
Configuring Localsettings
This topic explains how you can specify settings to control options for reporting, task assignment, licensing, and more. Local settings can be used to share 
preferences across a team as well as to apply different groups of settings to different projects and test runs. 

Sections include:

About Localsettings
Specifying ans Storing Localsettings
Additional Information

Available Settings
Reporting Settings
Parasoft DTP Settings
Team Server Settings
Licensing Settings
OpenID Connect Settings
Technical Support Settings
Authorship/Scope Settings
Source Control Settings
File Encoding Settings
Miscellaneous Settings

Using Variables in Local Settings (Options) Files
Examples

About Localsettings
Localsettings can control report settings, Parasoft DTP settings, error authorship settings, and more. You may want to create a file with localsettings to:

Configure and use different setting configurations for different projects.
Extend or override team-wide settings as needed  (for example, for settings that involve local paths).
Enter GUI-specified and manually-specified settings into Parasoft DTP, which centralizes preference distribution and updating across the team.
Adjust settings without having to open the GUI.

 If an option is configured both in the localsettings file and in the GUI, localsettings will override the GUI configuration.

Specifying ans Storing Localsettings

There are two ways to specify localsettings:

Enter them manually in a simple text file. There are no name or location requirements.
Export your GUI preferences as described in  then adjust or extend them as needed.Exporting GUI Preferences to a localsettings File

Localsettings can be stored on Parasoft DTP (where they are automatically applied to connected C/C++test installations) or in a local file (where they can 
be specified from the command line).  For details on how to store and apply localsettings, see . C++test Configuration Overview

Additional Information

Each setting should be entered on a single line.
We highly recommend that you use encoded passwords to ensure successful authentication and increase the level of security; see Creating an 

.Encoded Password
If you are importing preferences from localsettings specified on DTP and you want to override these settings from the GUI, you can clear the Use 

 option on the appropriate page, then manually configure the settings.DTP settings
If any localsettings problems are detected during a test run, details will be reported in the command line output.
If you are running cli mode from a developer/tester desktop (as opposed to from a Server machine), use the  option to tasks.clear=false
ensure that your results from previous runs are preserved.

1.  
2.  
3.  
4.  
5.  
6.  

Creating a Local Settings (Options) File by Exporting Your GUI Preferences

The fastest and easiest way to create options files is to export your Preferences from the GUI.

Choose .Parasoft> Preferences
Select  (the root element in the left tree).Parasoft
Click the  link in the right side of the panel.share
In the dialog that opens, specify which preferences you want to export to a file.
Click the  button, then specify the file where you want the settings saved.Browse
Click .OK

If you select an existing file, the settings will be appended to that file. Otherwise, a new file will be created.
Exported passwords will be encrypted.

https://docs.parasoft.com/pages/viewpage.action?pageId=62371531#C++testConfigurationOverview-export_GUI
https://docs.parasoft.com/pages/viewpage.action?pageId=62371531
https://docs.parasoft.com/display/CPPTDESKDEV/.Connecting+to+DTP+v10.4.3#id-.ConnectingtoDTPv10.4.3-encoded_password
https://docs.parasoft.com/display/CPPTDESKDEV/.Connecting+to+DTP+v10.4.3#id-.ConnectingtoDTPv10.4.3-encoded_password


Available Settings

Reporting Settings

Setting Purpose

build.id=[id] Specifies a build identifier used to label results. It may be unique for each build but may also label more than one test 
sessions that were executed during a specified build. 

The default is .${dtp_project}-yyyy-MM-dd

report.
active_rules=true|false

Determines if the reports contain a list of the rules that were enabled for the test.

Default: false

report.
archive=true|false

Enables the generation of an additional compressed archive (.zip) file in the specified report location. The ZIP file 
contains all the files generated to build the report. 

This option can generate an archive for any report format (e.g., HTML, CSV, PDF, etc.). 

By generating an archive, you can also perform custom transformations of the report because all of the elements are 
generated to the specified destination folder.

Default: false

report.associations=tru
e|false

Specifies whether the report shows requirements, defects, tasks, and feature requests that are associated with a test.

Default: false

report.authors_details=
true|false

Determines whether the report includes an overview of the number and type of tasks assigned to each team member. 

Default: true

report.contexts_details
=true|false

Determines whether the report includes an overview of the files that were checked or executed during testing.

Default: false

report.custom.
extension

report.custom.xsl.file

Specifies the location and extension of the XSL file for a custom format. Used with report.format=custom

For details and examples, see .Configuring Reporting Settings

report.
developer_errors=true|f
alse

Determines whether manager reports include details about team member tasks.

Default: false

report.
developer_reports=true|
false

Determines whether the system generates detailed reports for all team members (in addition to a summary report for 
managers). 

Default: true

report.
format=html|pdf|sate|xu
nit|custom

Specifies the report format.

Default: html

report.
generate_htmls=true|fal
se

Determines whether HTML reports are generated and saved on the local file system. XML reports are generated and 
saved regardless of this setting’s value.

Default: true

report.graph.
cs_start_date=[MM/dd
/yy]

Determines the start date for trend graphs that track static analysis tasks over a period of time. See Understanding 
for more details on these reports.Reports 

report.graph.
ue_coverage_start_date=
[MM/dd/yy]

Determines the start date for trend graphs that track coverage over a period of time. See  for Understanding Reports
more details on these reports.

report.graph.
ue_start_date=[MM/dd
/yy]

Determines the start date for trend graphs that track test execution results over a period of time. 

report.
location_details=true|f
alse

Specifies whether absolute file paths are added to XML data. This needs to be enabled on the Server installation if 
you want to relocate tasks upon import to desktop installations. 

Default: false

https://docs.parasoft.com/display/CPPDESKV1043/Configuring+Reporting+Settings
https://docs.parasoft.com/display/CPPDESKV1043/Understanding+Reports
https://docs.parasoft.com/display/CPPDESKV1043/Understanding+Reports
https://docs.parasoft.com/display/CPPDESKV1043/Understanding+Reports


report.mail.
attachments=true|false

Determines whether reports are sent as attachments. All components are included as attachments; before you can 
view an HTML report with images, all attachments must be saved to the disk.

Default: false

report.mail.cc=
[email_addresses]

Specifies where to mail comprehensive manager reports. This setting must be followed by a semicolon-separated list 
of email addresses. This setting is typically used to send reports to managers or architects. It can also be used to 
send comprehensive reports to team members if such reports are not sent automatically (for example, because the 
team is not using a supported source control system).

report.mail.
compact=trends|links

Specifies that you want to email a compact report or link rather than a complete report. 

If  is used, the email contains a trend graphs, summary tables, and other compact data; detailed data is not trends
included.

If  is used, the email contains only a link to a report (which is available on Team Server)links

report.mail.domain=
[domain]

Specifies the mail domain used to send reports.

report.mail.
enabled=true|false

Determines whether reports are emailed to team members  and to the additional recipients specified with the  cc
setting. 

Remember that each developer that worked on project code will automatically be sent a report that contains only the 
errors/results related to his or her work.

Default: false

report.mail.exclude=
[email_addresses]

Specifies any email addresses you do not want to receive reports. This set-ting is used to prevent automated sending 
of reports to someone that worked on the code, but should not be receiving reports.

report.mail.exclude.
developers=true|false

Specifies whether reports should be mailed to any team member whose email is not explicitly listed in the report.
 property. This setting is used to prevent reports from being mailed to individual developers.mail.cc

Default: false

report.mail.
format=html|ascii

Specifies the email format.

Default: html

report.mail.from=
[email_address OR 
user_name_of_the_same_d
omain]

Specifies the "from" line of the emails sent.

Default: <global_user_name>

report.mail.include=
[email_addresses]

Specifies the email addresses of team members that you want to receive individual reports. This setting must be 
followed by a semicolon-separated list of email addresses. This setting is typically used to send individual reports to 
team members if such reports are not sent automatically (for example, because the team is not using a supported 
source control system). It overrides team members specified in the 'exclude' list. 

report.mail.on.error.
only=true|false

Determines whether reports are sent to the manager only if a task is generated or a fatal exception occurs. Team 
member emails are not affected by this setting; individual emails are sent only to team members who are responsible 
for reported tasks.

Default: false

report.mail.server=
[server]

Specifies the mail server used to send reports.

report.mail.port=[port] Specifies the mail server host’s port number.

Default: 25

report.mail.security=
[SL| STARTTLS| NONE]

Specifies the desired security. Available settings are  SSL, STARTTLS, NONE. SSL is not available in Visual Studio.

report.mail.subject=My 
New Subject

Specifies the subject line of the emails sent. The default subject line is ${tool_name} Report - ${config_name}. For 
example, if you want to change the subject line to "Report for Project A", you would use

report.mail.subject=Report for Project A

Default: ${tool_name} Report - ${config_name}

report.mail.time_delay=
[server]

Specifies a time delay between emailing reports (to avoid bulk email restrictions).

Default: 0



report.mail.unknown=
[email_address OR 
user_name_of_the_same_d
omain]

Specifies where to mail reports for errors assigned to "unknown".

report.mail.username=
[username] report.mail.
password=[password] 
report.mail.realm=
[realm]

Specifies the settings for SMTP server authentication.

The  value is required only for those servers that authenticate using SASL realm.realm

report.
metrics_details=true|fa
lse

Determines whether an XML report with metrics summary information (as well as individual class and method detail 
data where applicable) is produced. This report will be generated only when a metrics-enabled Test Configuration is 
run. Metrics details will be shown in HTML and PDF reports.

Default: true

report.setup.
problems=top|bottom|hid
den

Determines whether reports include a section about setup problems. 

top - Adds a "Setup Problems" section to the top of the report. This is the default. 

hidden - Prevents a "Setup Problems" section from being added.

bottom - Adds a "Setup Problems" section to the bottom of the report. 

Default: bottom

report.
suppressed_msgs=true|fa
lse

Determines whether reports include suppressed messages.

Default: false

report.
test_params=true|false

Determines whether reports include test parameter details.

Default: false

report.
ue_coverage_details_htm
ls=[coverage_type]

Determines whether a test's HTML report links to another report that includes source code annotated with line-by-line 
coverage details. 

The following values can be used for [coverage_type]:

LC - for line coverage
SC - for statement coverage 
BCC - for block coverage 
DC - for decision coverage 
SCC - for simple condition coverage 
MCDC - for MC/DC coverage

session.tag=[name] Specifies a session tag used to label these results. This value is used for uploading summary results to Team Server. 

The tag is an identifier of the module checked during the analysis process. Reports for different modules should be 
marked with different tags.

Default: ${config_name}

tasks.source.control.
details=true|false

This setting specifies if additional information from source control, such as revisions and comments, is included in the 
report.

Parasoft DTP Settings

Setting Purpose

dtp.enabled=true|false Determines whether the current C/C++test installation is connected to DTP.

dtp.server=[server] Specifies the host name of the DTP server.

dtp.port=[port] Specifies the port number of the DTP server.

dtp.user=[username] Specifies the username for DTP server authentication.

dtp.password=[password] Specifies the password for DTP server authentication. We highly recommend that you use an encoded 
password to ensure successful authentication and increase the level of security; see Creating an Encoded 

.Password

report.dtp.publish=true|fal
se

Enables or disables reporting results to DTP server.

https://docs.parasoft.com/display/CPPTDESKDEV/.Connecting+to+DTP+v10.4.3#id-.ConnectingtoDTPv10.4.3-encoded_password
https://docs.parasoft.com/display/CPPTDESKDEV/.Connecting+to+DTP+v10.4.3#id-.ConnectingtoDTPv10.4.3-encoded_password


dtp.project=[project_name] Specifies the name of the DTP project that you want these results linked to.

dtp.additional.settings=
[KEY1\=VALUE1\nKEY2\=VALUE2
...]

Specifies advanced settings for reporting results to DTP.

dtp.autoconfig=true|false Enables autoconfiguration with C/C++test settings stored on the DTP server

Team Server Settings

Setting Purpose

tcm.server.
enabled=true|false

Determines whether C/C++test is connected to the Parasoft Team Server. 

Default: false

tcm.server.name=[name] Specifies the machine name or IP address of the machine running Team Server. 

tcm.server.port=[port] Specifies the Team Server port number.

Default: 18888

tcm.server.
accountLogin=true|false 

tcm.server.username=
[username] 
tcm.server.password=
[password]

Determines whether username and password are submitted to connect to Team Server. Usernames/passwords are 
not always needed; it depends on your team’s setup. 

If the first setting is , the second and third settings specify the username and password.true

Note that Team Server must have the username and password setting already enabled before these settings can be 
used.

tcm.server.accountLogin default: false

Licensing Settings

See  for additional notes and examples.Manually Adding the License to localsetttings

Setting Purpose

cpptest.
license.
use_network=
true|false

Enables or disables retrieving a network license.

Example: .license.use_network=truecpptest

Default: true

 By default, C/C++test will try to retrieve a license form License Server on the DTP configured as your primary DTP server; see Pa
. If you want to configure another License Server, enable the   rasoft DTP Settings license.network.use.specified.server

option.

cpptest.
license.
local.
password=
[password]

Specifies the local password that you want C/C++test to use. 

cpptest.
license.loca
l.
expiration=
[expiration]

Specifies the expiration date of the local license.

Default: 0

cpptest.
license.netw
ork.edition=
[edition_nam
e]

Specifies the type of license that you want C/C++test to retrieve from License Server. 

[edition_name] can be . To use a custom edition, do not set anything after the  simply leaving the automation_edition  "=";
value empty.

Example:

cpptest.license.network.edition=desktop_edition

cpptest.license.network.edition=automation_edition

Default: custom_edition

https://docs.parasoft.com/display/CPPDESKV1043/Licensing#Licensing-manually_add


cpptest.
license.
custom_editi
on_features=
[feature 
name]

Specifies the features you want to enable in the custom edition of the C/C++test license.

cpptest.
license.
wait.for.
tokens.time=
[time in 
minutes]

Specifies the time that C/C++test will wait for a license if a license is not currently available. 

For example to make C++test  wait 3 minutes for license tokens, use cpptest.wait.for.tokens.time=3.

Default: 0

cpptest.
license.
autoconf.
timeout=
[seconds]

Specifies the maximum number of seconds C/C++test will  wait for the license to be automatically configured from License Server.

Default: 20

license.
network.use.
specified.
server=true|
false

Enables or disables retrieving the license from a custom License Server specified with the  and license.network.host license
 options..network.port

Example: =license.network.use.specified.server true

Default: false

license.
network.
host=[host]

Specifies the host name of the standalone License Server,  secondary DTP, or legacy License Server that you use to obtain the 
license. It requires the   option set to .license.network.use.specified.server true

Example: license.network.host=jade.mycompany.com

 If you retrieve the license from a standalone License Server that uses the HTTPS protocol, precede the hostname with https://
.

license.
network.
port=[port]

Specifies the port number that is assigned to License Server specified with the  option.license.network.host

For a standalone License Server:  Depends on your Tomcat settings; typically, a  HTTP port, for example, 8080.
For License Server on secondary DTP: Typically, a HTTPS port, for example 443 or 8443.
For legacy License Server: Typically, 2002.

Example: license.network.port=2222

license.
network.
connection.
type=
[http|tcp]

Specifies the connection type if you obtain your license from a custom License Server.

http: Allows you to obtain the license from a standalone License Server or License Server on secondary DTP.

tcp: Allows you to obtain the license from Legacy License Server.

It requires the , , and  to be license.network.use.specified.server license.network.host license.network.port
enabled.

Example: license.network.connection.type=http

license.
network.
auth.
enabled=true
|false

Enables or disables authentication on the secondary DTP server specified with the  and license.network.host license.
 options.network.port

It requires the option to be set to . license.network.use.specified.server true

license.
network.
user=
[username]

Specifies the username for authentication on the secondary DTP server specified with the  and license.network.host license
 options. It requires the  and .network.port  license.network.use.specified.server license.network.auth.

options set to .enabled true

Example: =JohnSnowlicense.network.user

license.
network.
password=
[password]

Specifies the password for authentication on the secondary DTP server specified with the  and license.network.host license.
 options. It requires the  and network.port  license.network.use.specified.server license.network.auth.

options set to , and the the   to be configured. We highly recommend that you use an enabled true license.network.user
encoded password to ensure successful authentication and increase the level of security; see .Creating an Encoded Password

Example: =license.network.password Wic2019!

OpenID Connect Settings

Setting Purpose

https://docs.parasoft.com/display/CPPTDESKDEV/.Connecting+to+DTP+v10.4.3#id-.ConnectingtoDTPv10.4.3-encoded_password


oidc.enabled=true|
false

Enables or disables user authentication via OpenID Connect.

The default is .false

oidc.issuer.uri=
[uri]

Specifies the URI of the OpenID Connect server where your DTP is registered.

oidc.client.id=
[id]

Specifies the ID registered on your OpenID Connect server.

oidc.client.
secret=[password]

Specifies the password provided by your OpenID Connect server.

oidc.keystore=
[path]

Specifies the path to the keystore file that stores the certificate to authenticate the user on the OpenID Connect server.

They keystore file can only store one certificate. Parasoft testing tools do not support keystores with multiple certificates.

oidc.keystore.
password=
[password]

Specifies the password to the the keystore file that stores the self-signed client certificate. We highly recommend that you 
use an encoded password to ensure successful authentication and increase the level of security; see Creating an Encoded 

.Password

oidc.callback.
host=localhost | 
127.0.0.1

This setting specifies the local callback host configured in the IDE to communicate with the OpenID Connect server.

 This is an IDE-related setting and is not intended for command line use.

The default is .localhost

oidc.callback.
port=0 | [port 
number]

This setting specifies the callback port number configured in the IDE to communicate with the OpenID Connect server.

 This is an IDE-related setting and is not intended for command line use.

0: The port will be automatically configured.

The default is .0

oidc.callback.
timeout=[seconds]

This setting specifies the maximum time allowed for providing user credentials on the authentication page to authenticate on 
DTP via OpenID Connect when working with C/C++test in the IDE.

 This is an IDE-related setting and is not intended for command line use.

The default is 60.

Technical Support Settings

Setting Purpose

techsupport.
auto_creation=true|fa
lse

Determines whether archives are automatically prepared when testing problems occur.

Default: false

techsupport.
send_email=true|false

Determines whether prepared archives are emailed to Parasoft support. If you enable this, be sure to specify email 
settings from the GUI or with the options in .Reporting Settings

Default: false  

techsupport.
archive_location=
[directory]

Specifies where archives are stored.

techsupport.
verbose=true|false

Determines whether verbose logs are included in the archive. Note that this option cannot be enabled if the logging 
system has custom configurations.

Verbose logs are stored in the  file within the user-home temporary location (on Windows, this is xtest.log <driv
).e>:\Documents and Settings\<user>\Local Settings\Temp\parasoft\xtest

Verbose logging state is cross-session persistent (restored on application startup).
The log file is a rolling file: it won't grow over a certain size, and each time it achieves the maximum size, a backup 
will be created.

Default: false

techsupport.verbose.
scontrol=true|false

Determines whether verbose logs include output from source control commands. Note that the output could include 
fragments of your source code.  

Default: false

https://docs.parasoft.com/display/CPPTDESKDEV/.Connecting+to+DTP+v10.4.3#id-.ConnectingtoDTPv10.4.3-encoded_password
https://docs.parasoft.com/display/CPPTDESKDEV/.Connecting+to+DTP+v10.4.3#id-.ConnectingtoDTPv10.4.3-encoded_password


techsupport.item.
general=true|false

Determines whether general application logs are included.

Default: false

techsupport.item.
environment=true|false

Determines whether environment variables, JVM system properties, platform details, additional properties (memory, 
other) are included in the archive.

Default: false

techsupport.
advanced=true|false

Specifies if advanced options will be sent.

Default: false

techsupport.advanced.
options=[option]

Specifies any advanced options that the support team asked you to enter.

Default: false

techsupport.dtp.
engine=true|false

Specifies if additional data generated during analysis will be sent.

Default: false

Authorship/Scope Settings

Setting Purpose

authors.mappings.
location=team|local
|shared

Specifies where the authorship mapping file is stored. This setting defaults to  unless or  is specified.team local shared

If set to  (recommended), authorship mappings can be set directly in localsettings. See  and local authors.mapping aut
 for details.hors.user{n}

If set to , you can store map-pings in a local file using the  option. shared authors.mappings.file

The  and  options are deprecated. Files specified by these options should be in the previously-used format of:team shared

#author to author
user1=user3
user2=user3
#author to email
user3=me@parasoft.com

 Default: team

authors.mapping{n}=
[from_user, 
to_user]

Specifies a specific author mapping for , as described above.authors.mappings.location=local

For example:

authors.mappings.location=local
authors.mapping1=baduser,gooduser
authors.mapping2=brokenuser,fixeduser 
authors.mapping3=olduser,newuser 

authors.user{n}=
[username, email, 
full_name]

Specifies a specific author name and email for .authors.mappings.location=local

For example:

authors.user1=dan,dan@parasoft.com,Dan Stowe
authors.user2=jim,jim@parasoft.com,Jim White 

authors.mappings.
file=[path]

Specifies the location of a "shared" file as described in  above.authors.mappings.location

For example:

authors.mappings.file=/home/user/dev/temp/author_mapping1.txt

authors.ignore.
case=true|false

Determines whether author names are case sensitive. If true, David and david will be considered the same user. If false, 
David and david will be considered two separate users.

Default: false

scope.
sourcecontrol=true|
false

Determines whether C++test computes code authorship based on a data from a supported source control system. This 
setting is not needed if you want to use the value specified in the GUI.

Default: false



scope.
local=true|false

Determines whether C++test computes code authorship based on the local user. This setting is not needed if you want to 
use the value specified in the GUI.

Default: true

scope.recommended.
computation=first|r
andom

Determines how C/C++test selects the Recommended Tasks for each team member—it can choose n tasks at random 
(the default) or select the first n tasks reported (n is the maximum number of tasks that C/C++test is configured to show 
each team member per day)

scope.
xmlmap=true|false

Determines whether task assignment is computed based on XML files that define how you want tasks assigned for 
particular files or sets of files (these mappings can be specified in the GUI then saved in an XML file).

Default: true

scope.xmlmap.file=
[file]

Specifies the name of the XML file that defines how you want tasks assigned for particular files or sets of files.

Source Control Settings

AccuRev Repository Definition Properties

Property Description

scontrol.rep.type=accurev AccuRev repository type identifier. 

scontrol.rep.accurev.host= AccuRev server host. 

scontrol.rep.accurev.port= AccuRev server port. Default port is 1666.

scontrol.rep.accurev.login= AccuRev user name. 

scontrol.rep.accurev.password= AccuRev password. 

ClearCase Repository Definition Properties

Property Description

scontrol.ccase.exec= Path to external client executable ( ).cleartool

scontrol.rep.type=ccase ClearCase repository type name. 

scontrol.rep.ccase.vob=  Path inside VOB. ccase.vob value + File.separator  must be the valid path to a ClearCase controlled directory. 

CVS Repository Definition Properties

Property Description

scontrol.rep.
type=cvs

CVS repository type identifier. 

scontrol.rep.
cvs.root=

Full CVSROOT value. 

Defining multiple repositories of the same type

Indexes (numbered from 1 to n) must be added to the prefix if you want to define more than one repository of the same type. For example: 

scontrol.rep1.type=ccase
scontrol.rep1.ccase.vob=/vobs/myvob1

scontrol.rep2.type=ccase
scontrol.rep2.ccase.vob=/vobs/myvob2

If you are defining only one repository, you do not need to use an index. For example:

scontrol.rep.type=ccase
scontrol.rep.ccase.vob=/vobs/myvob1



scontrol.rep.
cvs.pass=

Plain or encoded password. The encoded password should be the same as in the .  file.cvspass

For CVS use the value in .  from within the user's home directorycvspass

For CVSNT use the value store in the registry under HKEY_CURRENT_USER\Software\Cvsnt\cvspass

When you are first logged in to the CVS repository from the command line using "cvs login", the password is saved in the registry. 
To retrieve it, go to the registry (using regedit), and look for the value under . This HKEY_CURRENT_USER->CVSNT> cvspass
should display your entire login name ( ) encrypted password value.:pserver:exampleA@exampleB:/exampleC

scontrol.rep.
cvs.
useCustomSSHC
reden-tials=

Determines whether  the cvs login and password should be used for EXT/SSH connections. Allowed values are  and . true false
It is disabled by default.

scontrol.rep.
cvs.ext.
server

If connecting to a CVS server in EXT mode, this specifies which CVS application to start on the server side.

Has the same meaning as the CVS_SERVER variable .  is the default value.cvs

scontrol.rep.
cvs.ssh.
loginname=

Specifies the login for SSH connections (if an external program can be used to provide the login).

scontrol.rep.
cvs.ssh.
password=

Specifies the  password for SSH connection.

scontrol.rep.
cvs.ssh.
keyfile=

Specifies the private key file to establish an SSH connection with key authentication.

scontrol.rep.
cvs.ssh.
passphrase=

Specifies the passphrase for SSH connections with the key authentication mechanism.

scontrol.rep.
cvs.useShell=

Enable an external program (CVS_RSH) to establish a connection to the CVS repository. Allowed values are  and . It true false
is disabled by default.

scontrol.rep.
cvs.ext.
shell=

Specifies the path to the executable to be used as the CVS_RSH program. Command line parameters should be specified in the cv
 property.s.ext.params

scontrol.rep.
cvs.ext.
params=

Specifies the parameters to be passed to an external program. The following case-sensitive macro definitions can be used to 
expand values into command line parameters:

{host} repository host
{port} port
{user} cvs user
{password} cvs password
{extuser} parameter cvs.ssh.loginname
{extpassword} parameter cvs.ssh.password
{keyfile} parameter cvs.ssh.keyfile
{passphrase} parameter cvs.ssh.passphrase

Git Repository Definition Properties

Property Description

scontrol.rep.type=git Git repository type identifier.

scontrol.git.exec= Path to Git executable. If not set, assumes git command is on the path.

scontrol.rep.git.
branch=

The name of the branch that the source control module will use. This can be left blank and the currently checked out 
branch will be used.

scontrol.rep.git.url= The remote repository URL (e.g., git://hostname/repo.git).

scontrol.rep.git.
workspace= 

The directory containing the local git repository.

Perforce Repository Definition Properties

Property Description



scontrol.perforce.
exec=

Path to  external  client executable ( ).p4

scontrol.rep.
type=perforce

Perforce repository type identifier. 

scontrol.rep.
perforce.host=

Perforce server host. 

scontrol.rep.
perforce.port=

Perforce server port. Default port is 1666.

scontrol.rep.
perforce.login=

Perforce user name. 

scontrol.rep.
perforce.password=

Password. 

scontrol.rep.
perforce.client=

The client workspace name, as specified in the P4CLIENT environment variable or its equivalents. The workspace's root dir 
should be configured for local path (so that files can be downloaded). 

Serena Dimensions Repository Definition Properties

Property Description

scontrol.rep.
type=serena

Serena Dimensions repository type identifier. 

scontrol.serena.
dmroot=

Path to  the Serena Dimensions executable (e.g., scontrol.serena.dmroot=C\:\\Program Files (x86)
)\\Serena\\Dimensions 2009 R2\\CM\\

scontrol.rep.
serena.login=

Login name.

scontrol.rep.
serena.password=

Password.

scontrol.rep.
serena.host=

Serena Dimensions server host name.

scontrol.rep.
serena.dbname=

Name of the database for C/C++test

scontrol.rep.
serena.dbconn=

Connection string for that database.

scontrol.rep.
serena.locale=

The  language used (e.g., ).scontrol.rep.serena.locale=en_US

scontrol.rep.
serena.mapping=

If the project has been downloaded/moved to a location other than default work area, use this option to specify a mapping 
between the project (or stream) with the Serena repository and the local project.

If you are working in the default work area, you do not need to define mappings.

StarTeam Repository Definition Properties

Property Description

scontrol.rep.
type=starteam

StarTeam repository type identifier. 

scontrol.rep.
starteam.
host=

StarTeam server host. 

sscontrol.
rep.starteam.
port=

StarTeam server port. Default port is 49201. 

scontrol.rep.
starteam.
login=

Login name. 



scontrol.rep.
starteam.
password=

Password (not encoded).

scontrol.rep.
starteam.
path=

When working with large multi-project repositories, you can improve performance by specifying the project, view, or folder that you 
are currently working with. 

You can indicate  either a simple Project name (all views will be scanned when searching for the repository path), a Project/View 
(only the given view will scanned) or Project/View/Folder (only the specified Star Team folder will be scanned).

Examples:

scontrol.rep.starteam.path=proj1
scontrol.rep.starteam.path=proj1/view1
scontrol.rep.starteam.path=proj1/view1/folderA
scontrol.rep.starteam.path=proj1/view1/folderA/folderB 

scontrol.rep.
starteam.
workdir=

If the  setting specifies a StarTeam view or folder, you can use this field to indicate a new  scontrol.rep.starteam.path
working directory for the selected view's root folder (if the path represents a view) or a new working directory for the selected folder 
(if the path represents a folder).

Examples:

scontrol.rep.starteam.workdir=c:\\storage\\dv
scontrol.rep.starteam.workdir=/home/storage/dv 

Subversion Repository Definition Properties

Property Description

scontrol.rep.type=svn Subversion repository type identifier. 

scontrol.rep.svn.url= Subversion URL specifies protocol, server name, port and starting repository path (e.g.,  svn://buildmachine.foobar.
com/home/svn). 

scontrol.rep.svn.login= Login name. 

scontrol.rep.svn.
password =

Password (not encoded). 

scontrol.svn.exec= Path to external client executable ( ).svn

CM Synergy Repository Definition Properties

Property Description

scontrol.rep.
type=synergy

Synergy/CM repository type identifier. 

scontrol.rep.synergy.
host=

Computer on which synergy/cm engine runs. Local host is used when missing. For Web mode, the  host must be a valid 
.Synergy Web URL with protocol and port (e.g., )http://synergy.server:8400

scontrol.rep.synergy.
dbpath=

Absolute synergy database path e.g \\host\db\name (backslash symbols '\' in UNC/Windows paths must be doubled).

scontrol.rep.synergy.
projspec= 

Synergy project spec which contains project name and its version e.g name-version. 

scontrol.rep.synergy.
login=

Synergy user name. 

scontrol.rep.synergy.
password=

Synergy password (not encoded). 

scontrol.rep.synergy.
port=

Synergy port.

scontrol.rep.synergy.
remote_client=

(UNIX only) Specifies that you want to start ccm as a remote client. Default value is false. Optional. This is not used for 
Web mode.

scontrol.rep.synergy.
local_dbpath=

Specifies the path name to which your data-base information is copied when you are running a remote client session. If 
null, then the default location will be used. This is not used for Web mode.

scontrol.synergy.
exec=

Path to external client executable ( ) ccm



Microsoft Team Foundation Server Repository Definition Properties 

Property Description

scontrol.rep.type=tfs TFS repository type identifier. 

scontrol.rep.tfs.host= Name of the machine running TFS.

scontrol.rep.tfs.port= TFS server’s port number (optional; when not specified, 8080 is used).

scontrol.rep.tfs.protocol= The protocol used to connect to TFS server. Available values are HTTP and HTTPS.

scontrol.rep.tfs.url= TFS repository URL (for example, ).http://localhost:8080/tfs

scontrol.rep.tfs.login = TFS user name.

scontrol.rep.tfs.password= TFS password.

Microsoft Visual Source Safe Repository Definition Properties

Property Description

scontrol.rep.type=vss Visual SourceSafe repository type identifier.

scontrol.rep.vss.
ssdir=

Path of repository database  (backslash symbols '\' in UNC/Windows paths must be doubled). 

scontrol.rep.vss.
projpath=

VSS project path. 

scontrol.rep.vss.
login=

VSS login. 

scontrol.rep.vss.
password=

VSS password. 

scontrol.vss.exec=  Path to external client executable ( ).ss

scontrol.vss.lookup= Determines whether a full VSS database search is performed to find associations between local paths and repository 
paths. True or false. 

Important Notes

The repository(n).vss.ssdir property shouldco ntain a UNC value even if the repository database resides locally.
Be aware of VSS Naming Syntax, Conventions and Limitations. Any character can be used for names or labels, except the following:

Dollar sign ($)
At sign (@)
Angle brackets (< >), brackets ([ ]), braces ({ }), and parentheses (( ))
Colon (:) and semicolon (;)
Equal sign (=)
Caret sign (^)
Exclamation point (!)
Percent sign (%)
Question mark (?)
Comma (,)
Quotation mark (single or double) (' ")

VSS 6.0 (build 8163), which is deployed with Visual Studio 6, does not work properly with projects whose names start with a dot (.) symbol. If 
such a project name is used, subprojects cannot be added.
Do not use custom working directories for sub-projects (example: Project $/SomeProject has the working directory C:\TEMP\VSS\SomeProject 
and its subproject $/SomeProject/SomeSubProject has the working directory D:\SomeSubProject).

File Encoding Settings

Setting Purpose



fileencoding.mode=default|user|auto Defines how file encoding is calculated. 

default specifies that you want to use system properties.

user indicates that you will explicitly specify the encoding name (using the setting below).

auto enables automatic detection of encoding for the Far-East language specified with 
.fileencoding.autolanguage

Default: default

fileencoding.user-
encoding=<name_of_encoding>

If  is set to , this specifies the encoding name fileencoding.mode user

Valid names are ASCII-US, UTF-8, UTF-16, UTF-16LE, UTF-16BE or java.nio canonical 
name. 

It should be specified in form parasoft-dotNET-[codepagenumber]

fileencoding.auto-language=<language’s 
numeric_code>

If .  is set to , this specifies the language’s numeric code. Valid fileencoding mode auto
codes are:

JAPANESE = 1
CHINESE = 2
SIMPLIFIED CHINESE = 3
TRADITIONAL CHINESE = 4
KOREAN = 5

Miscellaneous Settings

Setting Purpose

report.rules=
[url_path_to_
rules_directo
ry]

Specifies the directory for rules html files (generated by clicking the  button in the Test Configuration’s Static Printable Docs
Analysis tab). 

For example:

report.rules=file:///C:/Temp/Burt/parasoft/xtest/gendoc/report.rules=../gendoc/ 

Default: none

tasks.
clear=true|fa
lse

Clears existing tasks upon startup in cli mode. This prevents excessive time being spent "loading existing results." 

Default: true

console.
verbosity.
level=low|nor
mal|high

Specifies the verbosity level for the Console view. Available settings are:

low: Configures the Console view to show errors and basic information about the current step’s name and status (done, failed, up-
to-date).

normal: Also shows command lines and issues reported during test and analysis.

high: Also shows warnings.

Default: low

.cpptest
custom.rules.
dir=
[directory]

Indicates where user-defined rules are saved.

.cpptest
custom.
configs.dir=
[directory]

Indicates where user-defined Test Configurations are saved.

custom.
compilers.
dir=
[directory]

Overrides the custom compiler directory settings (found in ) and uses the defined  Parasoft> Configurations> Custom compilers
directory to search for custom compilers.

exec.env=
[env1; env2; 
...]

Specifies a list of tags that describe the environment where a test session was executed. Tags could describe an   operating 
system (e.g. Windows, Linux), an architecture (e.g. x86, x86_64), a compiler, a browser, etc. These tags describe a complete test 
session; more environment details could be also added at the test suite, test, or test case levels via the services API.



issue.
tracking.
tags=[value]

Specifies custom issue tracking tags. Multiple tags can be separated by a comma. For example:

issue.tracking.tags=@custom,@pr ,@fr

For more details, see .Indicating Code and Test Correlations

parallel.
mode=Manual|A
uto|Disabled

Determines which of the following modes is active: 

Auto: Allows C/C++test to control parallel processing settings.
Manual: Allows you to manually configure parallel processing settings to suit your specific needs.
Disabled: Configures C/C++test to use only one of the available CPUs.

For more details on this and other parallel processing options, see .Configuring Parallel Processing

Default: Auto

parallel.
max_threads=<
number>

Specifies the maximum number of  parallel threads that can be executed simultaneously.  The actual number of parallel threads is 
determined based on the number of CPUs, available memory, and license settings.

Default: [available_processors]

parallel.
free_memory_l
imit=<percent
age>

Specifies the amount of memory that should be kept free in low memory conditions (expressed as a percentage of the total 
memory available for the application). This is used to ensure that free memory is available for other processes.

Default: 25

parallel.
no_memory_lim
it=true|false

Indicates that you do not want to place any restrictions (beyond existing system limitations) on the memory available to Parasoft 
Test. 

Default: false

Using Variables in Local Settings (Options) Files
The following variables can be used in report, e-mail, Parasoft DTP, Team Server, and license settings.

 The session tag value must not  contain any ':' characters.

env_var

example: ${env_var:HOME}

Outputs the value of the environmental variable specified after the colon.

project_name

example: ${project_name}

Outputs the name of the tested project. If more than one project is provided as an input, it first outputs the tested project name, then "..."

workspace_name

example: ${workspace_name}

Outputs the Solution name.

config_name

$ example: ${config_name}

Outputs the name of executed test configuration; applies only to report and email settings.

analysis_type

$ example: ${analysis_type}

Outputs a comma separated list of enabled analysis types (for example: Static, Generation, Execution); applies only to reports and email settings.

tool_name

$ example: ${tool_name}

Outputs the tool name (for example: C/C++test).

https://docs.parasoft.com/display/CPPDESKV1043/Indicating+Code+and+Test+Correlations
https://docs.parasoft.com/display/CPPDESKV1043/Configuring+Parallel+Processing


Examples

Example 1

# Report settings
report.developer_errors=true 
report.developer_reports=true 
report.format=html
session.tag=<project name>
 
# Mail settings:
report.mail.enabled=true
report.mail.cc=<manager1@mailserver.com1;manager2@mailserver.com1> 
report.mail.server=mail.company.com
report.mail.domain=company.com
report.mail.subject=<Static Analysis results on Project X> 
report.mail.attachments=true

Example 2

# Parasoft DTP settings   
dtp.enabled==true
dtp.server=server1.mycompany.com
dtp.port=32323
dtp.user=smith
dtp.password=?1q2W3e4R5t6Y7u8I9o!  

# Mail settings
report.mail.enabled=true
report.mail.server=mail.mycompany.com   
report.mail.domain=mycompany.com   
report.mail.cc=project_manager   
report.mail.subject=Coding Standards   

Example 3

# REPORTS
 
#Determines whether reports are emailed to developers and to the additional recipients specified with the cc 
setting.
#Remember that if the team is using CVS for source control and each developer's email address matches his or 
her CVS username + the mail domain, each developer that worked on project code will automatically be sent a 
report that contains only the errors/results related to his or her work.

report.mail.enabled=true
 
#Exclude developers emails (true/false) 
report.mail.exclude.developers=false
 
# Append developers errors to manager emails (true/false) 
report.developer_errors=true
 
# Send reports to developers (true|false) 
report.developer_reports=true
 
# Append suppressed messages (true|false) 
report.suppressed_msgs=false
 
#Determines where to mail complete test reports.
#This setting is typically used to send reports to managers or architects.
#It can also be used to send reports to developers if developer reports
#are not sent automatically (for example, because the team is not using CVS). 
report.mail.cc=manager@domain.com; ${env_var:USERNAME} @domain.com
 



# mail target for unknown developer errors 
report.mail.unknown=manager@domain.com
 
#Specifies the mail server used to send reports. 
report.mail.server=mail_server.domain.com
 
#Specifies the mail domain used to send reports. 
report.mail.domain=domain.com
 
#Specify mali from 
report.mail.from=nightly
 
#Specifies any email addresses you do not want to receive reports.
#This setting is used to prevent from automatically sending reports to someone that worked on the code, but 
should not be receiving reports. This setting is only applicable if the team is using CVS for source control 
and developer reports are being sent automatically.
report.mail.exclude=developer1;developer2
 
# Specifies the subject line of the emails sent.
report.mail.subject= ${tool_name} Report - ${config_name}
 
# Report test params include (true|false) 
report.test_params=true
 
# Team Server
 
#Determines whether the current installation is connected to the Team Server. 
tcm.server.enabled=true
 
#Specifies the machine name or IP address of the machine running Team Server. 
tcm.server.name=team_server.domain.com
 
#Specifies the Team Server port number. 
tcm.server.port=18888
 
tcm.server.accountLogin=true 
tcm.server.username=user 
tcm.server.password=password 
session.tag= ${config_name}
 
 
# SCOPE
 
#code authorship based on CVS 
scope.sourcecontrol=true
 
#code authorship based on author tag 
scope.author=false
 
#code authorship based on local user 
scope.local=false
 
# LICENSE

#network license retrieved from DTP
dtp.enabled=true
dtp.server=onya.mycompany.com
dtp.port=443
dtp.user=user1
dtp.password=mypassword
cpptest.license.use_network=true
 
# SOURCE CONTROL
 
scontrol.rep1.type=cvs
scontrol.rep1.cvs.root=:pserver:developer@cvs_server.domain.com:/home/cvs/scontrol.rep1.cvs.pass=mypassword 


	Configuring Localsettings

