Testing Multithreaded Applications

In this section:

Prerequisites

Considerations

Known Problems and Limitations
Building the C++test Runtime Library
Supported Thread APIs

Using Other Thread APIs

Prerequisites

To enable testing multi-threaded applications, add the following option to Build Settings’ Compiler Options (described in Setting Project and File Options):
"- DCPPTEST_THREADS=1"

This option will activate multi-thread support in the C++test's Runtime library, as well as disable use of Safe Stubs for thread-related routines.

Considerations

® C++test's test executable must be linked with the appropriate runtime library (i.e. the multithreaded version of C Runtime Library for Visual C++
compilers or "pthread" library on UNIX).

® C++test's Runtime does not control threads’ life-time - we recommended you implement test cases so that all threads are terminated when the
test case completes.

Known Problems and Limitations

Known problems and limitations:
® |f multi-thread support is enabled (using -DCPPTEST_THREADS=1)—but no appropriate library is used during linking (or a multi- and single-

threaded C Runtime is mixed)—then the test executable may produce corrupted test results, or may terminate unexpectedly.
® Unexpected behavior in a non-main thread (signal, unhandled exception, time-out) will cause the test executable to terminate.

Building the C++test Runtime Library

C++test's default Runtime Library has built-in support for testing multithreaded applications. No additional action is required unless you are building a
custom runtime library with multithreaded support (e.g., for embedded testing). If you need to build a custom Runtime Library with the multi-thread support,
add "- DCPPTEST_THREADS_ENABLED=1" to the compiler command line.

Supported Thread APIs

The implementation of Runtime Library can use the following types of thread APIs:
® Windows Threads

® POSIX Threads
® VxWorks 6.x

Using Other Thread APIs

If you need to use another thread API (or a custom one), the following types and routines must be implemented.

Note that the CppTestThread.c file in the C++test Runtime sources contains definitions of thread support routines; it can be used as an example or as a
base for changes.

Tls - Thread Local Storage

https://docs.parasoft.com/display/CPPDESKE1040/Setting+Project+and+File+Options

typedef | MPLEMENTATI ON_DEPENDENT_TYPE CppTest Thr eadKey;

* %

i Creates key for thread | ocal storage data * Returns O on success

*

ei(t ern int |ocal ThreadKeyCr eat e(CppTest Thr eadKey* key);

* *

i Del etes key for thread | ocal storage data * Returns 0 on success

*

eit ern int |ocal ThreadKeyDel et e(CppTest Thr eadKey key);

* %

i Returns a thread specific value associate with a key */

extern voi d* | ocal ThreadGet Speci fi c(CppTest Thr eadKey key);

* %

i Associate a thread specific value with a key * Returns 0 on success
*

ei(t ern int |ocal ThreadSet Speci fi c(CppTest ThreadKey key, voi d* val ue);

Mutex

Note: C++test's Runtime assumes that a mutex can be statically initialized.

typedef | MPLEMENTATI ON_DEPENDENT_TYPE CppTest Thr eadMut ex;

#def i ne CPPTEST_THREADS_MJTEX_STATI C_I NI T <I MPLEMENTATI ON_DEPENDENT_STATI C_I NI TI ALI ZER>
/**

* Initializes mutex

* @eturn 0 on success

*/

extern int |ocal ThreadMut exl nit (CppTest Thr eadMiut ex* nut ex) ;

/**

* Destroy and rel ease resources used by mutex * @eturn 0 on success

*/

extern int | ocal ThreadMut exDestroy(CppTest Thr eadMut ex* nut ex);

/**

* Lock nmutext and return when calling thread becanes is owner of it. * @eturn 0 on success
*/

extern int |ocal ThreadMut exLock(CppTest Thr eadMut ex* nut ex) ;

/**

* Rel eases nutex owned by calling thread.

* @eturn 0 on success

*/

extern int |ocal ThreadMut exUnl ock(CppTest Thr eadMut ex* nut ex) ;

Miscellaneous

/**

* Exits calling thread

* (never returns)

*/

extern void | ocal ThreadExit();

/**

* @eturn non-zero if threads already finished execution */
extern int |ocal ThreadFi ni shed(CppTest Thread* thread);

| **

* @eturn non-zero if threads are supported in current build

* (proper macros, libraries, conpiler options were used).
*/

extern int |ocal ThreadsSupported(void);

/**

* Initializes given thread structure
*/
extern void | ocal Threadl ni t (CppTest Thread* thread);

	Testing Multithreaded Applications

