
Application Monitoring with the C/C++test Wind River
Workbench Plugin
This topic explains how you can perform runtime monitoring of the application with C/C++test Plugin for Wind River Workbench 4.x. See Runtime Error

 and for general information about application monitoring with C/C++test.Detection Coverage Analysis

The following steps are required to perform the application monitoring with C/C++test Plugin for Wind River Workbench 4.x:

Configuring the Project
Configuring the Execution Environment for Test Automation
Building and Running the Test Application
Reviewing the Results

Configuring the Project
C/C++test Plugin for Wind River Workbench 4.x supports the following project types:

Downloadable Kernel Module
Real-Time Process

Before test execution, be sure that your project can be built in Wind River Workbench and is properly configured. Open the of the project, go to Properties
 and ensure that the following options are configured:Parasoft> C/C++test> Build Settings

The option is selected from the drop-down menu. Use Options from Wind River Workbench project Option source
The option is properly set.Build target
The option is enabled.Synchronize with project settings

 The compiler family and executables are automatically set during during the first analysis run.

Configuring the Execution Environment for Test Automation
Before test execution, be sure that your project can be successfully run in your execution environment (Simulator or Target) and is properly configured.

Ensure that the Debug Agent is enabled in your VxWorks runtime environment.
Ensure that the Debug Agent target address matches the target address specified in the test configuration.

 The default target address used by C/C++test is . You can customize the target address in the test configuration (see 127.0.0.1:60000 Cus
).tomizing the Test Configuration

 Avoid using network port auto-mapping for the Debug Agent. You can specify a fixed Debug Agent local port when configuring VxWorks
Simulator. Go to and add a new Port Mapping for debug_agent: Advanced> Network Config> Configure... Remote Port: 1534 > Local Port:

.60000
Ensure that the file system with the host-target path mapping (such as HostFS, PassFS) is available in your VxWorks runtime environment.

 By default, C/C++test uses the automatically detected host-target mapping when collecting test and coverage results. You can customize the
mapping in the test configuration (see).Customizing the Test Configuration

https://docs.parasoft.com/display/CPPDESKE1032/Runtime+Error+Detection
https://docs.parasoft.com/display/CPPDESKE1032/Runtime+Error+Detection
https://docs.parasoft.com/display/CPPDESKE1032/Coverage+Analysis

1.
2.
3.

4.

5.

1.
2.

Customizing the Test Configuration

To review or modify the configuration settings for your execution environment:

Open in your IDE menu.Parasoft> Test Configurations
Go to . Builtin> Embedded Systems> Wind River> Workbench 4
Depending on your project type, right-click one of the following test configurations and choose : Duplicate
- for DKM projectsRun VxWorks DKM (File System, WRWB 4.x)Application with Full Monitoring
- for RTP projects.Run VxWorks RTP (File System, WRWB 4.x)Application with Full Monitoring
Select the duplicated test configuration, which will be added to the category.User-defined

Go to and review or modify the following settings:Execution> General> Execution details
- - Specifies the target address (; the default value is . Be sure the address matches the Target address host:port) 127.0.0.1:60000
settings of your VxWorks Simulator or Running Target.
- - Specifies path mapping between the target and the host (). The mapping is used Target-host path mapping /target/path=/host/path
by C/C++test to store and access test and coverage log files. The mapping must include the host location specified in "Test execution logs
directory (on host)". By default, C/C++test auto-detects and uses available mappings provided by the Debug Agent.
- - Specifies the entry point function that will be called after the binary is loaded into Application's entry point (DKM projects only) automatically
the target. See for information about manually controlling the test binary (including the entry Building a Test Binary for Manual Test Execution
point).
- - Specifies the path to the VxWorks image that is used to extract information about available Path to VxWorks image (DKM projects only)
symbols (required for configuring stubs). If you use VxWorks Simulator, C/C++test detects the VxWorks image. If you correctly automatically
connect to Running Target, you must manually provide the path to the image. Be sure to use Unix-style path separators (c:/path/to

)./vxworks/image

Building and Running the Test Application

Select the project you want to test.
Depending on your project type, run one of the following test configurations:
- for DKM projects Run VxWorks DKM Application with Full Monitoring (File System, WRWB 4.x)
- for RTP projects.Run VxWorks RTP Application with Full Monitoring (File System, WRWB 4.x)
See for information about running test configurations.Running a Test Configuration

C/C++test will automatically:

instrument the code
build the test binary
load the binary into the target (using the Debug Agent)
run the test binary (using the Debug Agent); for DKM projects, the entry point specified in the test configuration is called–see Customizing the
Test Configuration
unload the binary from the target (using Debug Agent)

Ensure your VxWorks Simulator or Running Target is connected.

https://docs.parasoft.com/display/CPPDESKE1032/Testing+from+the+GUI#TestingfromtheGUI-RunningaTestConfiguration

1.
2.
3.

4.
5.
6.

7.
8.
9.

10.
11.
12.

collect coverage and runtime monitoring results (using the Debug Agent / host-target path mapping)

Building a Test Binary for Manual Test Execution (DKM projects only)

By default, C/C++test automatically builds and runs the test binary. If you need to manually execute a set of functional tests with the DKM binary, you can
configure C/C++test to only build the test binary–without running it automatically. This allows you to manually upload the test binary to the target, execute
your tests, and load the coverage data and runtime monitoring results into your Workbench IDE.

To manually execute tests for the DKM test binary:

Duplicate the test configuration.Run VxWorks DKM Application with Full Monitoring (File System, WRWB 4.x)
Rename the new test configuration (for example, as "VxWorks DKM build only").
Go to , select from the Execution> General> Execution details> Test execution flow Build VxWorks DKM Application with Full Monitoring
drop-down menu and click .Apply
(Optional) Go to and customize the location where the test binary will be saved.Execution> General> Execution Details> Test module binary
In the Project Explorer, select the DKM project you want to test.
Run the duplicated test configuration.
C/C++test will automatically:
- instrument the code
- build the test binary.
Manually load the test binary into the target.
In the target console, call to initialize the runtime application monitoring.CppTest_InitializeRuntime
Manually execute your tests using the test binary.
In the target console, call to finalize the runtime application monitoring.CppTest_FinalizeRuntime
Manually unload the test binary from the target.
Run the test configuration to load the coverage and runtime monitoring results.Builtin> Utilities> Load Test Results (Files)

Reviewing the Results
When the test execution is completed, you can review:

coverage information collected during the test run; see for details,Reviewing Coverage Information
runtime monitoring results; see for more details.Runtime Error Detection

https://docs.parasoft.com/display/CPPDESKE1032/Reviewing+Coverage+Information
https://docs.parasoft.com/display/CPPDESKE1032/Runtime+Error+Detection

	Application Monitoring with the C/C++test Wind River Workbench Plugin

