
1.  

2.  

3.  
4.  
5.  
6.  

Customizing Existing Rules and Creating New Rules
This topic explains how to check custom requirements or tailor existing rules to your unique needs by either modifying existing rules or by creating custom 
rules. 
Sections include:

Customizing Rules
Customizing Parameterized Rules
Customizing Rules with RuleWizard
Creating New Rules
Deploying Customized Rules or Fully-Custom Rules

Deploying Custom Rules (For Teams Using Team Server)
Deploying Custom Rules (For Teams Not Using Team Server)

Note on Duplicated Rule IDs

Customizing Rules
A cornerstone of static analysis with C++test is the ability to customize both static analysis Test Configurations (the set of rules to check) and specific 
rules—including creating new custom rules.

The rules provided with C++test are a comprehensive set to select from, yet specific coding guidelines may differ slightly, or require well-defined 
exceptions to the rules, depending on the style of coding, or the nature of the application. Hence, it is very important to understand how C++test rules can 
be customized and deployed to a team of users.

C++test has two types of rules: pattern-based and flow-based.

Pattern-based rules check code for specific patterns that are encoded in the rule, and trigger when the code matches the pattern. This type of 
analysis is usually local to a compilation unit (a single source file with all included headers). Many pattern-based rules can be parameterized by 
changing their configuration parameters directly in the C++test GUI, as described in the following section ( ). Customizing Parameterized Rules
RuleWizard can also be used to customize certain pattern-based rules.
Flow-based (BugDetective) rules check coding patterns and flow of data across multiple functions and source files. Many flow-based rules can 
be parameterized by changing their configuration parameters directly in the C++test GUI, as described in the following section (Customizing 

). RuleWizard is not used to configure flow-based rules.Parameterized Rules

Customizing Parameterized Rules
Several rules are parameterized, meaning that you can customize the nature of the rules by modifying the available rule parameters. Parameterized rules 
are marked with a special  icon (a wizard hat with a radio button) in the Test Configurations dialog  tab:Static> Rules Tree

Available rule parameters are described in the rule’s documentation. To view a rule’s description, right-click the node that represents that rule, then choose 
 from the shortcut menu.View Rule Documentation

To modify rule parameters:

Open the Test Configurations dialog by choosing  or by choosing  in the drop-down menu Parasoft> Test Configurations Test Configurations
on the  toolbar button.Run Tests
Open the  tab for any Test Configuration. The modified rule parameters will be applied to all Test Configurations, so it does Static> Rules Tree
not matter which Test Configuration you select in this step.
Expand the rule’s category branch.
Right-click the parameterized rule that you want to modify, then choose  from the shortcut menu.View/Change Rule Parameters
Modify the rule parameters in the dialog that opens.
Click  to save your changes.OK

Customizing Rules with RuleWizard
Many of  C++test’s pattern-based rules are edited with RuleWizard. C++test C++test rules are physical files that can be loaded in RuleWizard and changed 
as needed. The “built-in” C++test rules are included in the installation directories.

Customizable rules are marked with the following wizard hat + wizard wand icon in the Test Configuration panel’s rules tree:

Creating Multiple Versions of a Parameterized Rule

If you want to create multiple versions of a parameterized rule (such as the BugDetective rule that looks for user-specified definitions of leaks), create 
a "clone" of that rule (as described in ) then parameterize each of the rule instances.Specifying Rule Mappings

https://docs.parasoft.com/display/CPPDESKV1041/Modifying+Rule+Categories%2C+IDs%2C+Names%2C+and+Severity+Levels#ModifyingRuleCategories,IDs,Names,andSeverityLevels-rule_mapping


1.  

2.  
3.  
4.  

5.  
6.  

7.  
8.  

We strongly recommend that you leave the C++test built-in rules intact; rather than modify the built-in rules, duplicate them, then modify the duplicates.
To customize a rule with RuleWizard:

Open the Test Configurations dialog by choosing  or by choosing in the drop-down menu Parasoft> Test Configurations Test Configurations 
on the  toolbar button.Run Tests
Open the  tab for any Test Configuration. Static> Rules Tree
Right-click the rule you want to modify, then choose  from the shortcut menu.Duplicate
A duplicate rule node—with a file icon—will be added to the rules tree.

A copy of the rule file(s) will be added to the user-specific disk location. The rule ID changes with this operation so that the duplicated 
rule does not mask the built-in rule (see  for details)Note on Duplicated Rule IDs

Right-click the duplicate rule, then choose  from the shortcut menu.Edit Rule in RuleWizard
Edit the rule in RuleWizard, and save it.

The RuleWizard User's Guide (accessible by choosing  in the RuleWizard GUI) contains information on how to Help> Documentation
modify and save custom rules

Right-click the edited rule and choose . This makes it accessible to other team members.Upload to Team Server
Enable the edited rule in the appropriate configurations.

All of the above steps can be controlled by menu options in C++test; you do not need to perform any actual file manipulations. C++test completely 
manages all rule components in these steps.

Creating New Rules
You can easily create your own rules (or modify built-in rules) using the RuleWizard module, which is a graphical rule creation and customization tool 
available in C++test.

With RuleWizard, rules can be created graphically (by creating a flow-chart-like representation of the rule) or automatically (by providing code that 
demonstrates a sample rule violation).



To open RuleWizard:

Choose Parasoft> Launch RuleWizard.

The RuleWizard GUI will then open. The RuleWizard User's Guide (accessible by choosing  in the RuleWizard GUI) contains Help> Documentation
information on how to modify, create, and save custom rules.

Deploying Customized Rules or Fully-Custom Rules
Before you can check custom rules, you must deploy them to C++test. The recommended deployment of customized or fully-custom rules leverages Team 
Server. As a rule, Parasoft infrastructure deployment relies on Team Server as a key component. C++test automatically connects to the Team Server 
using communication through a designated port. To set up your Team Server connection,  go to . See the  Parasoft> Preferences> Team Server Connectin

 for additional details.g to Team Server

It is generally possible to deploy custom rules without Team Server, but it is notably more difficult to manage that deployment. If teams need to deploy 
custom rules, we strongly encourage the use of Team Server.

For details on how to use Team Server to deploy rules across the team, see . Configuring Test Configurations and Rules for Policies

https://docs.parasoft.com/display/CPPDESKV1041/Connecting+to+Team+Server
https://docs.parasoft.com/display/CPPDESKV1041/Connecting+to+Team+Server
https://docs.parasoft.com/display/CPPDESKV1041/Configuring+Test+Configurations+and+Rules+for+Policies


1.  

2.  
3.  
4.  

a.  
b.  
c.  
d.  

e.  
5.  
6.  

7.  
8.  
9.  

Deploying Custom Rules (For Teams Using Team Server)

See .Configuring Test Configurations and Rules for Policies

Deploying Custom Rules (For Teams Not Using Team Server)

Before you can check custom coding rules that were designed in RuleWizard, you need to deploy them.

To deploy custom rules if you are not using Team Server:

Open the Test Configurations dialog by choosing  or by choosing  in the drop- Parasoft> Test Configurations Parasoft> Test Configurations
down menu on the  toolbar button.Run Tests
Select any Test Configurations category. The new rule(s) will be available in all available Test Configurations.
Open the  tab.Static> Rules Tree
If any new rules should belong to a new category, create a new category as follows:

Click the  button.Edit Rulemap.
Open the  tab. Categories
Click . A new entry will be added to the category table.New
Enter a category ID and category description in the new entry. For instance, an organization might choose to use ACME as the category 
ID and ACME INTERNAL RULES as the description.
Click  to save the new categoryOK

Click the  button to the right of the rules tree. The Import RuleWizard rule dialog will open.Import
Use the Import RuleWizard rule dialog to specify which rule(s) you want to import, and whether you want to overwrite existing rule files (if an 
imported rule file has the same name as an existing rule file).
Click . The rule will be displayed under the assigned category and will be disabled by default.OK
Enable the new rule(s) you want checked.
Click either  or  to commit the modified settings.Apply Close

Note on Duplicated Rule IDs
Rules are recognized by rule ID within C++test If you have a rule with the same ID as a rule already in the built-in, user, or team categories, then the 
priority of usage is team/user/built-in. As a result, if you import a rule that matches the ID of a built-in rule, then the imported rule will be physically located 
in the default rule directory set in the Preferences panel, and the rule configuration will be use the imported rule instead of the built-in rule with the same 
name. If a rule is uploaded to Team Server, then the rule on Team Server will mask any user rules with the same ID, as well as the built-in rule with the 
same ID.

Notes on Rule IDs

Each rule that you import into the tool must have a unique rule ID. You should not import multiple rules that have the same rule ID. See Note on 
for details.Duplicated Rule IDs 

To specify rule categories using the rule ID, use the format  For example, "myrule-123" will be automatically <rule_category>-<rule_uid>.
assigned to "myrule" category.

Note

The following procedure describes how to enable custom rules if you are not using Parasoft Team Server to share rules across the team. If you 
are using Team Server, follow the instructions in .Configuring Test Configurations and Rules for Policies

https://docs.parasoft.com/display/CPPDESKV1041/Configuring+Test+Configurations+and+Rules+for+Policies
https://docs.parasoft.com/display/CPPDESKV1041/Configuring+Test+Configurations+and+Rules+for+Policies

	Customizing Existing Rules and Creating New Rules

