
Built-in Test Configurations
This topic describes the preconfigured "built-in" Test Configurations that are included with C++test.

C++test includes a set of preconfigured "built-in" Test Configurations representing most common test scenarios. You can further customize these
configurations as needed by copying and modifying the built-in configurations, or by creating new user-defined configurations from scratch. User-defined
Test Configurations can be placed in the User-defined or Team category. User-defined Test Configurations are stored on the local machine and are
available for all tests performed by the local C++test installation. Team Test Configurations are stored on the team’s Team Server and can be accessed by
all team members.

Static Analysis Group
This group includes universal static analysis test configurations. See for test configurations that enforce coding standardsCompliance Packs

Test
Configuration

Description

Recommended
Rules

The default configuration of recommended rules. Covers most Severity 1 and Severity 2 rules. Includes rules in the Flow Analysis
Fast configuration.

Flow Analysis
Standard

Detects complex runtime errors without requiring test cases or application execution. Defects detected include using uninitialized or
invalid memory, null pointer dereferencing, array and buffer overflows, division by zero, memory and resource leaks, and dead
code. This requires a special Flow Analysis license option. See for more Introducing Built-in Flow Analysis Test Configurations
details on Flow Analysis Test Configurations.

Flow Analysis
Fast

The fast configuration uses "Shallowest" depth of analysis and runs faster than the standard and aggressive configurations. The fast
configuration finds a moderate amount of problems and prevents violation number explosion. See Introducing Built-in Flow Analysis

 for more details on Flow Analysis Test Configurations.Test Configurations

Flow
Analysis Aggres
sive

The aggressive option reports any suspicious code as a violation. See for Introducing Built-in Flow Analysis Test Configurations
more details on Flow Analysis Test Configurations.

Effective C++ Checks rules from Scott Meyers’ "Effective C++" book. These rules check the efficiency of C++ programs.

Effective STL Checks rules from Scott Meyers’ "Effective STL" book.

Modern C++
(11, 14 and 17)

Checks rules that enforce best practices for modern C++ standards (C++11, C++14, C++17).

Find Duplicated
Code

Detects duplicated functions, code fragments, string literals, and #include directives.

Find Unused
Code

Includes rules for identifying unused/dead code.

Metrics Reports metrics statistics and detects metric values out of acceptable ranges.

Global Analysis Checks the Global Static Analysis rules.

Sutter-
Alexandrescu

Checks rules based on the book "C++ Coding Standards," by Herb Sutter and Andrei Alexandrescu.

The Power of
Ten

Checks rules based on Gerard J. Holzmann’s article "The Power of Ten - Rules for Developing Safety Critical Code." (http://spinroot.
)com/gerard/pdf/Power_of_Ten.pdf

Compliance Packs
Compliance Packs include test configurations tailored for particular compliance domains to help you enforce industry-specific compliance standards and
practices. See for information how the standards are mapped to C/C++test's rules.Compliance Packs Rule Mapping

Aerospace Pack

Displaying compliance results on DTP

Some test configurations in this category have a corresponding "Compliance" extension on DTP, which allows you to view your security compliance
status, generate compliance reports, and monitor the progress towards your security compliance goals. These test configurations require dedicated
license features to be activated. Contact Parasoft Support for more details on Compliance Packs licensing.

See the "Extensions for DTP" section in the DTP documentation for the list of available extensions, requirements, and usage.

https://docs.parasoft.com/display/CPPDESKV1042/Flow+Analysis#FlowAnalysis-IntroducingBuilt-inFlowAnalysisTest_Configurations
https://docs.parasoft.com/display/CPPDESKV1042/Flow+Analysis#FlowAnalysis-IntroducingBuilt-inFlowAnalysisTest_Configurations
https://docs.parasoft.com/display/CPPDESKV1042/Flow+Analysis#FlowAnalysis-IntroducingBuilt-inFlowAnalysisTest_Configurations
https://docs.parasoft.com/display/CPPDESKV1042/Flow+Analysis#FlowAnalysis-IntroducingBuilt-inFlowAnalysisTest_Configurations
http://spinroot.com/gerard/pdf/Power_of_Ten.pdf
http://spinroot.com/gerard/pdf/Power_of_Ten.pdf

Test Configuration Description

Joint Strike Fighter Checks rules that enforce the Joint Strike Fighter (JSF) program coding standards.

DO178C Software Level A Unit Testing Executes unit tests with appropriate configuration of coverage metrics and reporting settings for DO178C
Software Level A

DO178C Software Level B Unit Testing Executes unit tests with appropriate configuration of coverage metrics and reporting settings for DO178C
Software Level B

DO178C Software Level C and D Unit
Testing

Executes unit tests with appropriate configuration of coverage metrics and reporting settings for DO178C
Software Level C and D

Automotive Pack

Test
Configuration

Description

AUTOSAR
C++14 Coding
Guidelines

Checks rules that enforce the AUTOSAR C++ Coding Guidelines (Adaptive Platform, version 17-10).

 This test configuration is part of Parasoft Compliance Pack solution that allows you to monitor compliance with industry
standards using the "Compliance" extensions on DTP. It requires dedicated license features to be activated. Contact your Parasoft
representative for details.

High Integrity
C++

Checks rules that enforce the High Integrity C++ Coding Standard.

HIS Source
Code Metrics

Checks metrics required by the Herstellerinitiative Software (HIS) group.

MISRA C 1998 Checks rules that enforce the MISRA C coding standards.

MISRA C 2004 Checks rules that enforce the MISRA C 2004 coding standards.

MISRA C++
2008

Checks rules that enforce the MISRA C++ 2008 coding standards.

MISRA C 2012 Checks rules that enforce the MISRA C 2012 coding standards.

 This test configuration is part of Parasoft Compliance Pack solution that allows you to monitor compliance with industry
standards using the "Compliance" extensions on DTP. It requires dedicated license features to be activated. Contact your Parasoft
representative for details.

ISO26262 ASIL
A Unit Testing

Executes unit tests with appropriate configuration of coverage metrics and reporting settings for ISO26262 ASIL A

ISO26262 ASIL
B and C Unit
Testing

Executes unit tests with appropriate configuration of coverage metrics and reporting settings for ISO26262 ASIL B and C

ISO26262 ASIL
D Unit Testing

Executes unit tests with appropriate configuration of coverage metrics and reporting settings for ISO26262 ASIL D

Medical Devices Pack

Test Configuration Description

Recommended Rules for FDA
(C)

Checks rules recommended for complying with the FDA General Principles for Software Validation (test configuration
for the C language).

Recommended Rules for FDA
(C++)

Checks rules recommended for complying with the FDA General Principles for Software Validation (test configuration
for the C++ language).

Security Pack

Test
Configuration

Description

CWE-SANS Top
25 Most
Dangerous
Programming
Errors

Checks for the 2011 CWE/SANS Top 25 Most Dangerous Software Errors— a list of the most widespread and critical errors that
can lead to serious vulnerabilities in software. They are often easy to find, and easy to exploit. They are dangerous because they
will frequently allow attackers to completely take over the software, steal data, or prevent the software from working at all.

()http://cwe.mitre.org/top25/index.html

For more details, see .2011 CWE/SANS Top 25 Most Dangerous Software Errors Mapping

OWASP Top 10
2017

Includes rules that find issues identified in OWASP’s Top 10 standard.

Payment Card
Industry Data
Security Standard

Checks rules for the security issues referenced in section 6 of the Payment Card Industry Data Security Standard (PCI DSS) (https:
)//www.pcisecuritystandards.org/security_standards/pci_dss.shtml

Issues detected include input validation (to prevent cross-site scripting, injection flaws, malicious file execution, etc.) and validation
of proper error handling.

Security Rules Checks rules designed to prevent or identify security vulnerabilities.

SEI CERT C
Coding Guidelines

Checks rules and recommendations for the SEI CERT C Coding Standard. This standard provides guidelines for secure coding.
The goal is to facilitate the development of safe, reliable, and secure systems by, for example, eliminating undefined behaviors that
can lead to undefined program behaviors and exploitable vulnerabilities.

SEI CERT C
Rules

Checks rules for the SEI CERT C Coding Standard. This standard provides guidelines for secure coding. The goal is to facilitate
the development of safe, reliable, and secure systems by, for example, eliminating undefined behaviors that can lead to undefined
program behaviors and exploitable vulnerabilities.

 This test configuration is part of Parasoft Compliance Pack solution that allows you to monitor compliance with industry
standards using the "Compliance" extensions on DTP. It requires dedicated license features to be activated. Contact your Parasoft
representative for details.

SEI CERT C++
Rules

Checks rules for the SEI CERT C++ Coding Standard. This standard provides guidelines for secure coding. The goal is to facilitate
the development of safe, reliable, and secure systems by, for example, eliminating undefined behaviors that can lead to undefined
program behaviors and exploitable vulnerabilities.

 This test configuration is part of Parasoft Compliance Pack solution that allows you to monitor compliance with industry
standards using the "Compliance" extensions on DTP. It requires dedicated license features to be activated. Contact your Parasoft
representative for details.

UL 2900 Includes rules that find issues identified in the UL-2900 standard.

Unit Testing Group

Test Configuration Description

File Scope> Build Test
Executable (File Scope)

Builds test executable for "trial builds."

Only the selected file(s) will be instrumented.

File Scope> Collect Stub
Information (File Scope)

Collects symbols data to populate the Stubs view.

Only the selected file(s) will be instrumented.

File Scope> Debug Unit
Tests (File Scope)

Executes unit tests under the debugger.

Only the selected file(s) will be instrumented.

File Scope> Generate Stubs
(File Scope)

Generates stubs for missing function and variable definitions.

Only the selected file(s) will be instrumented.

File Scope> Run Unit Tests Executes the available test cases.

Only the selected file(s) will be instrumented.

Build Test Executable Builds test executable for "trial builds."

All project files will be instrumented.

Collect Stub Information Collects symbols data to populate the Stubs view.

All project files will be instrumented.

Debug Unit Tests Executes unit tests under the debugger.

All project files will be instrumented.

http://cwe.mitre.org/top25/index.html
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml

Generate Regression Base Generates a baseline test suite that captures the project code’s current functionality; to detect changes from this
baseline, you run your evolving code base against this test suite on a regular basis.

Outcomes are automatically verified.

Generate Stubs Generates stubs for missing function and variable definitions.

All project files will be instrumented.

Generate Test Suites Generates test suites (without generating test cases) for the selected resources.

Generate Unit Tests Generates unit tests for the selected resources.

Run Unit Tests Executes the available test cases.

All project files will be instrumented.

Run Unit Tests with Memory
Monitoring

Executes the available test cases and collects information about memory problems.

All project files will be instrumented.

Application Monitoring Group

Test Configuration Description

Build Application with Coverage Monitoring Builds the tested application with coverage monitoring enabled.

Build Application with Full Monitoring Builds the tested application with coverage and memory monitoring enabled.

Build Application with Memory Monitoring Builds the tested application with memory monitoring enabled.

Build and Run Application with Coverage Monitoring Builds and executes the tested application with coverage monitoring enabled.

Build and Run Application with Full Monitoring Builds and executes the tested application with coverage and memory monitoring enabled.

Build and Run Application with Memory Monitoring Builds and executes the tested application with memory monitoring enabled.

Embedded Systems Group

Test Configuration Description

Window Mobile> Build Test
Executable for Windows Mobile

Builds a test executable that you need to manually transfer to the target device and run. This Test Configuration is
very similar to the "Build Test Executable" Test Configuration; the only difference is that it is configured to use an
external storage card to generate post-run artifacts (coverage and results). See for details.Windows Mobile Support

Window Mobile> Build and
Run Test Executable for Pocket
PC

Builds the test executable, then deploys it to the emulator and runs it. After execution completes, you need to close
the emulator to prompt C++test to read and display test results. See for details.Windows Mobile Support

Window Mobile> Build and Run
Test Executable for Smartphone

Builds the test executable, then deploys it to the emulator and runs it. After execution completes, you need to close
the emulator to prompt C++test to read and display test results. See for details.Windows Mobile Support

Window Mobile> Build and Run
Test Executable for Windows
Mobile or Windows CE Using
ActiveSync

Builds the test executable, then deploys it to the emulator and runs it. ActiveSync is used as a communication
channel. To use this flow, both host and target machines must support ActiveSync. The target can be a real device
connected in ways supported by ActiveSync, or it can be an emulator. See for details.Windows Mobile Support

Utilities Group

Test
Configuration

Description

Load Test
Results (File)

Used to collect test results via the file channel. By default, this configuration assumes that logs are located inside ${cpptest:
. If needed, you can customize this location to any file system location that can be accessed from the C++test GUI.testware_loc}

Load Test
Results
(Sockets)

Used for "on the fly" collection of test results sent through TCP/IP sockets. It starts a java utility program to listen to and capture test
results. You can customize the port numbers for test and coverage results. Port numbers are defined with the and results_port c

 properties. overage_port

https://docs.parasoft.com/display/CPPDESKV1042/Windows+Mobile+Support
https://docs.parasoft.com/display/CPPDESKV1042/Windows+Mobile+Support
https://docs.parasoft.com/display/CPPDESKV1042/Windows+Mobile+Support
https://docs.parasoft.com/display/CPPDESKV1042/Windows+Mobile+Support

Extract Library
Symbols

Used to extract a list of symbols from external libraries (or object files). It should be used whenever C++test’s standard algorithm for
collecting information about symbols from binaries is not sufficient. For example if you use a Wind River DKM type of project, you
may want to have all symbols from the VxWorks image collected in this way. You will probably need to enter the location of the
binaries you want to extract symbols from, as well as the name of the nm-like utility that can be used to dump the content of library
/object file.

Generate Stubs
Using External
Library Symbols

Used to generate stubs after the "Extract Library Symbols" Test Configuration has been run. It assumes that a file with a list of
symbols from external libraries is stored in the project temporary data.

Load Application
Coverage

Used to import the coverage data collected with the coverage tool into your IDE; see cpptestcc Collecting Application Coverage
.with cpptestcc

Load Archived
Results

Used to load the archived results into C/C++test; see .Merging Results from Multiple Test Runs

Code Review Group

Name Scope Code Review

Pre-
Commit

Only files added or
modified locally

For teams who want to review code it is committed to source control.before

To use this Test Configuration, the Code Review Preference setting must Show user assistant during scanner run
be enabled so that the author can designate the appropriate reviewer(s). See the for details.Code Review

Post-
Commit

All project files
modified in the
previous day

For teams who want to review code after it is committed to source control.

This Test Configuration must be duplicated and customized prior to use (e.g, to specify author-reviewer mappings).
See Code Review for details.

See to learn how to develop custom Test Configurations that are tailored to your projects and team Configuring Test Configurations and Rules for Policies
priorities.

Compliance Packs Rule Mapping
This section includes rule mapping for the OWASP and CWE standars. The mapping information for other standards is available in the PDF rule mapping
files shipped with Compliance Packs.

OWASP Top 10 - 2017 Mapping

OWASP Category CWE ID Parasoft Rule IDs

A1 Injection CWE-77: Command Injection
BD-SECURITY-TDCMD

A1 Injection CWE-89: SQL Injection
BD-SECURITY-TDSQL

A3 Sensitive Data Exposure CWE-326: Weak Encryption
SECURITY-37

A3 Sensitive Data Exposure CWE-327: Use of a Broken or Risky Cryptographic Algorithm
SECURITY-02
SECURITY-28
SECURITY-37

A5 Broken Access Control CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path
Traversal') BD-SECURITY-

TDFNAMES

A6 Security Misconfiguration CWE-391: Unchecked Error Condition
BD-PB-ERRNO

A6 Security Misconfiguration CWE-396: Declaration of Catch for Generic Exception
EXCEPT-17

https://docs.parasoft.com/display/CPPDESKV1042/Collecting+Application+Coverage+with+cpptestcc
https://docs.parasoft.com/display/CPPDESKV1042/Collecting+Application+Coverage+with+cpptestcc
https://docs.parasoft.com/display/CPPDESKV1042/Merging+Results+from+Multiple+Test+Runs
https://docs.parasoft.com/display/CPPDESKV1042/Code+Review
https://docs.parasoft.com/display/CPPDESKV1042/Configuring+Test+Configurations+and+Rules+for+Policies

A10 Insufficient Logging &
Monitoring

CWE-223: Omission of Security-relevant Information
SECURITY-14
SECURITY-15

2011 CWE/SANS Top 25 Most Dangerous Software Errors Mapping

CWE
ID

CWE Name Parasoft ID Parasoft Name

CWE-89 Improper Neutralization of Special Elements used in an
SQL Command ('SQL Injection')

BD-SECURITY-
TDSQL

Protect against SQL injection

CWE-78 Improper Neutralization of Special Elements used in an
OS Command ('OS Command Injection')

BD-SECURITY-
TDCMD

Protect against command injection

CWE-
120

Buffer Copy without Checking Size of Input ('Classic
Buffer Overflow')

BD-PB-
OVERFFM

Avoid buffer overflow due to defining incorrect format limits

BD-PB-
OVERFNZT

Avoid overflow due to reading a not zero terminated string

BD-PB-
OVERFWR

Avoid overflow when writing to a buffer

BD-SECURITY-
OVERFWR

Avoid buffer write overflow from tainted data

CWE-22 Improper Limitation of a Pathname to a Restricted
Directory ('Path Traversal')

BD-SECURITY-
TDFNAMES

Protect against file name injection

CWE-
676

Use of Potentially Dangerous Function PB-37 The unbounded functions of library shall not be used

SECURITY-11 Avoid using unsecured shell functions that may be affected by shell
metacharacters

SECURITY-12 Avoid using unsafe string functions which may cause buffer overflows

SECURITY-13 Avoid using unsafe string functions that do not check bounds

SECURITY-14 Do not use scanf and fscanf functions without specifying variable size in
format string

SECURITY-16 Never use gets()

SECURITY-22 Do not use mbstowcs() function

SECURITY-30 Avoid using 'getpw' function in program code

SECURITY-31 Do not use 'cuserid' function

CWE-
327

Use of a Broken or Risky Cryptographic Algorithm SECURITY-02 Avoid functions which use random numbers from standard C library

SECURITY-28 Standard random number generators should not be used to generate
randomness for security reasons

SECURITY-37 Do not use weak encryption functions

CWE-
131

Incorrect Calculation of Buffer Size BD-PB-ARRAY Avoid accessing arrays out of bounds

BD-PB-
OVERFRD

Avoid overflow when reading from a buffer

BD-SECURITY-
ARRAY

Avoid tainted data in array indexes

MRM-45 Do not use sizeof operator on pointer type to specify the size of the memory to
be allocated via 'malloc', 'calloc' or 'realloc' function

CWE-
134

Uncontrolled Format String SECURITY-05 Avoid using functions printf/wprintf with only one variable parameter

SECURITY-08 Avoid using functions fprintf/fwprintf with only two parameters, when second
parameter is a variable

CWE-
190

Integer Overflow or Wraparound BD-SECURITY-
INTOVERF

Protect against integer overflow/underflow from tainted data

MISRA-051 Evaluation of constant unsigned integer expressions should not lead to wrap-
around

	Built-in Test Configurations

