in the 
javax.jms.QueueConnectionFactory class in order to get an instance of javax.jms.QueueConnection.

Queue/Topic

The Queue/Topic settings contain the following options:

JMS Destination: Specifies the queue name (if point to point is used) or topic name (if publish and subscribe is used) for where the message will 
be sent to.

https://docs.parasoft.com/display/FUNCTDEV/.Additional+Preference+Settings+vSOAVIRT_9.10.2_CTP_3.0.2#id-.AdditionalPreferenceSettingsvSOAVIRT_9.10.2_CTP_3.0.2-systemPropertiesSystemPropertiesSettings


JMS ReplyTo: Specifies the queue name (if point to point is used) or topic name (if publish and subscribe is used) for where to get a response 
message from. This can be a temporary queue if   is selected instead of  .Temporary Form

Messaging Model

Messaging Model options specify how messages are sent between applications. Select either   or  .Point to Point Publish and Subscribe

Messaging Expiration

The Messaging Expiration option specifies the message expiration time (in milliseconds).

Message Exchange Pattern

Message Exchange Pattern options specify whether or not SOAtest or Virtualize receives a response. If   is selected, SOAtest or Virtualize Get Response
sends a message and receives a response. If   is not selected, SOAtest or Virtualize sends a one-way message and does not receive a Get Response
response.

If   is selected, you can also enable . If the Get Response  Create message consumer on the JMSReplyTo destination before sending the message
response is expected to become available very quickly on the JMSReplyTo topic, this option should be enabled to ensure that SOAtest or Virtualize has 
subscribed to the reply topic before the response message is published.

This option is cannot be mixed with   because the JMS specification requires Match response JMSCorrelationID with the request JMSMEssageID
vendors to generate the JMSMessageID after the message is sent. As a result, there is no way to create the consumer on the response destination with 
that correlation (selector) set until after the message has been set and the JMSMessageID becomes available. 

Message Type

Message Type options allow you to select the message type from the drop-down menu. A JMS Message is a Java object that contains the data being 
transferred between JMS clients. The following Message Types are available:

TextMessage: Used to send a message containing a java.lang.String. It is useful if you want only to send a simple text document. If you are 
doing SOAP over JMS, the String you enter into the TextMessage should be the SOAP Envelope.
BytesMessage: Used to send a message containing a stream of uninterpreted bytes. The receiver of the message interprets the bytes as it sees 
fit. If you are doing SOAP over JMS, the bytes you enter into the ByteMessage should compose the SOAP Envelope. Data is sent in its most 
basic representation. It may also be useful when the JMS node is only interested in forwarding/routing data so the contents of the data aren't 
important to them. It is one of the most commonly used along with TextMessage.

When the encoding in the Parasoft preferences is UTF-8 (the default), you can use the   options to control how a string is Method
extracted from response BytesMessages. The two methods in the drop-down menu correspond to the two methods available in 
BytesMessage JMS API (see the Oracle Java documentation for details).
If a different encoding is selected in the preferences, SOAtest or Virtualize will always invoke BytesMessage.readBytes() on the 
response messages in order to account for different character encodings.

StreamMessage: Used to send a stream of primitive values. If you are doing SOAP over JMS, the Stream you enter into the StreamMessage 
should of the SOAP Envelope.
ObjectMessage: Used to send a Java Serializable. You should use the Scripting input view to return a Java Serializable. This object will be taken 
and stuck into the ObjectMessage during runtime.
MapMessage: Used to send a set of name-value pairs. The values can only be java primitives or their respective wrappers, Strings, or byte 
arrays. One intricacy of MapMessage objects is that even though you inserted a value as a String (using setString()), if the value can be coerced 
into an integer we can call getInt() and get a value of type integer.

Request Message Properties

The Request Message Properties are optional and allows for any miscellaneous property values to be set into the javax.jms.Message object before it gets 
sent to a queue or published to a topic. These include predefined properties that get set to the outgoing requests message using one of the corresponding 
"set" methods in javax.jms.Message, or custom properties (for example, properties set with setStringProperty, setBooleanProperty, setByteProperty, etc.)

Property values, which can be added by clicking   and completing the Add JMS Property dialog,  can be set to a fixed value, a parameterized value, a Add
scripted value, or a unique value (an automatically-generated random unique value—no two tool invocations will use the same value). Be sure to specify 
the type for each added value.



Response Message Correlation

The Response Message Correlation settings contain the following options:

Match response JMSCorrelationID with request JMSMessageID: If selected, the term JMSCorrelationID = '[msgId]' will be appended to the 
selector expression, where msgId is dynamically generated from the outgoing (request) javax.jms.Message (using the getJMSMessageID() 
method). Effectively, this results in the tool blocking until a message with the specified correlation id becomes available in the queue (or topic) and 
it will only retrieve that particular message, rather than retrieving any message in the queue (or topic). The tool will timeout after the timeout 
amount elapses and if there is no message that watches the selector criteria.
Match response JMSCorrelationID with request JMSCorrelationID: If selected, the term JMSCorrelationID = '[correlationId]' will be appended 
to the selector expression, where correlationId is retrieved from JMSCorrelationID property in the Message Properties section. The option 
becomes enabled only if such property is added to the Message Properties section. Effectively, this results in the tool blocking until a message 
with the specified correlation id becomes available in the queue (or topic) and it will only retrieve that particular message, rather than retrieving 
any message in the queue (or topic). The tool will timeout after the timeout amount elapses and if there is no message that watches the selector 
criteria.
Additional Selector Expression Terms: (Optional) Enter a value to act as a message filter. For example, by entering  , only username==John
messages that contain "John" as a username will be delivered. If this field is left blank, then any messages can be received from the queue.
This expression is passed to the createReceiver() method of the javax.jms.QueueSession class in point to point messaging, or the 
createSubscriber() method of the javax.jms.TopicSession class in publish and subscribe messaging. For tips on specifying a selector, see Using 

.Message Selector Filters

Configuration for Popular JMS Providers
See JMS Provider Configuration

Using Message Selector Filters
In various tools, you can specify a value to act as a message filter. This is specified in a field labelled   or Message Selector Additional Selector 

.Expression Terms

For example, by entering  , only messages that contain "John" as a username will be delivered. If this field is left blank, then any username==John
messages can be received.

Here are some tips for working with message selector filters:

You can parameterize Additional Selector Expression Terms values against variables, environment variables, and data source values. The syntax 
to reference variables and environment variables is ${myVariableName}. The syntax to reference XML Data Bank values and Data Source Values 
is: ${myColumnName}. For example, you could use JMSCorrelationID ='${myColumnName}.
If you'd like to filter event messages based on content, you can chain a tool such as XML Transformer to its XML Event Output.
The selector field links to a JMS feature called "message selectors." The specified expression is passed to the javax.jms.Session object when 
creating a javax.jms.MessageConsumer. The selector expression, as defined by the JMS specification, can be applied to JMS message headers 
and properties, but not to message body contents.
In point to point messaging, this expression is passed to the createReceiver() method of the javax.jms.QueueSession class. In publish and 
subscribe messaging, it is passed to the create-Subscriber() method of the javax.jms.TopicSession class.
The expression syntax is a subset of SQL92. For example, if the expression is   or  ' only fruit = 'apple' JMSCorrelationID = '123456 , 
JMS messages that have the property   defined with the value   or the JMS header JMSCorrelationID set to the value  will be fruit apple 123456 
picked up.
For more information, refer to the Java Message Service Specification at the Oracle Java site.

JMS Messaging without JNDI
Using JNDI in order to obtain JMS connection factory and Destination instances is highly recommended from an architectural perspective because it 
decouples JMS consumer code from vendor-specific dependencies. In test or staging environments, a JMS system occasionally does not have a JNDI 
configured yet, or the JNDI does not yet include the desired connection factories. Furthermore, it might be helpful to bypass JNDI during testing in order to 
debug issues or isolate system performance characteristics with and without JNDI.

For these reasons, SOAtest's or Virtualize's JMS-aware tools allow for sending and receiving JMS messages using vendor connection factories directly—
without going through JNDI—as long as your JMS provider permits this. 

https://docs.parasoft.com/display/VIRT9107/JMS+Provider+Configuration


This capability supports certain JMS implementations that are designed to allow for JMS connections to be established without JNDI in the first place, and 
which provide connection factory classes with a constructor that takes a single string argument as the connection URL.

Supported JMS Implementations

Since this support for JMS messaging without JNDI is not based on standard JMS API, it is not guaranteed to be portable across different JMS 
implementations. 

This capability has been tested with Sonic and TIBCO JMS. It is also supported for WebSphere MQ, with the configuration described in IBM WebSphere 
.MQ (MQ Series)

At the time of this writing, the direct creation of connection factories for Oracle/BEA WebLogic, JBoss, or WebSphere Default JMS provider is not 
supported by SOAtest or Virtualize and in most of these cases, it is not documented or encouraged by these vendors. 

Configuration

To configure one of the JMS messaging tools in SOAtest or Virtualize to send/receive messages without JNDI:

Keep the connection URL in the JNDI connection settings   field.Provider URL
Leave the  field empty. Initial Context
Specify a fully-qualified MOM connection factory class name in the   field. That classname should represent a class that Connection Factory
implements javax.jms.ConnectionFactory.

In the cases of Sonic and TIBCO, you can follow the same patterns as JNDI provider URLs (see  and  Progress Sonic MQ/ESB TIBCO 
 for details).EMS

The empty   field is interpreted as a signal to instantiate the connection factory object directly and without JNDI. It will attempt to do so with a Initial Context
constructor that takes a single string argument, passing in the connection URL that you specified in the   field. The connection authentication Provider URL
settings will still be used as usual. If no such constructor exists in your provider's connection factory API, then JNDI is needed in order to instantiate the 
connection factory class.

For example, in the case of Sonic JMS, the   class name to be provided would be Connection Factory progress.message.jclient.
. For TIBCO JMS, it would be  . On the other hand, JBoss and OpenJMS do ConnectionFactory com.tibco.tibjms.TibjmsConnectionFactory

not have a connection factory that takes a single connection URL argument. In these cases, there must be a JNDI in order to exchange JMS messages 
with these systems using SOAtest or Virtualize.

Regardless of the JNDI settings configuration, SOAtest and Virtualize will always attempt to resolve the destination (queue or topic) name from JNDI if 
JNDI exists and if the name exists in the directory. If it cannot find it via JNDI, then it will attempt to create the destination directly from the JMS Session 
instance—assuming that the user-provided name is the physical destination name and not a JNDI name.

Note that Sun's JNDI implementation is available as well. See   for details.Sun JMS

Browsing Queue Contents
The Queue Browser allows you to see the contents of queues deployed on Websphere MQ, Websphere Application Server, Tibco EMS, Sonic MQ, 
ActiveMQ, and any other JMS provider. See   for details.Browsing Queues

https://docs.parasoft.com/display/FUNCTDEV/.JMS+Provider+Configuration+vSOAVIRT_9.10.2_CTP_3.0.2#id-.JMSProviderConfigurationvSOAVIRT_9.10.2_CTP_3.0.2-IBM_WebIBMWebSphereMQ(MQSeries)
https://docs.parasoft.com/display/FUNCTDEV/.JMS+Provider+Configuration+vSOAVIRT_9.10.2_CTP_3.0.2#id-.JMSProviderConfigurationvSOAVIRT_9.10.2_CTP_3.0.2-IBM_WebIBMWebSphereMQ(MQSeries)
https://docs.parasoft.com/display/FUNCTDEV/.JMS+Provider+Configuration+vSOAVIRT_9.10.2_CTP_3.0.2#id-.JMSProviderConfigurationvSOAVIRT_9.10.2_CTP_3.0.2-ProgressSonic
https://docs.parasoft.com/display/FUNCTDEV/.JMS+Provider+Configuration+vSOAVIRT_9.10.2_CTP_3.0.2#id-.JMSProviderConfigurationvSOAVIRT_9.10.2_CTP_3.0.2-TIBCOEMS
https://docs.parasoft.com/display/FUNCTDEV/.JMS+Provider+Configuration+vSOAVIRT_9.10.2_CTP_3.0.2#id-.JMSProviderConfigurationvSOAVIRT_9.10.2_CTP_3.0.2-TIBCOEMS
https://docs.parasoft.com/display/FUNCTDEV/.JMS+Provider+Configuration+vSOAVIRT_9.10.2_CTP_3.0.2#id-.JMSProviderConfigurationvSOAVIRT_9.10.2_CTP_3.0.2-SunJMSSunJMS
https://docs.parasoft.com/display/VIRT9107/Browsing+Queues

	JMS

