
Creating a Project Using an Existing Build System
If you have a custom build system (for example, Makefile-based), you can streamline the process of configuring build settings by using C++test’s
cpptestscan utility, which collects information about your build process. You can then point C++test to the generated "build data file" to configure build
settings, as described in .Use options from a build data file

The Build Data File concept
Build information, such as the working directory, command line options for the compilation, and link processes of the original build, are stored in a file
called the build data file. The following example is a fragment from a build data file:

------- cpptestscan v. 9.4.x.x -------
working_dir=/home/place/project/hypnos/pscom
project_name=pscom
arg=g++
arg=-c
arg=src/io/Path.cc
arg=-Iinclude
arg=-I.
arg=-o
arg=/home/place/project/hypnos/product/pscom/shared/io/Path.o

Using cpptestscan or cpptesttrace to Create a Build Data File
The and executables are located in the C++test installation directory. They collect information from the build process of an cpptestscan cpptesttrace
existing code base, generate build data files with the information, and append information about each execution into a file.

The utility is used as a wrapper for the compiler and/or linker during the normal build. To use with an existing build, build the cpptestscan cpptestscan
code base with as the prefix for the compiler / linker executable of an existing build to build the code base. This can be done in two ways:cpptestscan

Modify the build command line to use as the wrapper for the compiler/linker executablescpptestscan
If you don’t want to (or cannot) override the compiler variable on the command line, embed in the actual make file or build script.cpptestscan

To use with an existing build, build the code base with as the prefix for the entire build command. will cpptesttrace cpptesttrace cpptesttrace
trace the compiler and linker processes executed during the build and store them in the build data file.

In both cases, you need to either add the C++test installation directory to your PATH environment variable, or specify the full path to either utility.

Additional options for and are summarized in the following table. Options can be set directly for the cpptestscan cpptesttrace cpptestscan
command or via environment variables. Most options can be applied to or by changing the prefix in command line.cpptestscan cpptesttrace

Basic usage:cpptestscan

Windows: cpptestscan.exe [options] [compile/link command]
Linux: cpptestscan [options] [compile/link command]

Basic usage:cpptesttrace

Windows: cpptesttrace.exe [options] [build command]
Linux: cpptesttrace [options] [build command]

Option Environment
Variable

Description Default

Proper Compiler Configuration is Critical

In most cases, C++test needs to invoke the compiler and linker in order to perform static analysis and runtime testing tasks, which commonly involve
preprocessing, compiling, and linking programs.
To access C++test’s full functionality, the machine where C++test is run must have the complete development environment and compiler tool chain.

https://docs.parasoft.com/display/CPPDESKV1041/Setting+Project+and+File+Options#SettingProjectandFileOptions-use_option

--
cpptestsca
nOutputFil
e=
<OUTPUT_FI
LE>

--
cpptesttra
ceOutputFi
le=
<OUTPUT_FI
LE>

CPPTEST_SCAN_
OUTPUT_FILE)

Defines file to append build information to. cpptestscan.bdf

--
cpptestsca
nProjectNam

e=<PROJECT
_NAME>

--
cpptesttra
ceProjectN
am
e=<PROJECT
_NAME>

CPPTEST_SCAN_
PROJECT_NAME

Defines suggested name of the C++test project. name of the
current
working
directory

--
cpptestsca
nRunOrigCm
d=
[yes|no]

--
cpptesttra
ceRunOrigCm

d=[yes|no]

CPPTEST_SCAN_
RUN_ORIG_CMD

If set to "yes", original command line will be executed. yes

--
cpptestsca
nQuoteCmdLi

neMode=
[all|sq|no
ne]

--
cpptesttra
ceQuoteCmdL

ineMode=
[all|sq|no
ne]

CPPTEST_SCAN_
QUOTE_CMD_LIN
E_MODE

Determines the way C++test quotes parameters when preparing cmd line to run.

all: all params will be quoted

none: no params will be quoted

sq: only params with space or quote character will be quoted

cpptestscanQuoteCm dLineMode is not supported on Linux

all

--
cpptestsca
nCmdLinePre

fix=
<PREFIX>

--
cpptesttra
ceCmdLineP
re
fix=<PREFI
X>

CPPTEST_SCAN_
CMD_LINE_PREFIX

If non-empty and running original executable is turned on, the specified command will be prefixed to the original
command line.

[empty]

--
cpptestsca
nEnvInOutp
ut
=[yes|no]

--
cpptesttra
ceEnvInOut
put
=[yes|no]

CPPTEST_SCAN_
ENV_IN_OUTPUT

Enabling dumps the selected environment variables and the command line arguments that outputs the file. For
advanced settings use – cpptestscanEnvFile and – cpptestscanEnvars options

no

--
cpptestsca
nEnvFile=<E

NV_FILE>

--
cpptesttra
ceEnvFile=
<E
NV_FILE>

CPPTEST_SCAN_
ENV_FILE

If enabled, the specified file keeps common environment variables for all build commands; the main output file
will only keep differences. Use this option to reduce the size of the main output file. Use this option with –
cpptestscanEnvInOut put enabled

[empty]

--
cpptestsca
nEnvars=
[*|<
ENVAR_NAME
>,...]

--
cpptesttra
ceEnvars=
[*|<
ENVAR_NAME
>,...]

CPPTEST_SCAN_
ENVARS

Selects the names of environment variables to be dumped or '*' to select them all. Use this option with
– cpptestscanEnvInOut put enabled.

*

--
cpptestsca
nUseVariab
le
=
[VAR_NAME=
VALUE,...]

--
cpptesttra
ceUseVaria
ble
=
[VAR_NAME=
VALUE,...]

CPPTEST_SCAN_
USE_VARIABLE

Replaces each occurence of "VALUE" string in the scanned build information with the "${VAR_NAME}" variable
usage.

[empty]

--
cpptesttra
ceTraceComm
and

CPPTEST_SCAN_T
RACE_COMMAND

Defines the command names that will be traced when collecting build process information. These names,
specified as regular expressions, should match original compiler / linker commands used in the build process.

Example: Modifying GNU Make Build Command to Using cpptestscan
Assuming that a make-based build in which the compiler variable is CXX and the original compiler is g++:

 make -f </path/to/makefile> <make target> [user-specific options] CXX="cpptestscan --cpptestscanOutputFile=
/path/to/name.bdf --cpptestscanProjectName=<projectname> g++"

This will build the code as usual, as well as generate a build data file (name.bdf) in the specified directory.

Example: Modifying GNU Make Build Command Using cpptesttrace
Assume that a regular make-based build is executed with:

 make clean all

you could use the following command line:

 cpptesttrace --cpptesttraceOutputFile=/path/to/name.bdf --cpptesttraceProjectName=<projectname> make clean
all

This will build the code as usual and generate a build data file (name.bdf) in the specified directory.

Note

When the build runs in multiple directories:

If you do not specify output file, then each source build directory will have its own .bdf file. This is good for creating one project per
source directory.
If you want a single project per source tree, then a single .bdf file needs to be specified, as shown in the above example.

Example: Modifying GNU Makefile to use cpptestscan
If your Makefile uses CXX as a variable for the compiler executable and is normally defined as CXX=g++, you can redefine the variable:

 ifeq ($(BUILD_MODE), PARASOFT_CPPTEST)
 CXX="/usr/local/parasoft/cpptestscan --cpptestscanOutputFile=<selected_location>/MyProject.bdf --
cpptestscanProjectName=MyProject g++"
 else
 CXX=g++
 endif

Next, run the build as usual and specify an additional BUILD_MODE variable for make:

 make BUILD_MODE=PARASOFT_CPPTEST

The code will be built and a build data file (MyProject.bdf) will be created. The generated build data file can then be used to create a project from the GUI
or from the command line.

Note

If the compiler and/or linker executable names do not match default cpptesttrace command patterns, they you will need to use --
cpptesttraceTraceCommand option described below to customize them. Default cpptestscan command trace patterns can be seen by
running 'cpptesttrace --cpptesttraceHelp' command.

Note

The cpptestscan and cpptesttrace utilities can be used in the parallel build systems where multiple compiler executions can be done
concurrently. When preparing Build Data File on the multicore machine, for example, you can pass the -j <number_of_parallel_jobs>
parameter to the GNU make command to build your project and quickly prepare the Build Data File.

When should I use cpptestscan?

It is highly recommended that the procedures to prepare a build data file are integrated with the build system. In this way, generating the build
data file can be done when the normal build is performed without additional actions.

To achieve this, prefix your compiler and linker executables with the cpptestscan utility in your Makefiles / build scripts.

When should I use cpptesttrace?

Use cpptesttrace as the prefix for the whole build command when modifying your Makefiles / build scripts isn’t possible or when prefixing your
compiler / linker executables from the build command line is too complex.

	Creating a Project Using an Existing Build System

