Testing from the Command Line Interface

This topic explains how to run a test from the C++test command line interface (cppt est cl i), which is described in Command Line Interface (cli).

Sections include:

Prerequisites

Setup Overview

cli Usage

cli Options

Local Settings (Options) Files

Using Variables in Local Settings (Options) Files
Using the cli with an Eclipse-Based Builder

Prerequisites

The command line mode requires a command line interface license (available with C++test Automation Edition).

@ Extended Command Line Mode vs. Desktop Command Line Mode

There are two command line interface licenses available for C++test:

1. Extended Command Line Mode is provided in Automation Edition and available for Custom Editions.

2. Desktop Command Line Mode is available for Custom Editions. The Desktop Command Line Mode provides similar functionality to
the Extended Command Line Mode, except that parallel processing is limited to simultaneously executing 8 parallel threads for a given
task (e.g. static analysis) in the Desktop Command Line Mode.

® To access the full functionality available with the Automation Edition, you also need to install and configure Parasoft Team Server.

® We strongly recommend that you configure C++test preferences (for Team Server, task assignment, reporting, etc.) and team Test Configurations
as described in the Configuration before you start testing.

® For command line execution, you will need to ensure that the installation directory is on the path, or launch cpptest with the full path to the
executable (for example, c: \ par asof t\ c++t est \ cppt est cl i . exe).Before you can test code with C++test, it must be added to an Eclipse C
/C++ project. For instructions on creating a new project, see Creating a Project.

® Before you perform the initial test, we strongly recommend that you review and modify project options. For details on how to do this, see Local
Settings (Options) Files.

® Forcpptestcli toemail each developer a report that contains only the errors/results related to his or her work, one of the following conditions
must be true:

® You have configured C++test to compute code authorship based on source control data AND your project is under a supported source
control system AND each developer’s source control username + the mail domain (specified using an options file and the -
| ocal settings option described in -1 ocal settings %.OCALSETTI NGS_FI LE% matches the developer's email address.

® You have configured C++test to compute code authorship based on local user AND each user name + the mail domain (specified using
an options file and the - | ocal set ti ngs option described in -1 ocal setti ngs % OCALSETTI NGS_FI LE% matches the developer's
email address.

Setup Overview

Parasoft C++test has two user modes: interactive desktop usage in the GUI and command line mode via the command line interface (CLI). The CLI
interface is a standard feature of the Automation Edition.

CLI mode is typically used to perform regular or continuous code analysis and test in conjunction with regular/continuous builds or as a part of an
automatic regression test infrastructure. C++test CLI can be invokedon the specified project resourcesAs part of the CLI execution, C++test can perform
one or more of the following:

® Static analysis of code, including checks against a configured coding policy, analysis of possible runtime bugs, and metrics analysis.

® Execution of unit tests

® Analysis of SCM code repository to identify code changes since the last run and initiate code review sessions on updated code.

® Generation of reports and their distribution to a central report server and/or to individual developers and managers, according to specified

reporting configurations.

As part of the execution, C++test can use your SCM client (if supported) to automatically retrieve file modification information from the SCM system and
generate tasks for specific individuals based on results of code analysis and executed tests.

Specific execution options for C++test are controlled via Test Configurations and Preferences.
Test Configurations can be sourced from the built in set, or created using C++test interactive mode in the GUI. It is highly recommended that you do not

use the built-in configurations (other than for getting started). We suggest using the built in configurations as starting templates for customer-specific
configurations, which are then stored on disk or on Parasoft Team Server.

https://docs.parasoft.com/display/CPPDESKE1042/Concepts+and+Terms#ConceptsandTerms-command_line
https://docs.parasoft.com/display/CPPDESKE1042/Configuration
https://docs.parasoft.com/display/CPPDESKE1042/Creating+a+Project

Preferences can be configured from the C++test GUI. Most of the preference settings can also be supplied with a configuration file that is provided as a
parameter to a CLI call. A table of the configuration file preference settings is available in Local Settings (Options) Files. C++test preferences set from the
GUI are applied by default. These can be overridden — on an individual basis—by preference values contained in the configuration file used with a given
run. This enables you to have a basic set of preferences configured for all CLI runs, and then vary individual settings as necessary by providing an
additional configuration file for a specific run with a given Test Configuration. This can be useful, for example, to include different information in reports for
different runs, or to change options for email distribution of reports, including report names, email headings, etc.

Step 1: Configure Preferences

C++test preferences and Parasoft Test preferences (which apply across Parasoft products) are accessed through the Parasoft> Preferences menu. Start
by configuring the following preferences:

® License: Specify the license or License Sever settings.

® Team: Check Enable Team Server. If Team Server is not autodetected, enter the Team Server’s IP address in Server Information> Host Name.
If you are running Team Server on the same machine as your C/C++test, enter | ocal host . Unless you changed the Team Server default port
(18888) when it was installed, do not change the port here. Click Test Connection to verify the correct settings.

® Source Controls: These settings enable automatic mapping of the tool results to the individuals who last changed the affected code or test
artifact. Check your source control system, and use the instructions in Connecting to Source Control to set the options appropriate for your SCM.

® Scope and Authorship: Check the appropriate options for your environment as described in Configuring Task Assignment and Code Authorship
Settings.

® Reports: The following options are enabled by default and are a good starting point:

Detailed report for developers (includes task breakdown with details).

Overview of tasks by authors (summary table).

Generate formatted reports in command line mode.

Suppressions Details (applies to static analysis only).

® E-mails: Enter settings that will be used to send emails with reports. This needs to be an existing email account on an email server accessible
from the C++test test machine.

® Reports> Email Notifications:

® |f desired, enable Send Reports by Email. Regardless of this setting, reports will always be uploaded to Parasoft Team Server for later
viewing (controlled by the CLI option). Email distribution will use the settings for E-mails above.

® Manager reports contain a rollup of all test results generated by C++test Developer reports contain only results for individual developers.
Enable options and specify email addresses accordingly.

Step 2: Customize Test Configurations

Create a custom Test Configuration as described in Configuring Test Configurations and Rules for Policies. See Configuring Test Configurations for details
on C++test-specific options.

Step 3: Create a localsettings File

Create a localsettings file as described in Local Settings (Options) Files.

Step 4: Activate CLI in the Currently-Running Build System (e.g., batch script)

For example, a sample command line to be added might be:

® cpptestcli -data "c:\MWrkspace" -resource "ProjectToTest" -config builtin://Shoul dHaveRul es -
publ i sht eamserver -|ocal settings acne_policy.settings

The reports will be sent after each batch run, and trend reports will be populated with data. The reports will also be available for viewing via Parasoft>
Explore> Team Server Reports.

cli Usage
The general procedure for testing from the command line is as follows:

® Use the cppt est cl i utility, with appropriate options, to launch analysis in the command-line mode. A complete list of options is provided in cli
Options. Key options are:
® -data: Specifies the Eclipse workspace location.
-config: Specifies Test Configuration.
-resource: Specifies the resource (e.g., project, folder, file) to be tested.
-publish: Publishes test results to DTP.
-publishteamserver: Publishes test results to Team Server.
-report: Generates a report.
-localsettings: Passes advanced settings for Team Server/Parasoft DTP/mail reporting. Options are described in Local Settings
(Options) Files.

https://docs.parasoft.com/display/CPPDESKE1042/Connecting+to+Source+Control
https://docs.parasoft.com/display/CPPDESKE1042/Configuring+Task+Assignment+and+Code+Authorship+Settings
https://docs.parasoft.com/display/CPPDESKE1042/Configuring+Task+Assignment+and+Code+Authorship+Settings
https://docs.parasoft.com/display/CPPDESKE1042/Configuring+Test+Configurations+and+Rules+for+Policies
https://docs.parasoft.com/display/CPPDESKE1042/Configuring+Test+Configurations

@ Testing Headers

C++test does not directly test headers unless they are included by a source file under test. See How do | analyze header files/what files are
analyzed? for details.

@ Testing Template Functions

C++test does perform static analysis and unit testing of instantiated function templates and instantiated members of class templates. See Suppo
rt for Template Functions for details.

1 Notes for Command Line Testing on Windows

® C++test does not support file paths specified using Cygwin's "/ cygdri ve/ DI SK/ PATH' format; instead, use the standard Windows
path format.

® Depending on the shell/console, backslashes in file paths should be escaped/doubled; e.g.," C: \\ MyLocat i on\\ MyFi | e"

® All backslashes in file paths must be escaped/doubled when used in options files (with the - | ocal set ti ngs option). Alternatively,
you can use forward slashes; e.g., " C. / MyLocat i on/ MyFi | e".

cli Invocation

The general form of invocation for cppt est cl i is:
® cpptestcli [OPTIONS]

Typically, invocations follow this pattern:

® cpptestcli -data "c:\MWrkspace" -resource "ProjectToTest" -config builtin://Shoul dHaveRul es -publish

@ Excluding Specific Project Resources from Analysis/Testing

If you want to exclude some files from analysis/testing (for instance, to prevent static analysis of automatically-generated files), you can indicate
which project resources should not be tested as described in Excluding Project Resources from Testing. Perform this configuration in the GUI,
then the settings will be applied for all tests on this project—from the GUI or from the command line.

Using -data to Specify Your Eclipse Workspace

If you are not in the same directory as the Eclipse workspace that you want to test, you need to use cppt est cl i with the - dat a option. For example, this
Windows command tests the C++test Example project by applying the "My Configuration” Test Configuration, generates a report of results, and saves that
reportin the c: \ report s\ Report 1 directory

cpptestcli -data "c:\Documents and Settings\cynthia\ApplicationData\ Parasoft\C++t est\workspace" -resource
"Ct++test Exanple" -config user://"M Configuration" -report c:\reports\Reportl

If you are in the same directory as the workspace that you want to test, you can call cppt est cl i without the- dat a option. For example, this Windows
command tests the C++test Example project by applying the My Configuration Test Configuration, generates a report of results, and saves that report in
the c: \report s\ Report 1 directory:

cpptestcli -resource "Ct++test Exanple" -config user://"M Configuration" -report c:\reports\Reportl

cli Options
Available cppt est cl i options are listed in the following tables.

General Options

® -config %CONFI G URL% - Specifies that you want to run the Test Configuration available at %CONFI G_URL%
This parameter is required except when importing projects. CONFI G_URL %is interpreted as a URL, the name of a Test Configuration, or the
path to a local file. Examples:
* By filename:
-config "myl ocal config. properties”

https://docs.parasoft.com/display/CPPDESKE1042/Troubleshooting+and+FAQs#TroubleshootingandFAQs-HowdoIanalyzeheader_files
https://docs.parasoft.com/display/CPPDESKE1042/Troubleshooting+and+FAQs#TroubleshootingandFAQs-HowdoIanalyzeheader_files
https://docs.parasoft.com/display/CPPDESKE1042/Support+for+Template+Functions
https://docs.parasoft.com/display/CPPDESKE1042/Support+for+Template+Functions
https://docs.parasoft.com/display/CPPDESKE1042/Testing+from+the+GUI#TestingfromtheGUI-excluding

®* By URL:
-config "http://intranet.acne.conicpptest/teamconfig.properties”
® Built-in configurations:
-config "builtin://Denp Configuration"
-config "Deno Configuration”
® User-defined configurations:
-config "user:// M First Configuration”
® Team configurations:
-config "team// Team Confi guration"
-config "team//teantonfig. properties”
- hel p - Displays help information. Does not run testing.
-l ocal settings %.OCALSETTI NGS_FI LE% - Reads the options file Y. OCALSETTI NGS_FI LE%for global preferences. These settings
specify details such as Parasoft DTP settings, email settings, and Team Server settings.
The options file is a properties file. These files can control reporting preferences (who should reports be sent to, how should those reports be
labelled, what mail server and domain should be used, etc.) Team Server settings, Parasoft DTP settings, email settings, and more. For details on
creating options files; see Local Settings (Options) Files.
- nobui | d - Prevents C++test from rebuilding the project before testing it. Use this option if the project is already built before the test run.
-fail - Fails the build by returning a non-zero exit code if any violations are reported.
- publ i sh - Publishes the report to DTP. You can enable sending reports to DTP in the GUI or in the command line mode; see Connecting to
DTP.
- publ i sht eanser ver - Publishes the report to the Team Server. The Team Server location can be specified in the GUI or in the options file
(described in the - | ocal settings % OCALSETTI NGS_FI LEY%entry).
-report 9%REPORT_FI LE% - Generates an XML report to the given file 9REPORT_FI LE%and adds an HTML (or PDF or custom format—if
specified using the report.format option) report with the same name (and a different extension) in the same directory.
All of the following commands will produce an HTML report f i | enane. ht mi and an XML report fi | enane. xmi .
® -report filename.xm
® -report filename. htm
® -report filenane. htnl

If the specified path ends with an ".html"/".htm"/".xml" extension, it will be treated as a path to the report file to generate. Otherwise, it will be
treated as a path to a directory where reports should be generated.

If the file name is explicitly specified in the command and a file with this name already exists in the specified location, the previous report will be
overwritten. If your command doesn't explicitly specify a file name, the existing report file will not be overwritten—the new file will be named
repXXXX.html, where XXXX is a random number.

If the - r epor t option is not specified, reports will be generated with the default names "report.xml/html" in the current directory.

-dtp. aut oconfi g %ROIECT_NAME@ERVER_NAME: port % - Pulls settings stored on the DTP server (recommended for ease of
maintenance — especially if you do not already have a locallocally stored settings file).

For example:

-dtp. autoconfig Projectl@ltp.conpany.com 8080

- encodepass <pl ai npasswor d> - Generates an encoded version of a given password. Prints the message 'Encrypted password:
<encpass>' and terminates the cli application.

If your nightly process will 1) login to Team Server and b) send emails, you can use this option to encrypt the required passwords.

- showdet ai | s - Prints detailed test progress information.

-bui l dscript %SCRI PT_FI LE%- Executes the specified build script prior to any testing. See Using the cli with an Eclipse-Based Builder.

- appconsol e st dout| % OUTPUT_FI LE%- Redirects C++test's console output to standard output or an %0UTPUT_FI LE%file.
Examples:

-appconsol e stdout (console redirected to the standard output)

-appconsol e consol e. out (console redirected to console.out file)

-1ist-conpil ers - Prints a list of valid compiler family values.

-list-configs - Prints a list of valid Test Configuration values.

-include YWATTERNY -exclude %PATTERN% - Specifies files to be included/excluded during testing.

You must specify a file name or path after this option.

Patterns specify file names, with the wildcards *and ? accepted, and the special wildcard ** used to specify one or more path name segments.
Syntax for the patterns is similar to that of Ant filesets.

Examples:

-include **/Bank. cpp (test Bank.cpp files)

-include **/ ATM Bank/ *. cpp (test all .cpp files in folder ATM/Bank)

-include c:/ATM Bank/ Bank. cpp (test only the c:/ATM/Bank/Bank.cpp file)

-exclude **/internal /** (test everything except classes that have path with folder "internal”)

-exclude **/*Test. cpp (test everything, but files that end with Test.cpp)

Additionally if a pattern is a file with a .Ist extension, it is treated as a file with a list of patterns.

For example, if you use -include c:/include.Ist and include.lIst contains the following (each line is treated as single pattern):
**/Bank.cpp

** [ATM Bank/ *. cpp

c:/ ATM Bank/ Bank. cpp

then it has same effect as specifying:
-include **/Bank.cpp -include **/ ATM Bank/*. cpp

https://docs.parasoft.com/display/CPPDESKE1042/Connecting+to+DTP
https://docs.parasoft.com/display/CPPDESKE1042/Connecting+to+DTP

-include c:/ATM Bank/ Bank. cpp"

Options for Importing and Creating Projects

Option Purpose
-import % Imports the specified Eclipse project(s) into the Eclipse
ECLI PSE_PRQJ = workspace.
ECT%
- bdf Creates C++test projects from build data files (.bdf). To
<cppt est scan | prepare a build data file, perform a build of the project
. bdf > with the cppt est scan utility as the prefix for the

compiler / linker executable.

-ccs % Imports TI Code Composer Studio projects, If %
CCS_PROJECT% CCS_PRQIECT%is:

pjt project file - the selected project will be imported
directory - all .pjt projects found in selected directory and
subdirectories will be imported

-dsp <.dsp Creates C++test projects from Microsoft Visual Studio
file | .dsw projects. Specify a 6.0 project file (.dsp), Microsoft Visual
file | root Studio 6.0 workspace file (.dsw), or root directory.

| ocat i on>

-ewp % Imports IAR Embedded Workbench projects. If %

EWP_PRQIECT% @ EWP_PRQJECT%is:
.ewp project file - the selected project will be imported

.eww workspace file - all projects from the workspace will
be imported

directory - all .ewp projects found in selected directory
and subdirectories will be imported

Notes

If %ECLI PSE_PRQJECT%is a .project file, the selected project will be
imported

If it is a directory, all Eclipse projects found in the selected directory
and subdirectories will be imported.

Examples:

-inport \".project\"

-inport \"c:\\Devel RootDir\"
The - confi g option is not necessary while using -import. If the -
confi g option is specified, then the workspace with the imported
project(s) will be tested; otherwise, the project will be imported, but no
testing will be performed.
Example:
-bdf "cppt estscan. bdf"
See Creating a Project Using an Existing Build System for details.
Options can be specified in the options file. See Local Settings
(Options) Files for details.
The - conf i g option is not necessary while using -i nport. If the -
conf i g option is specified, then the workspace with the imported
project(s) will be tested; otherwise, the project will be imported, but no
testing will be performed.
Examples:
-ccs "MyProject.pjt"
-ccs "c:\DevelRootDir"
The - confi g option is not necessary while using - i nport . If the -co
nf i g option is specified, then the workspace with the imported project
(s) will be tested; otherwise, the project will be imported, but no testing

will be performed.

Visual Studio 6.0 project import options can be specified in the options
file. See Local Settings (Options) Files for details.

The - confi g option is not necessary while using - i nport . If the -
conf i g option is specified, then the workspace with the imported
project(s) will be tested; otherwise, the project will be imported, but no
testing will be performed.

Examples:

-ewp "MyProject.ewp"”

-ewp "MyWorkspace.eww"

-ewp "c:\DevelRootDir"

The - conf i g option is not necessary while using - i nport . If the -
conf i g option is specified, then the workspace with the imported

project(s) will be tested; otherwise, the project will be imported, but no
testing will be performed.

https://docs.parasoft.com/display/CPPDESKE1042/Creating+a+Project+Using+an+Existing+Build+System

-gpj <
prj_root _fil
e>

-hew %
HEW PRQJECT%

-uv %
KEI LUV_PRQIE
CT%

-vep %
VCP_PROJECT%

-wpj %
WPJ_PRQJECT%

Creates C++test projects from Green Hills .gpj projects.

Imports Highperformance Embedded Workshop projects.
The following can be specified as %HEW PROJECT%
.hwp project file: The selected project will be imported.
.hws workspace file: All projects from the workspace will
be imported.

directory: All .hwp projects found in the selected
directory and subdirectories will be imported

Imports Keil uVision3 projects. If %<ElI LUV_PROJECT%is:
.uv2 project file - the selected project will be imported

directory - all .uv2 projects found in selected directory and
subdirectories

Imports Microsoft eMbedded Visual C++ 4.0 projects. If %
VCP_PRQJ ECT%is:

.vep project file - the selected project will be imported

.vew workspace file - all projects from the workspace will
be imported

directory - all .vcp projects found in selected directory and
subdirectories will be imported

Imports Wind River Tornado project. If 9%0\PJ_PROJECT%
is:

the .wpj project file - selected project will be imported

.wsp workspace file - all projects from the workspace will
be imported

directory - all .wpj projects found in selected directory and
subdirectories will be imported

Green Hills .gpj project import options can be specified in the options
file. See Local Settings (Options) Files for details.

The - conf i g option is not necessary while using - i nport . If the -
conf i g option is specified, then the workspace with the imported
project(s) will be tested; otherwise, the project will be imported, but no
testing will be performed.

The - conf i g option is not necessary while using - i nport . If the -
conf i g option is specified, then the workspace with the imported
project(s) will be tested; otherwise, the project will be imported, but no
testing will be performed.

Examples:

-hew "MyProject.hwp"

-hew "MyWorkspace.hws"

-hew "c:\DevelRootDir"

The - conf i g option is not necessary while using - i nport . If the -
conf i g option is specified, then the workspace with the imported
project(s) will be tested; otherwise, the project will be imported, but no
testing will be performed.

Examples:

-uv "MyProject.uv2"

-uv "c:\DevelRootDir"

The - conf i g option is not necessary while using -import. If the -
conf i g option is specified, then the workspace with the imported
project(s) will be tested; otherwise, the project will be imported, but no
testing will be performed.

Examples:

-vcp "MyProject.vep”

-vcp "MyWorkspace.vew"

-vcp "c:\DevelRootDir"

The - conf i g option is not necessary while using -import. If the -
confi g option is specified, then the workspace with the imported
project(s) will be tested; otherwise, the project will be imported, but no
testing will be performed.

Examples:

-wpj "MyProject.wpj"

-wpj "MyWorkspace.wsp"

-wpj "c:\DevelRootDir"

Options for Testing Projects Available in the C++test/Eclipse Workbench

Option Purpose Notes
-data % Specifies the Defaults to the current user’'s dependent directory.
WORKSPA | location of the
CE_DI R% Eclipse
workspace

directory to use.

- Specifies the path = Use multiple times to specify multiple resources.
resourc | to the workspace

e % resource % Use quotes when the resource path contains spaces or other non-alphanumeric characters.
RESOURC = RESOURCE%to
E% test. If “IRESOURCE%bis a .properties file, the value corresponding to com par asof t . xt est. checkers. resour ces will

be interpreted as a colon(:)-separated list of resources. Only one properties file can be specified in this way. If %
RESOURCE% is a . | st file, each line will be treated as a resource. If no resources are specified on the command
line, the complete workspace will be tested.

Team Project Set File (PSF) files are supported for CVS, SVN, Star Team, and other source control systems
(depending on the Eclipse plugin capabilities installed).

Paths (even absolute ones) are relative to the workspace specified by the -data parameter.
Examples:

-resource "Acne Project”

-resource "/ MProject/src/conmlacne/ MyC assTest . j ava"

-resource "/ M/Project/src/com acne"

-resource testedprojects.properties

1 Notes

® To see a list of valid command line options, enter for cppt estcli - hel p.

® cpptestcli automatically emails designated group managers and architects a report that lists all team/project errors and identifies
which developer is responsible for each error. If no errors are reported, reports will be sent unless the options file contains the r eport .
mai | . on. error.onl y=true option.

® |f the appropriate prerequisites are met, cppt est cl i automatically emails each developer a report that contains only the errors
Iresults related to his or her work. If no errors are reported for a particular developer, a report will not be emailed to that developer.

Local Settings (Options) Files

Localsettings files can be passed at the command line to control options for reporting, task assignment, licensing, and more. This lets you:

® Configure and use different setting configurations for different projects.
® Extend or override team-wide settings as needed (for example, for settings that involve local paths).
® Adjust settings without having to open the GUI.

Options files can control report settings, Parasoft DTP settings, error authorship settings, Team Server settings, and more. You can create different options
files for different projects, then use the DTP settings, error authorship settings, Team Server settings, and more. You can create different options files for
different projects, then use the

-l ocal settings option to indicate which file should be used for the current command line test.

Each options file must be a simple text file. There are no name or location requirements. Each setting should be entered in a single line.

If a parameter is specified in this file and there is an equivalent parameter in the GUI's Preferences panel (available from Parasoft> Preferences), the
parameter set in this file will override the related parameter specified from the GUI. If a parameter is not specified in this file, C++test will use the equivalent
parameter specified in the GUI.

Any options for creating or importing projects are valid only when creating or importing the project. They are ignored during subsequent runs.

@ Creating a Local Settings (Options) File by Exporting Your GUI Preferences
The fastest and easiest way to create options files is to export your Preferences from the GUI.

. Choose Parasoft> Preferences.

. Select Parasoft (the root element in the left tree).

. Click the share link in the right side of the panel.

. In the dialog that opens, specify which preferences you want to export to a file.

. Click the Browse button, then specify the file where you want the settings saved.
. Click OK.

OO0 WNE

® |f you select an existing file, the settings will be appended to that file. Otherwise, a new file will be created.
® Exported passwords will be encrypted.

Options files can determine the following settings:

1 Notes

Reporting Settings
Parasoft DTP Settings
Project Center Settings
Team Server Settings
Licensing Settings
Technical Support Settings
Authorship/Scope Settings
Source Control Settings

Settings for Creating BDF-Based Projects
Settings for Importing Green Hills .gpj Projects
Settings for Importing Microsoft Visual Studio 6.0 .dsp Projects

Miscellaneous Settings

® Each setting should be entered on a single line.

® |f your options file contains any invalid settings, details will be reported in the command line output.

® |f your are running cli mode from a developer/tester desktop (as opposed to from a Server machine), use the t asks. cl ear =f al se
option to ensure that your results from previous runs are preserved.

Reporting Settings

Setting

report.
associ ations

report.
aut hors_detail s

report.
cont ext s_det ai
I's

report.custom
ext ensi on
report.custom
xsl.file

report.
devel oper_erro
rs=true|fal se

report.
devel oper _repo
rts=true|fal se

report.
format =htni | pd
f| custom

report.
generate_htm s
=true|fal se

report.graph.
cs_start_date=
[MM dd/ yy]

report.graph.
ue_cover age_st
art _date=[MM
/dd/ yy]

Purpose

Specifies whether the report shows requirements, defects, tasks, and feature requests that are associated with a test.

Determines whether the report includes an overview of the number and type of tasks assigned to each developer. The defaultis t r
ue.

Determines whether the report includes an overview of the files that were checked or executed during testing.The default is f al se.

Specifies the location and extension of the XSL file for a custom format. Used with r epor t . f or mat =cust om

For details and examples, see Configuring Reporting Settings.

Determines whether manager reports include details about developer errors.

Determines whether the system generates detailed reports for all developers (in addition to a summary report for managers).

Specifies the report format.

Determines whether HTML reports are generated and saved on the local file system. XML reports are generated and saved
regardless of this setting’s value.

The default setting is t r ue.
Determines the start date for trend graphs that track static analysis tasks over a period of time. See Understanding Reports for

more details on these reports.

Determines the start date for trend graphs that track coverage over a period of time. See Understanding Reports for more details
on these reports.

https://docs.parasoft.com/display/CPPDESKE1042/Configuring+Reporting+Settings
https://docs.parasoft.com/display/CPPDESKE1042/Understanding+Reports
https://docs.parasoft.com/display/CPPDESKE1042/Understanding+Reports

report.
| ocati on_det ai
| s=true| fal se

report. mail.
attachnents=tr
ue| fal se

report.mail.cc

[emai | _address
es]

report. mail.
conpact =t r ends
| I'i nks

report.nail.
donai n=
[domai n]

report. nail.
enabl ed=true| f
al se

report. mail.
excl ude=

[emai | _address
es]

report. mail.
excl ude.

devel opers=tru
e|fal se

report. mail.
format =htnl | as
cii

report. mail.
frome

[emai | _address
oR

user _name_of _t
he_sane_domai n]

report. mail.

i ncl ude=

[ermai | _address
es]

report. nail.
on.error.
only=true|fal se

report. mail.
server =
[server]

report. mail.
subj ect =My
New Subj ect

report. nail.
time_del ay=
[server]

report. nail.
unknown=

[enui | _address
oR

user _nanme_of _t
he_sane_domai n]

Specifies whether absolute file paths are added to XML data. This needs to be enabled on the Server installation if you want to
relocate tasks upon import to desktop installations.

Determines whether reports are sent as attachments. All components are included as attachments; before you can view an HTML
report with images, all attachments must be saved to the disk.

The default setting is f al se.

Specifies where to mail comprehensive manager reports. This setting must be followed by a semicolon-separated list of email
addresses. This setting is typically used to send reports to managers or architects. It can also be used to send comprehensive
reports to developers if developer reports are not sent automatically (for example, because the team is not using a supported
source control system).

Specifies that you want to email a compact report or link rather than a complete report.

If t r ends is used, the email contains a trend graphs, summary tables, and other compact data; detailed data is not included.

If 1 i nks is used, the email contains only a link to a report (which is available on Team Server)

Specifies the mail domain used to send reports.

Determines whether reports are emailed to developers and to the additional recipients specified with the cc setting.

Remember that each developer that worked on project code will automatically be sent a report that contains only the errors/results
related to his or her work.

Specifies any email addresses you do not want to receive reports. This setting is used to prevent C++test from automatically
sending reports to someone that worked on the code, but should not be receiving reports.

Specifies whether reports should be mailed to any developer whose email is not explicitly listed in the report. nail.cc property
. This setting is used to prevent reports from being mailed to individual developers.

Specifies the email format.

Specifies the "from" line of the emails sent.

Specifies the email addresses of developers that you want to receive developer reports. This setting must be followed by a
semicolon-separated list of email addresses. This setting is typically used to send developer reports to developers if developer
reports are not sent automatically (for example, because the team is not using a supported source control system). It overrides
developers specified in the 'exclude’ list.

Determines whether reports are sent to the manager only if an error is found or a fatal exception occurs. Developer emails are not
affected by this setting; developer emails are sent only to developers who are responsible for reported errors.

The default setting is f al se.

Specifies the mail server used to send reports.

Specifies the subject line of the emails sent. The default subject line is "C++test Report." For example, if you want to change the
subject line to "C++test Report for Project A", you would use
report. mail.subject=C++test Report for Project A

Specifies a time delay between emailing reports (to avoid bulk email restrictions).

Specifies where to mail reports for errors assigned to "unknown".

http://report.mail.cc

report. mai
user name=
[user nane]
report. mai
passwor d=
[passwor d]
report. mail.

real ne[real ni

report.
active_rul es=t
rue| fal se

report.
suppr essed_mnsg
s=true|fal se

session.tag=
[nane]

report.

Specifies the settings for SMTP server authentication.

The r eal mvalue is required only for those servers that authenticate using SASL realm.

Determines if C++test reports contain a list of the rules that were enabled for the test.

Determines whether reports include suppressed messages.
The default setting is f al se.
Specifies a session tag used to label these results. This value is used for uploading summary results to Team Server.

The tag is an identifier of the module checked during the analysis process. Reports for different modules should be marked with
different tags.

Determines whether a test's HTML report links to another report that includes source code annotated with line-by-line coverage

ue_cover age_de | details.

tails_htms=

[coverage_t ype] The following values can be used for [cover age_t ype] :
FC - for function coverage

LC - for line coverage

SC - for statement coverage

BCC - for block coverage

DC - for decision coverage

SCC - for simple condition coverage

MCDC - for MC/DC coverage

CC - for Call Coverage

report.
metrics_detail
s=true|fal se

Determines whether an XML report with metrics summary information (as well as individual class and method detail data where
applicable) is produced. This report will be generated only when a metricsenabled Test Configuration is run.

Parasoft DTP/ Project Center Settings

Setting
dt p. enabl ed=true| f al se
concerto.
reporting=true|false
dt p. aut oconfi g=true| fal se
dt p. server=[server]

concerto. data. port=[port]

dt p. port=[port]

concerto.
user _defined_attributes=
[attributes]

concerto.
| og_as_ni ghtly=true|fal se

Purpose

Determines whether the current C++test installation is connected to DTP. This setting is not needed if you want
to use the value specified in the GUL.

Determines whether the current C++test installation is connected to Parasoft Project Center. This setting is not
needed if you want to use the value specified in the GUI.

Enables autoconfiguration with C++test settings stored on the DTP server
Specifies the host name of the DTP server. This setting is not needed if this information is specified in the GUI.

Specifies the Parasoft Project Center port. This setting is not needed if you want to use the value specified in the
GUL.

Specifies the port number of the DTP server. This setting is not needed if you want to use the value specified in
the GUI.

Specifies the user-defined attributes for Parasoft Project Center.
Use the format key1: val uel; key2:val ue2
For more details on attributes, see Connecting to Project Center.

This setting is not needed if you want to use the value specified in the GUI.

Determines whether the results sent to Parasoft Project Center are marked as being from a nightly build.

https://docs.parasoft.com/display/CPPDESKE1042/Connecting+to+Project+Center

concerto.

use_resource_attributes=tru

el fal se

dt p. proj ect =[proj ect _nane]

Team Server Settings

Setting

tcm server.
enabl ed=true| fal se

tcm server. name=[nane]

Purpose

Determines whether Parasoft Project Center attributes specified in the GUI at the project level should be used.
This allows you to disable project level Parasoft Project Center attributes.

Specifies the name of the DTP project that you want these results linked to.

Determines whether the current C++test installation is connected to the Team Server. This setting is not needed if you
want to use the value specified in the GUI.

Specifies the machine name or IP address of the machine running Team Server. This setting is not needed if you

want to use the value specified in the GUI.

tcm server. port=[port]

tcm server.

Specifies the Team Server port number. This setting is not needed if you want to use the value specified in the GUI.

Determines whether username and password are submitted to connect to Team Server. Usernames/passwords are

account Logi n=true| fal se not always needed; it depends on your team’s setup.

tcm server. user nane=

[user nane]
tcm server. password=
[passwor d]
used.
Licensing Settings
Setting
1 cpptest.license. use_networ
k=true| fal se
2 cpptest.license. network.
host =[host]
3 cpptest.license. network.

port=[port]

4 cpptest.license. network.

edi tion=[edi ti on_nane]

5 cpptest.license. aut oconf.

ti neout =[seconds]

6 cpptest.license.local.

expiration=[expiration]

7 cpptest.license.local.
passwor d=[passwor d]

8 cpptest.wait.for.tokens.

tinme=[time in mnutes]

Technical Support Settings

Setting Purpose

If the first setting is t r ue, the second and third settings specify the username and password.

Note that Team Server must have the username and password setting already enabled before these settings can be

Purpose

Determines whether the current C++test installation retrieves its license from LicenseServer. This setting is
not needed if you want to use the value specified in the GUI.

Example: cppt est. i cense. use_network=tru

Specifies the machine name or IP address of the machine running LicenseServer Configuration Manager.
This setting is not needed if you want to use the value specified in the GUI.

Example: cppt est . | i cense. net wor k. host =10. 9. 1. 63

Specifies the LicenseServer port number. This setting is not needed if you want to use the value specified
in the GUI.

Example: cppt est. | i cense. net wor k. port =2222

Specifies the type of license that you want this C++test installation to retrieve from LicenseServer. This
setting is not needed if you want to use the value specified in the GUI.

[edi ti on_nane] can be aut omati on_edi ti on. To use a custom edition, do not set anything after the
"="; simply leaving the value empty.

Example: cppt est. | i cense. network. edi ti on=cpptest.|icense. net worKk.
edi ti on=aut omati on_edi tion

Specifies the maximum number of seconds C++test will wait for the license to be automatically configured
from LicenseServer. Default is 10.

Specifies the local license that you want this C++test installation to use. This setting is not needed if you
want to use the value specified in the GUI.

Specifies the local password that you want this C++test installation to use. This setting is not needed if you
want to use the value specified in the GUI.

Specifies the time that C++test will wait for a license if a license is not currently available.

For example to make C++test wait 3 minutes for license tokens, use cppt est. wai t. f or. t okens.
tinme=3.

t echsupport.
auto_creation=true|fa
I se

t echsupport.
send_enmai | =true| fal se

t echsupport.
ar chi ve_l ocati on=
[directory]

t echsupport.
ver bose=true| f al se

t echsupport. ver bose.
scontrol =true|fal se

techsupport.item
general =true| fal se

techsupport.item
envi ronment =true| f al se

t echsupport.
advanced=true| f al se

t echsupport . advanced.
options=[option]

t echsupport. dtp.
engi ne=true| fal se

Determines whether archives are automatically prepared when testing problems occur.

Determines whether prepared archives are emailed to Parasoft support. If you enable this, be sure to specify email
settings from the GUI or with the options in Reporting Settings.

Specifies where archives are stored.

Determines whether verbose logs are included in the archive. Note that this option cannot be enabled if the logging
system has custom configurations.

® Verbose logs are stored in the xt est . | og file within the user-home temporary location (on Windows, this is <dri v
e>:\ Docunents and Settings\<user>\Local Settings\Tenp\parasoft\xtest).
® Verbose logging state is cross-session persistent (restored on application startup).

®* The log file is a rolling file: it won't grow over a certain size, and each time it achieves the maximum size, a backup
will be created.

Determines whether verbose logs include output from source control commands. Note that the output could include
fragments of your source code.

Determines whether general application logs are included.

Determines whether environment variables, JVM system properties, platform details, additional properties (memory,
other) are included in the archive.

Specifies if advanced options will be sent.

Specifies any advanced options that the support team asked you to enter.

Specifies if additional data generated during analysis will be sent.

Authorship/Scope Settings

Setting

Purpose

aut hor s. mappi ngs.

| ocati on=t eanj | ocal

| shar ed

aut hors. mappi ng{n} =

[fromuser,
to_user]

aut hors. user{n}=

[user nane,
full _name]

email,

Specifies where the authorship mapping file is stored. This setting defaults to t eamunless | ocal or shar ed is specified.

If settol ocal (recommended), authorship mappings can be set directly in the local settings. See aut hor s. nappi ng and
aut hor s. user {n} for details.

If set to shar ed, you can store mappings in a local file using the aut hor s. mappi ngs. fi | e option.
The t eamand shar ed options are deprecated. Files specified by these options should be in the previouslyused format of:
#aut hor to author

user 1=user 3

user 2=user 3

#aut hor to enmil

user 3=ne@ar asoft.com

Specifies a specific author mapping for aut hor s. mappi ngs. | ocat i on=I ocal , as described above.
For example:

aut hor s. mappi ngs. | ocati on=l ocal

aut hor s. mappi ngl=baduser, gooduser

aut hor s. mappi ng2=br okenuser, fi xeduser

aut hor s. mappi ng3=ol duser, newuser

Specifies a specific author name and email for
aut hor s. mappi ngs. | ocati on=l ocal .

For example:

aut hor s. user 1=dan, dan@ar asof t. com Dan St owe
aut hors. user2=jimji m@arasoft.comJimWite

aut hor s. mappi ngs.
file=[path]

aut hors.ignore.
case=true|fal se

scope.
sour cecontrol =t rue|
fal se

scope.
| ocal =true| fal se

scope. recommended.
computation=first|r
andom

scope.
xm map=true| f al se

scope. xm map. fil e=
[file]

Specifies the location of a "shared" file as described in aut hor s. mappi ngs. | ocat i on above.
For example:
aut hor s. mappi ngs. fil e=/ hore/ user/ dev/ t enp/ aut hor _mappi ngl. t xt

Determines whether author names are case sensitive. If true, David and david will be considered the same user. If false,
David and david will be considered two separate users.

Determines whether C++test computes code authorship based on a data from a supported source control system. This
setting is not needed if you want to use the value specified in the GUI.

Determines whether C++test computes code authorship based on the local user. This setting is not needed if you want to
use the value specified in the GUI.

Determines how C++test selects the Recommended Tasks for each developer — it can choose n developer tasks at
random (the default) or select the first n developer tasks reported (n is the maximum number of tasks that C++test is
configured to show each developer per day)

Specifies whether C++test computes task assignment based on XML files that define how you want tasks assigned for
particular files or sets of files (these mappings can be specified in the GUI then saved in an XML file).

Specifies the name of the XML file that defines how you want tasks assigned for particular files or sets of files.

Source Control Settings

@ Defining multiple repositories of the same type

Indexes (numbered from 1 to n) must be added to the prefix if you want to define more than one repository of the same type. For example:

scontrol . repl. type=ccase
scontrol . repl. ccase. vob=/ vobs/ nyvobl

scontrol . rep2.type=ccase
scontrol . rep2. ccase. vob=/vobs/ nyvob2

If you are defining only one repository, you do not need to use an index. For example:

scontrol . rep.type=ccase

scontrol . rep. ccase. vob=/vobs/ nyvobl

AccuRev Repository Definition Properties

Property

scontrol . rep.type=accurev
scontrol.rep.
scontrol.rep.

scontrol .rep.
scontrol.rep.

accurev. host =
accurev. port=
accurev. | ogi n=

accur ev. passwor d=

Description
AccuRev repository type identifier.
AccuRev server host.
AccuRev server port. Default port is 1666.
AccuRev user name.

AccuRev password.

ClearCase Repository Definition Properties

Property

scontrol . ccase. exec=
scontrol . rep.type=ccase

scontrol . rep.ccase. vob=

Description
Path to external client executable (cl eart ool).

ClearCase repository type name.

Path inside VOB. ccase.vob value + File.separator must be the valid path to a ClearCase controlled directory.

CVS Repository Definition Properties

Property

scontrol . rep.type=cvs

scontrol . rep.cvs.root=

scontrol . rep.cvs. pass=

scontrol.rep.cvs.

useCust onSSHCr edent i al s=

scontrol.rep.cvs. ext.

server

scontrol . rep.

| ogi nname=

scontrol.rep.

passwor d=

scontrol.rep.

keyfil e=

scontrol.rep.

passphrase=

scontrol.rep.

scontrol.rep.

shel | =

scontrol .rep.

par ans=

Cvs.

Cvs.

Cvs.

Cvs.

Cvs.

Cvs.

CvVs.

ssh.

ssh.

ssh.

ssh.

useShel | =

ext.

ext.

Description
CVS repository type identifier.
Full CVSROOT value.
Plain or encoded password. The encoded password should be the same as in the .cvspass file.
For CVS use the value in . cvspass from within the user's home directory
For CVSNT use the value store in the registry under HKEY_CURRENT _USER\ Sof t war e\ Cvsnt\ cvspass

When you are first logged in to the CVS repository from the command line using "cvs | ogi n", the password is
saved in the registry.

To retrieve it, go to the registry (using regedit), and look for the value under HKEY_CURRENT_USERCVSNT>cvspa
Ss.

This should display your entire login name (: pser ver : exanpl eA@xanpl eB: / exanpl eC) encrypted
password value.

Determines whether the cvs login and password should be used for EXT/ SSH connections. Allowed values are t r
ue and f al se. Itis disabled by default.

If connecting to a CVS server in EXT mode, this specifies which CVS application to start on the server side.
Has the same meaning as the CVS_SERVER variable . cvs is the default value.

Specifies the login for SSH connections (if an external program can be used to provide the login).

Specifies the password for SSH connection.

Specifies the private key file to establish an SSH connection with key authentication.

Specifies the passphrase for SSH connections with the key authentication mechanism.

Enable an external program (CVS_RSH) to establish a connection to the CVS repository. Allowed values are t r ue
and f al se. Itis disabled by default.

Specifies the path to the executable to be used as the CVS_RSH program. Command line parameters should be
specified in the cvs. ext . par ans property.

Specifies the parameters to be passed to an external program. The following casesensitive macro definitions can
be used to expand values into command line parameters:

{host} repository host

{port} port

{user} cvs user

{ passwor d} cvs password

{ext user} parameter cvs.ssh.loginname

{ ext passwor d} parameter cvs.ssh.password
{keyfil e} parameter cvs.ssh.keyfile

{ passphr ase} parameter cvs.ssh.passphrase

Git Repository Definition Properties

Property

scontrol.rep.type=git
scontrol.git.exec=

scontrol .rep.git.

branch=

scontrol .rep.git.url=

scontrol .rep.git.

wor kspace=

Description
Git repository type identifier.

Path to Git executable. If not set, assumes git command is on the path.

The name of the branch that the source control module will use. This can be left blank and the currently checked out
branch will be used.

The remote repository URL (e.g., gi t : // host nane/ repo. gi t).

The directory containing the local git
repository.

Perforce Repository Definition Properties

Property Description

scontrol . perforce. Path to external client executable (p4).
exec=
scontrol.rep. Perforce repository type identifier.

type=perforce

scontrol.rep. Perforce server host.
perforce. host=

scontrol.rep. Perforce server port. Default port is 1666.
perforce. port=

scontrol.rep. Perforce user name.
perforce.logi n=

scontrol.rep. Password.
per force. passwor d=

scontrol.rep. The client workspace name, as specified in the PACLIENT environment variable or its equivalents. The workspace's root dir
perforce.client= should be configured for local path (so that files can be downloaded).

Serena Dimensions Repository Definition Properties

1 Linux Configuration Note
To use Serena Dimensions with C++test,Linux users should run in an environment prepared for using Serena programs, such as ‘dmcli’

¢ LD_LI BRARY_PATH should contain the path to <SERENA Install Dir>/Iibs.
® DM HOME should be specified.

Property Description
scontrol . Serena Dimensions repository type identifier.
rep.

type=ser ena

scontrol. Serena Dimensions server host name.
rep. serena.
host =

scontrol. Name of the database for the product you are working with.
rep. serena.
dbnane=

scontrol. Connection string for that database.
rep. serena.
dbconn=

scontrol. Login name.
rep. serena.
login =

scontrol. Password.
rep. serena.
password

scontrol . Maps workspace resources to Serena Dimension repository paths.
rep. serena.
mappi ng ® Example 1: If you use scontrol . rep. ser ena. nappi ng_1=%${ proj ect _| oc\: MyProj ect } ; PRODUCT1\ : WORKSET1;
src\\ MyProj ect, then Project MyProject' will be mapped to the Serena workset PRODUCT1: WORKSET1 and workset relative
path: src\\MyProject
® Example 2: If you use scontrol . rep. serena. nappi ng_2=${wor kspace_| oc}; PRODUCT1\ : WORKSET1, then the
complete workspace will be mapped to the Serena workset PRODUCT1: WORKSET1.

StarTeam Repository Definition Properties

Property Description

scontrol.rep.
type=starteam

scontrol.rep.
starteam
host =

sscontrol .
rep.starteam
port=

scontrol . rep.
starteam
| ogi n=

scontrol .rep.
starteam
passwor d=

scontrol .rep.
starteam
pat h=

scontrol .rep.
starteam
wor kdi r=

StarTeam repository type identifier.

StarTeam server

StarTeam server

Login name.

host.

port. Default port is 49201.

Password (not encoded).

When working with large multi-project repositories, you can improve performance by specifying the project, view, or folder that you
are currently working with.

You can indicate either a simple Project name (all views will be scanned when searching for the repository path), a Project/View
(only the given view will scanned) or Project/View/Folder (only the specified Star Team folder will be scanned).

Examples:
scontrol.rep.

scontrol .rep
scontrol .rep.
scontrol.rep.

If the scontrol .

starteam pat h=proj 1

. starteam pat h=proj 1/ vi ewl

st art eam pat h=proj 1/ vi ewl/ f ol der A
st arteam pat h=proj 1/ vi ewl/ f ol der A/ f ol der B

rep. starteam pat h setting specifies a StarTeam view or folder, you can use this field to indicate a new

working directory for the selected view's root folder (if the path represents a view) or a new working directory for the selected folder
(if the path represents a folder).

Examples:
scontrol .rep.

scontrol.rep.

st arteam wor kdi r=c:\\storage\\dv

st art eam wor kdi r =/ hone/ st or age/ dv

Subversion Repository Definition Properties

Property

scontrol . rep.type=svn

scontrol.rep.svn.url =

scontrol.rep.svn.

| ogi n=

scontrol.rep.svn.

password =

scontrol.svn. exec=

Description

Subversion repository type identifier.

Subversion URL specifies protocol, server name, port and starting repository path (e.g., svn: // bui | dmachi ne.

f oobar. com hore/ svn).

Login name.

Password (not encoded).

Path to external client executable (svn).

CM Synergy Repository Definition Properties

Property

scontrol .rep.
type=syner gy

scontrol .rep.
syner gy. host =

scontrol .rep.
syner gy. dbpat h=

Description

Synergy/CM repository type identifier

Computer on which synergy/cm engine runs. Local host is used when missing. For Web mode, the host must be a valid
Synergy Web URL with protocol and port (e.g., ht t p: // syner gy. ser ver : 8400).

Absolute synergy database path e.g \ \ host \ db\ nane (backslash symbols '\'in UNC/ W ndows paths must be doubled).

scontrol.rep.
syner gy. proj spec=

scontrol.rep.
synergy. | ogi n=

scontrol.rep.
syner gy. passwor d=

scontrol .rep.
synergy. port=

scontrol .rep.
synergy.
remote_client=

scontrol .rep.
synergy.
| ocal _dbpat h=

scontrol . synergy.
exec=

Microsoft Visual

Synergy project spec which contains project name and its version e.g name-version.
Synergy user name.

Synergy password (not encoded).

Synergy port.

(UNIX only) Specifies that you want to start ccm as a remote client. Default value is false. Optional. This is not used for
Web mode.

Specifies the path name to which your database information is copied when you are running a remote client session. If
null, then the default location will be used. This is not used for Web mode.

Path to external client executable (ccm)

Source Safe Repository Definition Properties

Property Description
scontrol . rep.type=vss Visual SourceSafe repository type identifier.
scontrol.rep.vss. Path of repository database (backslash symbols \'in UNC/ W ndows paths must be doubled).
ssdir=
scontrol.rep.vss. VSS project path.
proj pat h=
scontrol.rep.vss. VSS login.
| ogi n=
scontrol.rep.vss. VSS password.
passwor d=
scontrol .vss. exec= Path to external client executable (ss).
scontrol .vss. | ookup= Determines whether a full VSS database search is performed to find associations between local paths and repository

Important Notes

paths. True or f al se.

® The repository(n).vss.ssdir property should contain a UNC value even if the repository database resides locally.
® Be aware of VSS Naming Syntax, Conventions and Limitations. Any character can be used for names or labels, except the following:

® Dollar

sign ($)

® Atsign (@)

Angle
Colon
Equal

Questi

brackets (< >), brackets ([]), braces ({ }), and parentheses (())
(:) and semicolon (;)
sign (=)

Caret sign (%)
Exclamation point (!)
Percent sign (%)

on mark (?)

Comma (,)
Quotation mark