
Development Testing Platform Engines
for .NET User’s Guide

Version 10.3

Parasoft Corporation
101 E. Huntington Drive, 2nd Floor
Monrovia, CA 91016
Phone: (888) 305-0041
Fax: (626) 305-9048
E-mail: info@parasoft.com
URL: www.parasoft.com

PARASOFT END USER LICENSE
AGREEMENT
PLEASE READ THIS END USER LICENSE AGREEMENT ("AGREEMENT") CAREFULLY BEFORE
USING THE SOFTWARE. PARASOFT CORPORATION ("PARASOFT") IS WILLING TO LICENSE
THE SOFTWARE TO YOU, AS AN INDIVIDUAL OR COMPANY THAT WILL BE USING THE SOFT-
WARE ("YOU" OR "YOUR") ONLY ON THE CONDITION THAT YOU ACCEPT ALL OF THE TERMS
OF THIS AGREEMENT. THIS IS A LEGALLY ENFORCEABLE CONTRACT BETWEEN YOU AND
PARASOFT. BY CLICKING THE "ACCEPT" OR "YES" BUTTON, OR OTHERWISE INDICATING
ASSENT ELECTRONICALLY, OR BY INSTALLING THE SOFTWARE, YOU AGREE TO THE TERMS
AND CONDITIONS OF THIS AGREEMENT AND ALSO AGREE THAT IS IT ENFORCEABLE LIKE
ANY WRITTEN AND NEGOTIATED AGREEMENT SIGNED BY YOU. IF YOU DO NOT AGREE TO
THESE TERMS AND CONDITIONS, CLICK THE "I DO NOT ACCEPT" OR "NO" BUTTON AND
MAKE NO FURTHER USE OF THE SOFTWARE.

1. DEFINITIONS

1.1."Community Edition" means a limited version of certain Software available with a no cost
license. You can execute only one Instance of a Community Edition on a single machine. You
shall provide Parasoft with a valid email address at the time of installation, and such email
address cannot be used by any other individual to register a Community Edition. You may not
transfer the Community Edition to another machine without prior written approval from Para-
soft. You may not tamper or attempt to bypass any of the installation steps for a Community
Edition, and Parasoft shall terminate your right to a Community Edition in the event that you do
so. Notwithstanding any other provisions herein, Parasoft (a) does not provide Maintenance
for Community Editions; (b) provides no warranty for Community Editions; (c) provides no
indemnification for Community Editions; and (d) accepts no liability for Community Editions.

1.2."Concurrent User" means a person that has accessed the Software at any given point in
time, either directly or through an application.

1.3."Instance" means a single occurrence of initialization or execution of software on one
machine. You are prohibited from using more than one Instance on the same machine at the
same time.

1.4."Licensed Capacity" means the capacity-based license pricing metrics, including, without
limitation, Concurrent Users, Node Locked machines, Instances, and Community Editions.

1.5."Maintenance" means the maintenance and technical support services for the Software iden-
tified in the Order Instrument and provided by Parasoft pursuant to this Agreement.

1.6."Node Locked" means a license for a single machine that has been authorized to run a single
Instance of the licensed Software. A Node Locked license requires that users are physically
present and not accessing the machine and using the Software from a remote location.

1.7."Software" means Parasoft's software products, in object code form, that are commercially
available at the time of Your order and identified on the Order Instrument, and any modifica-
tions, corrections and updates provided by Parasoft in connection with Maintenance.

1.8."Territory" means the country or countries in which You have a license to use the Software, as
specified in Your order for the Software; or, if no Territory is specified, the country from which
Your order has been issued.

1.9."User Documentation" means the user's guide, installation guides, and/or on-line documen-
tation applicable to the Software. User Documentation does not include marketing materials
or responses to requests for proposals.

2. GRANT OF LICENSE AND USE OF SOFTWARE

2.1.License Grant. Subject to the terms and conditions of this Agreement, Parasoft grants to You
a non-exclusive license to use the Software within the Territory, in accordance with the User
Documentation and in compliance with the authorized Licensed Capacity. This license may be
perpetual or for a limited duration term, as stated in (a) an executed agreement between You
and Parasoft; (b) a sales quotation from Parasoft; (c) a purchase order that You issue to Para-
soft; or (d) the online ordering process found on Parasoft's website or an authorized third
party's website. You acknowledge and agree that this Agreement only grants a license to the
Software as set forth herein and does not constitute a sale of the Software by Parasoft. You
have no right to resell the Software, whether by contract or by operation of applicable copyright
law.

2.2.Usage Rights. You may only use the Software and/or the User Documentation for Your inter-
nal business operations and to process Your data. You shall not (a) permit any third parties or
non-licensed entities to use the Software or the User Documentation; (b) process or permit to
be processed any data that is not Your data; (c) use the Software in the operation of a service
bureau; (d) sublicense, rent, or lease the Software or the User Documentation to a third party;
or (e) perform, publish, or release to any third parties any benchmarks or other comparisons
regarding the Software or User Documentation. You shall not make simultaneous use of the
Software on multiple, partitioned, virtual, or cloud hosted computers without first procuring an
appropriate number of licenses from Parasoft. You shall not bypass or attempt to bypass any
licensing controls either contained within the Software or imposed by Parasoft. You shall not
permit a third party outsourcer to use the Software to process data on Your behalf without
Parasoft's prior written consent.

2.3.License Keys. You acknowledge that the Software contains one or more license keys that will
enable the functionality of the Software and third party software embedded in or distributed
with the Software. You may only access and use the Software with license keys issued by
Parasoft, and shall not attempt to modify, tamper with, reverse engineer, reverse compile, or
disassemble any license key. If Parasoft issues a new license key for the Software, You shall
not use the previous license key to enable the Software. If a particular license is then currently
on Maintenance, You may transfer such license to a different machine and request a new
license key from Parasoft.

2.4.Archival Copies. You may make one copy of the Software for back-up and archival purposes
only. You may make a reasonable number of copies of the User Documentation for Your inter-
nal use. All copies of Software and User Documentation must include all copyright and similar
proprietary notices appearing on or in the originals. Copies of the Software may be stored off-
site provided that all persons having access to the Software are subject to Your obligations
under this Agreement and You take reasonable precautions to ensure compliance with these
obligations. Parasoft reserves the right to revoke permission to reproduce copyrighted and
proprietary material if Parasoft reasonably believes that You have failed to comply with its obli-
gations hereunder.

2.5.Licensed Capacity. Parasoft licenses Software based on Licensed Capacity for different
types of usage, including, without limitation, Concurrent Users, Node Locked machines, and
Community Editions. A Concurrent User license allows multiple Concurrent Users to share
access to and use the Software, provided that the number of Concurrent Users accessing the
Software at any time does not exceed the total number of licensed Concurrent Users. A Node
Locked license allows a single specified machine to run a single Instance of the Software. If
an application accessing the Software is a multiplexing, database, or web portal application
that permits users of such application to access the Software or data processed by the Soft-
ware, a separate Concurrent User license will be required for each Concurrent User of such
application. Regardless of usage type, You shall immediately notify Parasoft in writing of any
increase in use beyond the Licensed Capacity. You must obtain a license for any increase in

Licensed Capacity, and You agree to pay to Parasoft additional Software license fees, which
will be based on Parasoft's then-current list price.

2.6.Third Party Terms. You acknowledge that software provided by third party vendors ("Third
Party Software") may be embedded in or delivered with the Software. The terms of this Agree-
ment and any other terms that Parasoft may specify will apply to such Third Party Software,
and the Third Party Software vendors will be deemed third party beneficiaries under this
Agreement. You may only use the Third Party Software with the Software. You may not use
the Third Party Software on a stand-alone basis or use or integrate it with any other software or
device.

2.7.Evaluation License. This Section 2.7 applies if Parasoft has provided the Software to You for
evaluation purposes. Parasoft grants to You a thirty (30) day, limited license solely for the pur-
pose of internal evaluation. You are strictly prohibited from using the Software for any produc-
tion purpose or any purpose other than the sole purpose of determining whether to purchase a
commercial license for the Software that You are evaluating. Parasoft is not obligated to pro-
vide maintenance or support for the evaluation Software. YOU ACKNOWLEDGE THAT
SOFTWARE PROVIDED FOR EVALUATION MAY (A) HAVE LIMITED FEATURES; (B)
FUNCTION FOR A LIMITED PERIOD OF TIME; OR (C) HAVE OTHER LIMITATIONS NOT
CONTAINED IN A COMMERCIAL VERSION OF THE SOFTWARE. NOTWITHSTANDING
ANYTHING TO THE CONTRARY IN THIS AGREEMENT, PARASOFT IS PROVIDING THE
EVALUATION SOFTWARE TO YOU "AS IS", AND PARASOFT DISCLAIMS ANY AND ALL
WARRANTIES (INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE, AND STATUTORY WARRANTIES OF
NON-INFRINGEMENT), LIABILITIES, AND INDEMNIFICATION OBLIGATIONS OF ANY
KIND. In the event of any conflict between this Section 2.7 and any other provision of this
Agreement, this Section 2.7 will prevail and supersede such other provision with respect to
Software licensed to You for evaluation purposes.

2.8.Education License. If You are an educational or academic institution and are receiving a dis-
count from Parasoft, You may use the Software solely for education or academic purposes and
You may not use the Software for any commercial purpose. Parasoft may require that You pro-
vide proof of your status as an educational or academic institution.

2.9.Audit. You shall maintain accurate business records relating to its use and deployment of the
Software. Parasoft shall have the right, not more than once every twelve (12) months and
upon ten (10) business days prior written notice, to verify Your compliance with its obligations
under this Agreement by auditing Your business records and Your use and deployment of the
Software within Your information technology systems. Parasoft and/or a public accounting firm
selected by Parasoft shall perform the audit during Your regular business hours and comply
with Your reasonable safety and security policies and procedures. Any agreement You may
require the public accounting firm to execute shall not prevent disclosure of the audit results to
Parasoft. You shall reasonably cooperate and assist with such audit. You shall, upon demand,
pay to Parasoft all license and Maintenance fees for any unauthorized deployments and/or
excess usage of Software products disclosed by the audit. License fees for such unautho-
rized deployments and/or excess usage shall be invoiced to and paid by You at Parasoft's
then-current list price, and applicable Maintenance fees shall be applied retroactively to the
entire period of the unauthorized and/or excess usage. Parasoft shall be responsible for its
own costs and expenses in conducting the audit, unless the audit indicates that You have
exceeded its Licensed Capacity or otherwise exceeds its license restrictions, such that the
then-current list price of non-compliant Software deployment exceeds five percent (5%) of the
total then-current list price of the Software actually licensed by You, in which event You shall,
upon demand, reimburse Parasoft for all reasonable costs and expenses of the audit.

3. TITLE. Parasoft retains all right, title and interest in and to the Software and User Documenta-
tion and all copies, improvements, enhancements, modifications and derivative works of the
Software and User Documentation, including, without limitation, all patent, copyright, trade

secret, trademarks and other intellectual property rights. You agrees that it shall not, and shall
not authorize others to, copy (except as expressly permitted herein), make modifications to,
translate, disassemble, decompile, reverse engineer, otherwise decode or alter, or create
derivative works based on the Software or User Documentation. Except as otherwise pro-
vided, Parasoft grants no express or implied rights under this license to any of Parasoft's pat-
ents, copyrights, trade secrets, trademarks, or other intellectual property rights..

4. TERMINATION

4.1.Default; Bankruptcy. Parasoft may terminate this Agreement if (a) You fail to pay any amount
when due under any order You have placed with Parasoft and do not cure such non-payment
within ten (10) days of receipt of written notice of non-payment; (b) You materially breach this
Agreement and do not cure such breach within thirty (30) days of receipt of written notice of
such breach; (c) subject to provisions of applicable bankruptcy and insolvency laws, You
become the subject of any involuntary proceeding relating to insolvency and such petition or
proceeding is not dismissed within sixty (60) days of filing; or (d) You become the subject of
any voluntary or involuntary petition pursuant to applicable bankruptcy or insolvency laws, or
request for receivership, liquidation, or composition for the benefit of creditors and such peti-
tion, request or proceeding is not dismissed within sixty (60) days of filing.

4.2.Effect of Termination. Upon termination of this Agreement, You shall immediately discon-
tinue use of, and uninstall and destroy all copies of, all Software. Within ten (10) days follow-
ing termination, You shall certify to Parasoft in a writing signed by an officer of Yours that all
Software has been uninstalled from Your computer systems and destroyed.

5. LIMITED WARRANTY

5.1.Performance Warranty. Parasoft warrants that the Software, as delivered by Parasoft and
when used in accordance with the User Documentation and the terms of this Agreement, will
substantially perform in accordance with the User Documentation for a period of ninety (90)
days from the date of initial delivery of the Software. If the Software does not operate as war-
ranted and You have provided written notice of the non-conformity to Parasoft within the ninety
(90) day warranty period, Parasoft shall at its option (a) repair the Software; (b) replace the
Software with software of substantially the same functionality; or (c) terminate the license for
the nonconforming Software and refund the applicable license fees received by Parasoft for
the nonconforming Software. The foregoing warranty specifically excludes defects in or
non-conformance of the Software resulting from (a) use of the Software in a manner not in
accordance with the User Documentation; (b) modifications or enhancements to the Software
made by or on behalf of You; (c) combining the Software with products, software, or devices
not provided by Parasoft; or (d) computer hardware malfunctions, unauthorized repair, acci-
dent, or abuse.

5.2.Disclaimers. THE WARRANTIES SET FORTH IN THIS SECTION 5 ARE EXCLUSIVE AND
IN LIEU OF ALL OTHER WARRANTIES, WHETHER EXPRESS OR IMPLIED, AND PARA-
SOFT EXPRESSLY DISCLAIMS ALL OTHER WARRANTIES, INCLUDING ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
STATUTORY WARRANTIES OF NON-INFRINGEMENT. PARASOFT DOES NOT WARRANT
THAT THE SOFTWARE WILL MEET YOUR REQUIREMENTS OR THAT USE OF THE
SOFTWARE WILL BE UNINTERRUPTED OR ERROR FREE. THE REMEDIES SET FORTH
IN THIS SECTION 5 ARE YOUR SOLE AND EXCLUSIVE REMEDIES AND PARASOFT'S
SOLE AND EXCLUSIVE LIABILITY REGARDING FAILURE OF ANY SOFTWARE TO FUNC-
TION OR PERFORM AS WARRANTED IN THIS SECTION 5.

6. INDEMNIFICATION

6.1. Infringement. Parasoft shall defend any claim against You that the Software infringes any
intellectual property right of a third party, provided that the third party is located in a country
that is a signatory to the Berne Convention, and shall indemnify You against any and all dam-
ages finally awarded against You by a court of final appeal, or agreed to in settlement by Para-

soft and attributable to such claim, so long as You (a) provide Parasoft prompt written notice of
the claim; (b) provide Parasoft all reasonable assistance and information to enable Parasoft to
perform its duties under this Section 6; (c) allow Parasoft sole control of the defense and all
related settlement negotiations; and (d) have not compromised or settled such claim. If the
Software is found to infringe, or if Parasoft determines in its sole opinion that it is likely to be
found to infringe, then Parasoft may, at its option (a) obtain for You the right to continue to use
the Software; (b) modify the Software to be non-infringing or replace it with a non-infringing
functional equivalent, in which case You shall stop using any infringing version of the Software;
or (c) terminate Your rights and Parasoft's obligations under this Agreement with respect to
such Software and refund to You the unamortized portion of the Software license fee paid for
the Software based on a five year straight-line depreciation schedule commencing on the date
of delivery of the Software. The foregoing indemnity will not apply to any infringement resulting
from (a) use of the Software in a manner not in accordance with the User Documentation; (b)
modifications or enhancements to the Software made by or on behalf of You; (c) combination,
use, or operation of the Software with products not provided by Parasoft; or (d) use of an alleg-
edly infringing version of the Software if the alleged infringement could be avoided by the use
of a different version of the Software made available to You.

6.2.Disclaimers. THIS SECTION 6 STATES YOUR SOLE AND EXCLUSIVE REMEDY AND
PARASOFT'S SOLE AND EXCLUSIVE LIABILITY REGARDING INFRINGEMENT OR MIS-
APPROPRIATION OF ANY INTELLECTUAL PROPERTY RIGHTS OF A THIRD PARTY.

7. LIMITATION OF LIABILITY. IIN NO EVENT WILL PARASOFT OR ITS THIRD PARTY VEN-
DORS BE LIABLE TO YOU OR ANY OTHER PARTY FOR (A) ANY SPECIAL, INCIDENTAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OR (B) LOSS OF DATA, LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR SIMILAR DAMAGES OR LOSS, EVEN IF PARASOFT AND
ITS THIRD PARTY VENDORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. EXCEPT AS LIMITED BY APPLICABLE LAW AND EXCLUDING PARASOFT'S
LIABILITY TO YOU UNDER SECTION 6 (INDEMNIFICATION), AND REGARDLESS OF THE
BASIS FOR YOUR CLAIM, PARASOFT'S MAXIMUM LIABILITY UNDER THIS AGREEMENT
WILL BE LIMITED TO THE LICENSE OR MAINTENANCE FEES PAID FOR THE SOFT-
WARE OR MAINTENANCE GIVING RISE TO THE CLAIM. THE FOREGOING LIMITATIONS
WILL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY
LIMITED REMEDY.

8. CONFIDENTIAL INFORMATION. For purposes of this Agreement, "Confidential Information"
will include trade secrets contained within the Software and User Documentation, the terms
and pricing of the Software and Maintenance (including any pricing proposals), and such other
information (a) identified by either party as confidential at the time of disclosure or (b) that a
reasonable person would consider confidential due to its nature and circumstances of disclo-
sure ("Confidential Information"). Confidential Information will not include information that (a)
is or becomes a part of the public domain through no act or omission of the receiving party; (b)
was in the receiving party's lawful possession prior to receiving it from the disclosing party; (c)
is lawfully disclosed to the receiving party by a third party without restriction on disclosure; or
(d) is independently developed by the receiving party without breaching this Agreement. Each
party agrees to maintain all Confidential Information in confidence and not disclose any Confi-
dential Information to a third party or use the Confidential Information except as permitted
under this Agreement. Each party shall take all reasonable precautions necessary to ensure
that the Confidential Information is not disclosed by such party or its employees, agents or
authorized users to any third party. Each party agrees to immediately notify the other party of
any unauthorized access to or disclosure of the Confidential Information. The receiving party
agrees that any breach of this Section 8 may cause irreparable harm to the disclosing party,
and such disclosing party shall be entitled to seek equitable relief in addition to all other reme-
dies provided by this Agreement or available at law.

9. MAINTENANCE

9.1.Maintenance Period. If You have purchased a perpetual license, You are required to pur-
chase first year Maintenance with the Software, and the Maintenance period will commence
upon the initial delivery of the Software and continue for a period of one year. If You have pur-
chased a term license, Maintenance during the term is included at no additional charge. The
Maintenance period, at Your option, may be renewed pursuant to subsequent orders. Prior to
such renewal, Parasoft may, upon ten (10) business days written notice, require You to provide
a report on Your use and deployment of the Software. Such report will be certified by an officer
of Yours and will specify, with respect to Your Software: (a) the type and amount of Licensed
Capacity; (b) the version; and (c) the Parasoft license serial number. Parasoft shall issue an
annual renewal notice to You at least ninety (90) days prior to the expiration of the then-current
Maintenance period. Maintenance fees will be based on the then-current list price and are
subject to change without notice.

9.2.Support Coordinators. Maintenance will consist of support services provided by Parasoft to
one designated support coordinator of Yours (and one backup coordinator) per Your location,
by telephone, email, and website. Support is available during normal business hours in the
applicable location within the Territory, Monday through Friday, excluding nationally observed
holidays.

9.3.Additional Licensed Capacity. Additional Licensed Capacity. In the event that You pur-
chases additional Licensed Capacity for the Software prior to the annual anniversary date of
the Maintenance period, You agree to pay applicable Maintenance fees based on Parasoft's
then-current Maintenance rates. Maintenance fees will apply from the effective date of such
additional Licensed Capacity and continue for a period of one year thereafter, unless otherwise
agreed to in writing by the parties, so that Maintenance for Your previously acquired Software
and added Licensed Capacity is coterminous.

9.4.New Releases. During any period in which You are current on Maintenance, Parasoft shall
provide You with any new release of the Software, which may include generally available error
corrections, modifications, maintenance patch releases, enhancements (unless priced sepa-
rately by Parasoft and generally not included with new licenses for the Software at that time),
and the revised User Documentation, if applicable. Notwithstanding the foregoing, stand-alone
error corrections that are not part of a new release will not be independently supported but will
be incorporated into the next release of the Software. If You install a new release of the Soft-
ware, You may continue to use the previous version of the Software for up to ninety (90) days
in order to assist You in the transition to the new release. Once You complete its transition to
the new release of the Software, You must discontinue use of the previous version of the Soft-
ware.

9.5.Supported Releases. Parasoft shall continue to support the immediately preceding release of
the Software for a period of twelve (12) months following the discontinuance of such Software
or the date on which the new release becomes generally available, provided that You have
paid applicable Maintenance fees and incorporated all Maintenance patch releases issued by
Parasoft for the release of the Software.

9.6.Reinstatement of Maintenance. If You allow Maintenance to expire, You may, at a later date,
renew Maintenance by paying the following: (a) if You have installed the current release of the
Software but have failed to pay the applicable renewal fee on or before the ninetieth (90th) day
following expiration of the Maintenance period, annual Maintenance fees at Parasoft's
then-current rates, plus Parasoft's then-current reinstatement fee; or (b) if You have not
installed the current release of the Software or have failed to pay the applicable renewal fee by
the ninetieth (90th) day following expiration of the Maintenance period, annual Maintenance
fees at Parasoft's then-current rates, plus Parasoft's then-current license update fee for the
current release of the Software.

10. GENERAL

10.1.Independent Contractors. The parties acknowledge and agree that each is an independent
contractor. This Agreement will not be construed to create a partnership, joint venture or
agency relationship between the parties.

10.2.Entire Agreement. The terms and conditions of this Agreement apply to all Software
licensed, all User Documentation provided, and all Maintenance purchased hereunder. This
Agreement will supersede any different, inconsistent or preprinted terms and conditions in any
order form of Yours, purchase order or other ordering document.

10.3.Assignment. You have no right to assign, sublicense, pledge, or otherwise transfer any of
Your rights in and to the Software, User Documentation or this Agreement, in whole or in part
(collectively, an "Assignment"), without Parasoft's prior written consent, and any Assignment
without such consent shall be null and void. Any change in control of Your organization or
entity, whether by merger, share purchase, asset sale, or otherwise, will be deemed an Assign-
ment subject to the terms of this Section 10.3.

10.4.Force Majeure. No failure, delay or default in performance of any obligation of a party to this
Agreement, except payment of license fees due hereunder, will constitute an event of default
or breach of the Agreement to the extent that such failure to perform, delay or default arises
out of a cause, existing or future, that is beyond the reasonable control of such party, including,
without limitation, action or inaction of a governmental agency, civil or military authority, fire,
strike, lockout or other labor dispute, inability to obtain labor or materials on time, flood, war,
riot, theft, earthquake or other natural disaster ("Force Majeure Event"). The party affected by
such Force Majeure Event shall take all reasonable actions to minimize the consequences of
any Force Majeure Event.

10.5.Severability. If any provision of this Agreement is held to be illegal or otherwise unenforce-
able by a court of competent jurisdiction, that provision will be severed and the remainder of
the Agreement will remain in full force and effect.

10.6.Waiver. The waiver of any right or election of any remedy in one instance will not affect any
rights or remedies in another instance. A waiver will be effective only if made in writing and
signed by an authorized representative of the applicable party.

10.7.Notices. All notices required by this Agreement will be in writing, addressed to the party to be
notified and deemed to have been effectively given and received (a) on the fifth business day
following deposit in the mail, if sent by first class mail, postage prepaid; (b) upon receipt, if sent
by registered or certified U.S. mail, postage prepaid, with return receipt requested; (c) upon
transmission, if sent by facsimile and confirmation of transmission is produced by the sending
machine and a copy of such facsimile is promptly sent by another means specified in this Sec-
tion 10.7; or (d) upon delivery, if delivered personally or sent by express courier service and
receipt is confirmed by the recipient. Notices will be addressed to the parties based on the
address stated in the applicable order, to the attention of the Legal Department. A change of
address for notice purposes may be made pursuant to the procedures set forth above.

10.8.Export Restrictions. You acknowledge that the Software and certain Confidential Informa-
tion (collectively "Technical Data") are subject to United States export controls under the U. S.
Export Administration Act, including the Export Administration Regulations, 15 C.F.R. Parts
730 et seq. (collectively, "Export Control Laws"). Each party agrees to comply with all require-
ments of the Export Control Laws with respect to the Technical Data. Without limiting the fore-
going, You shall not (a) export, re-export, divert or transfer any such Technical Data, or any
direct product thereof, to any destination, company, or person restricted or prohibited by Export
Control Laws; (b) disclose any such Technical Data to any national of any country when such
disclosure is restricted or prohibited by the Export Control Laws; or (c) export or re-export the
Technical Data, directly or indirectly, for nuclear, missile, or chemical/biological weaponry end
uses prohibited by the Export Control Laws.

10.9.U. S. Government Rights. The Software and User Documentation are deemed to be "com-
mercial computer software" and "commercial computer software documentation" as defined in
FAR Section 12.212 and DFARS Section 227.7202, as applicable. Any use, modification,
reproduction, release, performance, display, or disclosure of the Software and User Documen-
tation by the United States government will be solely in accordance with the terms of this
Agreement.

10.10.Choice of Law; Jurisdiction. This Agreement is governed by and construed in accordance
with the laws of the State of California, U. S. A., exclusive of any provisions of the United
Nations Convention on Contracts for the International Sale of Goods, including any amend-
ments thereto, and without regard to principles of conflicts of law. Any suits concerning this
Agreement will be brought in the federal courts for the Central District of California or the state
courts in Los Angeles County, California. The parties expressly agree that the Uniform Com-
puter Information Transactions Act, as adopted or amended from time to time, will not apply to
this Agreement or the Software and Maintenance provided hereunder.

10.11.Amendment. This Agreement may only be modified by a written document signed by an
authorized representative of Parasoft and by You.

10.12.Survival. Any terms of this Agreement which by their nature extend beyond the termination
or expiration of this Agreement will remain in effect. Such terms will include, without limitation,
all provisions herein relating to limitation of liability, title and ownership of Software, and all
general provisions.

Parasoft Corporation

101 East Huntington Drive, 2nd Floor

Monrovia, CA 91016 USA

 +1 (626) 256-3680

 +1 (888) 305-0041 (USA only)

 +1 (626) 256-9048 (Fax)

 info@parasoft.com

 http://www.parasoft.com

Printed in the U.S.A, May 16, 2017

Table of Contents

Introduction
Static Analysis Engine (SAE) ..5

Unit Test Connector (UTC) ...5

Code Coverage Engine (CCE) ...5

Getting Started
System Requirements ..6

Installing DTP Engines ...7

Setting the License ...9

Connecting to DTP Server ..10

Connecting to Source Control ...11

Known Limitations ...11

Static Analysis Engine
Basic Analysis ...13

Analyzing Visual Studio Solutions ..13

Analyzing Visual Studio Projects Without Solutions ...13

Analyzing Websites ..13

Specifying Test Configurations..15

Viewing Available Test Configurations ...15

Built-in Test Configurations ...15

Creating Custom Rules ...17

Defining Test Scope ..18

Testing a Single Project in a Solution ...18

Testing a Single Directory of Files in a Project ...18

Testing a Single Source File ...18

Testing a Single Project Under a Solution Folder ..18

Testing a Single Source File When No Solution is Provided18

Fine-tuning the Scope ...18

Specifying Additional Assemblies ...19

Configuring Authorship ..20

About Authorship Configuration Priority ..20

Configuring How Authorship is Computed ..20

Creating Authorship XML Map Files ...21

Suppressing Violations ..22

Line Suppression ..22

Flow Analysis...24

Configuring Depth of Flow Analysis ..24

Setting Timeout Strategy ..25

Running Flow Analysis with Swapping of Analysis Data Enabled25

Configuring Verbosity of Flow Analysis ..25

Null-checking Methods ...26

Specifying Resources ...27

Metrics Analysis...29

Setting Metrics Thresholds ...29

Code Duplicate Analysis..30

Using DTP Engines in an IDE ...31

Reporting
Specifying Report Output Location ...32

Specifying Report Format ...32

Viewing Reports ..32

Sending Results to Development Testing Platform (DTP) Server38

Publishing Source Code to DTP Server ...38

Unit Test Connector
Running Unit Tests with Coverage ...39

Running NUnit Tests ...39

Running MSTest Tests ...39

Associating Tests with Development Artifacts ..40

Code Coverage Engine

Application Coverage for Standalone Applications..................................44

Merging Coverage Data ..46

Application Coverage for Web Applications ..47

Prerequisites ...47

Process Overview ...47

Configuring the Application Under Test for Coverage ..47

Test Configuration and Execution ...50

Uploading Test Results to DTP ..50

Generating a Dynamic Coverage Data File and Uploading it to DTP50

Stopping Dynamic Coverage Data Collection ...50

Known Limitations ...51

Reviewing Coverage in DTP ...51

Customizing DTP Engines for .NET
Auto-configuring Settings from DTP Server ..52

Using Variables ...53

Settings Reference ...54

Integrations
Integrating with MSBuild..79

Target File ...79

Integrating with NAnt ...81

Loading NAnt Task Library ...81

Integrating with Source Control Systems ..85

Integrating with CI Tools..86

Integrating with TeamCity ...86

Integrating with Jenkins ..86

Building Solutions and Projects
Delegating the Build to MSBuild or Visual Studio ...88

Depending on Pre-built Code ...88

Specifying Solution Configuration and Target Platform ..88

Verifying the Required Build Artifacts ...88

Getting Help
Technical Support ...89

Troubleshooting ..89

Switches Reference ..91

Third-Party Content

5

Introduction
Parasoft Development Testing Platform (DTP) Engines for .NET are integrated solutions for automating
a broad range of best practices to improve productivity and software quality. DTP Engines are a
component of the Parasoft Development Testing Platform family of software quality solutions.Please
read the following guide for additional information about how DTP Engines integrate into Parasoft’s
Development Testing ecosystem:

The Parasoft Development Testing Solution (PDF)

This documentation provides information on how to use the following engines:

Static Analysis Engine (SAE)
SAE enforces your coding policy with proven quality practices, such as static analysis and flow
analysis, to ensure that your C# and VB.NET applications function as expected. See “Static Analysis
Engine”, page 12.

Unit Test Connector (UTC)
UTC allows you to run unit tests from open format tools, and report results to Development Testing
Platform (DTP) Server. See “Unit Test Connector”, page 39.

Code Coverage Engine (CCE)
CCE collects coverage information during a run of the executable and generates reports that can be
sent to DTP Server. See “Code Coverage Engine”, page 43.

Parasoft_Development_Testing.pdf

Getting Started
This chapter will help you verify that your system meets the requirements for using DTP Engines, as
well as help you configure DTP Engines so you can quickly start analyzing code.

System Requirements
• Windows 10, Windows 8, Windows 7, Windows Server 2012, or Windows Server 2008

• 4GB memory minimum, 8GB recommended

• 2GHz or faster processor

• NET Framework 4.6, 4.5, 4.0, or 3.5 installed on the target machine. See “About .NET Frame-
work Prerequisite”, page 6.

• Microsoft Visual C++ Redistributable Packages. If not already present, the packages are auto-
matically installed during DTP Engines for .NET installation. Also see “Manually Installing
Visual C++ Redistribution Packages”, page 6.

About .NET Framework Prerequisite
.NET Framework 3.0 and older are not sufficient for DTP Engines. Version 4.5 of .NET Framework is
bundled with DTP Engines and installed automatically. To install the framework manually, run the fol-
lowing command:

You can download and install other supported versions from Microsoft. The following table describes
.NET Framework version support.

Manually Installing Visual C++ Redistribution Packages
If you installed DTP Engines from a ZIP distribution, the Visual C++ Redistribution Packages neces-
sary for full functionality may not have been installed. You can install them manually by running the fol-
lowing installers located in the [INSTALL_DIR]\bin\prerequisites\ directory:

• vcredist_x64_10.exe

• vcredist_x64_9.exe

• vcredist_x86_10.exe

• vcredist_x86_9.exe

[INSTALL_DIR]\bin\prerequisites\dotnetfx45_full_x86_x64.exe

Framework Version Static Analysis Unit Testing Metrics

4.6 Supported Supported Supported

4.5 Supported Supported Supported

4.0 Supported Supported Unsupported

3.5 Supported Supported Unsupported
6

Installing DTP Engines
Running the installation executable launches a graphical interface that simplifies installing or updating
DTP Engines for .NET. Using this method ensures that all prerequisites are installed and that permis-
sions are elevated to work with User Access Control. Running the installer executable also allows you
to use the Windows Control Panel to uninstall DTP Engines.

1. Run parasoft_dottest_[version].exe setup file

2. Follow the steps as shown in the installation wizard.

Installing from a Zip Distribution
DTP Engines are also available for installation as a .zip file that you can manually deploy to your
desired directory. If you are installing a customized version of DTP Engines, e.g., contains a modified
set of built-in test configurations, then you may need to install from the .zip file.

We recommend extracting the contents of the .zip file with unzip software other than the built-in Win-
dows unzip utility, which may consider the downloaded .zip file to be untrusted.

The following components must be installed manually prior to installing DTP Engines using this
method:

• NET Framework 4.0 or .NET Framework 3.5

• VC++ Redistributable Package x86

These components ship with DTP Engines in the [INSTALL_DIR]\bin\prerequisites directory.

Connecting to Build and Continuous Integration Systems
DTP Engines ship with a set of integrators that allow you to easily integrate with the following build and
continuous integration systems:

• MSBuild

• NAnt

• JetBrains TeamCity

When the "Select Build System for Integration" tab appears during installation, choose the appropriate
build systems and follow the deployment wizards. For instructions on how to integrate with your build
or continuous integration system, see the appropriate section in the “Integrations”, page 78, chapter.

You can deploy the integrators after DTP Engines have been installed by running the following com-
mand and following the wizard instructions:

Deploying Examples
DTP Engines for .NET ships with several examples to help you become familiar with its functionalities.
You can deploy the examples during installation or on demand after the installation has been com-
pleted.

Deploying Examples During Installation

[INSTALL_DIR]\Integrations\[Build System]\deploy.exe
7

1. Enable the Deploy examples option when prompted and click Next

2. Choose a location for the examples and click Finish. If the examples directory already exists,
the previous files will be moved to the recycle bin and replaced with a clean image of the
example files.

After the examples are deployed, the examples directory opens so that you can browse the content.
Examples are organized into directories for all supported versions of Visual Studio. Each directory con-
tains subdirectories covering various functionality. Follow the instructions in the ReadMe file in each
directory for tutorials on using DTP Engines for .NET. We recommend starting with the 010_Basics
examples.

The examples point to the instance of DTP Engines from which they were deployed. This allows you to
run the examples with minimal configuration effort. The license, however, must be configured to start
using the examples. See “Connecting to DTP Server”, page 10.
8

Some files contain absolute paths to where they were deployed, so moving the example files will cause
them to fail. Redeploy the examples to a new location instead of moving them if necessary.

Deploying Examples from the Command Line
Run the following command to deploy the examples shipped with DTP Engines:

Follow the same processes as described in “Deploying Examples During Installation”, page 7.

Multiple Installations on a Single Machine
Run the installer in extract mode to install DTP Engines two or more times on a single machine.

Running dotTEST with a Local System Account
Using dotTEST from a Local System account may impact some functionalities, such as integration with
MSTest and collecting coverage information for applications or NUnit tests. To ensure that dotTEST
functions as expected, you may need to manually run Parasoft.Dottest.Profiling.Reg.exe
located in <INSTALL_DIR>\bin\dottest\dotnet. Add the -ForAllUsers switch to the executable:

Ensure you have admin credentials before you run the executable.

Setting the License
DTP Engines can run on either a local or a network license. There are two types of network licenses:

• dtp: This license is stored in DTP. Your DTP license limits analysis to the number of files spec-
ified in your licensing agreement. This is the default type when license.use_network is set to
true.

• ls: This is a "floating" or "machine-locked" license that limits usage to a specified number of
machines. This type of license is stored in DTP in License Server.

Network licenses are also available in three editions that determine what functionality is available:

[INSTALL_DIR]\deploy_examples.exe

parasoft_dottest_10.X.Y.exe /extract

<INSTALL_DIR>\bin\dottest\dotnet\parasoft.dottest.profiling.reg.exe -ForAllUsers

If you are using Azure or AWS services, you need to configure the cloudvm option in the .properties
configuration file. You can set the option to one of the following values:

• azure - Enables integration with Azure

• aws - Enables integration with AWS

• true - Enables integration with the automatically detected cloud computing platform

• false - Disables integration (the default value)

If you set the value to false or if the option is not configured, integration with Azure or AWS is
disabled.
9

• desktop_edition: Functionality is optimized for desktop usage.

• server_edition: Functionality configured for high performance usage in server command line
mode.

• custom_edition: functionality can be customized.

Local License
In the .properties configuration file:

1. Set the dottest.license.use_network property to false

2. Set the dottest.license.local.password property with your password

Obtaining the Machine ID
If you are using a local license, you will need your machine ID to request a license from Parasoft. Run
the following command from a command line window to obtain your machine ID:

Network License
In the .properties configuration file:

1. Set the dottest.license.use_network property to true

2. Set the dottest.license.network.type

3. Set the dottest.license.network.edition

Connecting to DTP Server
Connecting to DTP Server is required for licensing, as well as extending other team-working capabili-
ties, such as:

• Reporting analysis to a centralized database (see “Sending Results to Development Testing
Platform (DTP) Server”, page 38)

• Sharing test configurations

• Sharing static analysis rules

Modify the following settings in the [INSTALL_DIR]\dottestcli.properites file to configure the con-
nection to DTP Server.

Creating an Encoded Password
DTP Engines can encrypt your password, which adds a layer of security to your interactions with DTP
Server. Run the following command to print an encoded password:

dottestcli -machineID

dtp.server=[SERVER]

dtp.port=[PORT]

dtp.user=[USER]

dtp.password=[PASSWORD]

-encodepass [MYPASSWORD]
10

Copy the encoded password that is returned and paste it into the dottestcli.properties file.

Connecting to Source Control
Parasoft DTP Engines ship with out-of-the-box support for the following SCMs:

Edit the dottestcli.properties file located in the installation directory to connect to your SCM.
Parameters will vary depending on the brand of your SCM. The following example shows the parame-
ters required to connect to SVN:

See “Customizing DTP Engines for .NET”, page 52, for information about configuring your SCM con-
nection.

If you have dotTEST 9.5 or later, you can use its interface to configure integration with source control
systems. See “Integrating with Source Control Systems”, page 85 for details.

Known Limitations
Please refer to the Known Limitations section in [INSTALL_DIR]\releasenotes.rtf for information.

dtp.password=[ENCODED PASSWORD]

Brand Tested Version

AccuRev 4.6, 5.4, 6.2

ClearCase 2003.06, 7.0, 8.0

CVS 1.1.2

Git 1.7

Mercurial 1.8.0 - 3.6.3

Perforce 2006, 2012, 2013, 2014, 2015

Serena Dimensions 9.1, 10.1, 10.3 (2009 R2), 12.2

Star Team 2005, 2008, 2009

Subversion (SVN) 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9

Synergy/CM 6.4, 7.0, 7.1

Microsoft Team Foundation Server 2008, 2010, 2012, 2013, 2015

Visual SourceSafe 5.0, 6.0, 2005

scontrol.rep.type=svn

scontrol.rep.svn.url=https://svn_server/

scontrol.rep.svn.login=username

scontrol.rep.svn.password=password

scontrol.svn.exec=C:\\path\to\svn.exe
11

12

Static Analysis Engine
Static Analysis Engine (SAE) enforces your coding policy with proven quality practices, such as static
analysis and flow analysis, to ensure that your applications function as expected. The following sec-
tions describe how to analyze code with SAE.

• Basic Analysis

• Specifying Test Configurations

• Defining Test Scope

• Metrics Analysis

• Code Duplicate Analysis

• Using DTP Engines in an IDE

Basic Analysis
Basic Analysis
The command-line is the primary interface for running Static Analysis Engine in non-interactive mode.
The interface allows you to run Static Analysis Engine from any other script, language or build system
that can launch a program, including *.bat and *.cmd scripts. For MSBuild, NAnt, or JetBrains Team-
City, use the integrators shipped with DTP Engines. See “Integrations”, page 78, for details.

Analyzing Visual Studio Solutions
Provide the paths of a solution to analyze code. The following versions of Visual Studio solutions can
be analyzed: 2005, 2008, 2010, 2012, 2013, 2015.

Analyzing a Single FileSolution
Use the -solution switch to specify path of the solution, e.g.:

Analyzing Multiple Solutions
Specify -solution multiple times or provide ANT-style wildcards, e.g.:

or

Analyzing Visual Studio Projects Without Solutions
You can specify a path or paths to *.csproj or *.vbproj projects if *.sln files are unavailable by
using the -project switch. The -solution switch is recommended, however, and should be used
whenever possible.

ANT-style paths are supported. The switch may be specified several times.

Analyzing Websites

dottestcli.exe -solution "C:\Devel\FooSolution\FooSolution.sln"

-config "builtin://Demo" -report "C:\Report"

dottestcli.exe -solution "C:\Devel\FooSolution\FooSolution.sln"

-solution "C:\Devel\BarSolution\BarSolution.sln"

-config "builtin://Demo" -report "C:\Report"

dottestcli.exe -solution "C:\Devel***.sln" -config

"builtin://Demo" -report "C:\Report"

dottestcli.exe -project "C:\Devel\FooSolution***.csproj"

-config "builtin://Demo" -report "C:\Report"
13

Basic Analysis
Visual Studio Web Site projects do not use *.*proj files and may be maintained without *.sln files.
Use the -website switch to specify the directory of the website when no *.sln files are present, e.g.:

dottestcli.exe -website "C:\Devel\FooWebSite" -config "builtin://Demo"

-report "C:\Report"
14

Specifying Test Configurations
Specifying Test Configurations
Test configurations define how DTP Engines test and analyze code, including which static analysis
rules are enabled, which tests to run, and other analysis parameters. DTP Engines ship with built-in
test configurations, but users can create and store their own test configurations in the DTP server. You
can access the DTP server via the DTP plug-in. If you have administrator-level access in DTP Report
Center, you can also create test configurations directly in DTP (administration> Engines> Test Con-
figurations).

User-defined test configurations can be downloaded from the DTP server and stored in the
[INSTALL_DIR]/configs/user directory as *.properties files.

Use the -config switch to specify which test configuration to run:

The test configuration being executed can be specified in the following ways (by default, the buil-
tin://Recommended Rules test configuration is used):

Built-in Configurations

User-defined Configurations

DTP Server-hosted Configurations

Test configurations can also be referenced by filename and URL:

By File Name

By URL

Viewing Available Test Configurations
Use the -listconfigs switch to print the available test configurations.

Built-in Test Configurations

dottestcli.exe -solution "C:\Devel\MyFooSolution\MySolution.sln"

-config "builtin://Demo" -report "C:\Report"

-config "builtin://Recommended Rules"

-config "user://Foo Configuration"

-config "dtp://Foo Team Configuration"

-config "dtp://FooTeamConfig.properties"

-config "C:\Devel\Configs\FooConfig.properties"

-config "http://foo.bar.com/configs/FoodConfig.properties"

-listconfigs
15

Specifying Test Configurations
The following table includes the test configurations shipped with DTP Engines in the [INSTALL]/
configs/builtin directory.

Configuration Name Description

Recommended Rules The default configuration of recommended
rules. Covers most Severity 1 and Severity 2
rules. Includes rules in the Flow Analysis Fast
configuration.

Find Duplicated Code Applies static code analysis rules that report
duplicate code. Duplicate code may indicate
poor application design and lead to maintain-
ability issues.

Metrics Computes values for several code metrics.

Critical Rules Includes most Severity 1 rules, as well as rules
in the Flow Analysis Fast configuration.

Flow Analysis Detects complex runtime errors without requir-
ing test cases or application execution. Defects
detected include using uninitialized or invalid
memory, null pointer dereferencing, array and
buffer overflows, division by zero, memory and
resource leaks, and dead code. This requires a
special Flow Analysis license option.

Flow Analysis Aggressive Includes rules for deep flow analysis of code.
Significant amount of time may be required to
run this configuration.

Flow Analysis Fast Includes rules for shallow depth of flow analysis,
which limits the number of potentially accept-
able defects from being reported.

Demo Includes rules for demonstrating various tech-
niques of code analysis. May not be suitable for
large code bases.

Find Memory Issues Includes rules for finding memory management
issues in the code.

Find Unimplemented Scenarios Includes rules for finding unimplemented sce-
narios in the code.

Find Unused Code Includes rules for identifying unused/dead code.

Check Code Compatibility against .NET [2.0, 3.0,
3.5, 4.0 Client Profile, 4.0 Full]

Includes a set of test configurations that vali-
dates the code’s compatibility with the specified
version of .NET framework.

CWE-SANS Top 25 Most Dangerous Program-
ming Errors

Includes rules that find issues classified as Top
25 Most Dangerous Programming Errors of the
CWE-SANS standard.
16

http://spinroot.com/gerard/pdf/Power_of_Ten.pdf

Specifying Test Configurations
Creating Custom Rules
Use RuleWizard to create custom rules. To use the rule in the Static Analysis Engine, it needs to be
enabled in a test configuration and the custom rule file must be located in one of the following directo-
ries:

• [INSTALL_DIR]\rules\user\

• [DOCUMENTS DIR]\Parasoft\[engine]\rules where [DOCUMENTS DIR] refers to the "My
Documents" directory in Windows

NIST SAMATE Includes rules that find issues identified in the
NIST SAMATE standard

OWASP Top 10 Security Vulnerabilities Includes rules that find issues identified in
OWASP’s Top 10 standard

PCI Data Security Standard Includes rules that find issues identified in PCI
Data Security Standard

Security Assessment General test configuration that finds security
issues

IEC 62304 (Template) A template test configuration for applying the
IEC 62304 Medical standard.

Run NUnit Tests Runs NUnit Tests that are found in the scope of
analysis

Run NUnit Tests with coverage Runs NUnit Tests that are found in the scope of
analysis and monitors coverage

Calculate Application Coverage Processes the application coverage data to
generate a coverage.xml file. See “Application
Coverage for Web Applications”, page 47 for
additional information.

Execute MSTests with Coverage Executes MSTests and collects coverage. See
“Running MSTest Tests”, page 39, for more
information.

Execute MSTests Executes MSTests. See “Running MSTest
Tests”, page 39, for more information.

Collect Static Coverage Generates the static coverage data necessary
for application coverage. See “Application Cov-
erage for Web Applications”, page 47, for
details.

Configuration Name Description
17

Defining Test Scope
Defining Test Scope
The test scope refers to the file or set of files for testing. Use the -resource switch followed by a path
in the solution to define the scope. Do not use file system paths to define the scope. Use the Visual
Studio Solution Explorer path instead.

If you are running analysis from your IDE, a source file that is open in the active editor has higher prior-
ity than resources defined with Solution Explorer and only this file will be analyzed.

Testing a Single Project in a Solution

Testing a Single Directory of Files in a Project

Testing a Single Source File

Testing a Single Project Under a Solution Folder

Testing a Single Source File When No Solution is
Provided
Because the name of the solution is unknown, the solution path should start from /.

Fine-tuning the Scope

dottestcli.exe -solution "C:\Devel\FooSolution\FooSolution.sln"

-resource "FooSolution/QuxProject"

-config "builtin://Demo" -report "C:\Report"

dottestcli.exe -solution "C:\Devel\FooSolution\FooSolution.sln"

-resource "FooSolution/BarProject/QuxDirectory"

-config "builtin://Demo"

dottestcli.exe -solution "C:\Devel\FooSolution\FooSolution.sln"

-resource "FooSolution/BarProject/QuxDirectory/BazFile.cs"

-config "builtin://Demo"

dottestcli.exe -solution "C:\Devel\FooSolution\FooSolution.sln"

-resource "FooSolution/BarSolutionFolder/QuxProject"

-config "builtin://Demo" -report "C:\Report"

dottestcli.exe -project "C:\Devel\FooSolution\FooProject.csproj"

-resource "/FooProject/BarDirectory/QuxFile.cs"

-config "builtin://Demo" -report "C:\Report"
18

Defining Test Scope
Use the -include and -exclude switches to apply additional filters to the scope.

• -include instructs Static Analysis Engine to test only the files that match the file system path;
all other files are skipped.

• -exclude instructs Static Analysis Engine to test all files except for those that match the file
system path.

If both switches are specified, then all files that match -include, but not those that match -exclude
patterns are tested.

These switches accept file system paths and ANT-style wildcards. This is in contrast to the -resource
switch, which accepts the solution path and ANT-style wildcards.

The following example shows how to exclude all files under directories *.Tests:

You can specify a file system path to a list file (*.lst) to include or exclude files in bulk. Each item in
the *.lst file is treated as a separate entry.

Specifying Additional Assemblies
Use the -reference switch to specify a path to additional assemblies needed to resolve dependencies
of the analyzed projects. ANT-style wildcards and relative paths to the current working directory are
accepted.

Examples

Use the -reference switch if you receive an "Unable to find reference assembly" message.

dottestcli.exe -solution "C:\Devel\FooSolution\FooSolution.sln"

-exclude "C:\Devel\FooSolution*.Tests***.*"

-config "builtin://Demo" -report "C:\Report"

-reference C:\MySolution\ExternalAssemblies*.dll

-reference C:\MySolution\ExternalAssemblies*.exe

-reference C:\MySolution\ExternalAssemblies***.dll

-reference C:\MySolution\ExternalAssemblies***.dll
19

Configuring Authorship
Configuring Authorship
You can configure DTP Engines to collect authorship data during analysis to facilitate task assignment.
The data can be sent to the DTP server where additional analysis components, such as the Process
Intelligence Engine (PIE), can be leveraged to facilitate defect remediation and development optimiza-
tion.

You can configure DTP Engines to assign authorship based on information from source control, XML
files that directly map sources to authors, and/or the current local user.

About Authorship Configuration Priority
Authorship priority is determined by reading the settings in the .properties configuration file from top to
bottom. If multiple authorship sources are used, the following order of precedence is used:

1. information from source control

2. XML map file

3. current user

If one of the selected options does not determine an author, Authorship will be determined based on
the next option selected. If an author cannot be determined, the user is set as "unknown". Likewise, if
none of these options is selected, the user is set as "unknown."

Configuring How Authorship is Computed
Edit the dottestcli.properties configuration file to specify how authorship is determined:

Additional Authorship Configurations
By default, author names are case-sensitive, but you can disable case sensitivity:

You can set the user name, email, and full name for a user with the authors.user[identifyer] set-
ting. For example:

If a user is no longer on team or must transfer authorship to another user, you can use the
authors.mapping[x,y] setting:

scope.local=[true or false]

scope.scontrol=[true or false]

scope.xmlmap=[true or false]

authors.ignore.case=true

authors.user1=john,john.doe@company.com,John Doe

authors.mapping1=old_user,new_user
20

Configuring Authorship
If you are transferring authorship between users, the author-to-author mapping information can be
stored locally or in an a shared XML map file:

If the mapping file is shared, you must specify the location of the shared XML file:

Creating Authorship XML Map Files
The <authorship> element contains indicates the beginning of the mapping information.

The <file /> element is placed inside the <authorship> element and takes two properties, author
and path to map users to files or sets of files:

You can use wildcards to map authors to sets of files. The following table contains examples:

Mapping order matters. The mapping file is read from top to bottom, so beginning with the most spe-
cific mapping ensures that authorship will map to the correct files.

authors.mappings.location=[local or shared]

authors.shared.path=[path to file]

<?xml version="1.0" encoding="UTF-8" ?>

 <!DOCTYPE authorship (View Source for full doctype...)>

 <authorship>

 <!-- assigns all files named: "foo/src/SomeClass.java" to "author1" -->

 <file author="author1" path="foo/src/SomeClass.java" />

Wildcard Expression Description

?oo/src/Foo.c Assigns all files that have names starting with any character (except /)
and ends with "oo/src/"

**.cs Assigns all *.cs files in any directory

/src/ Assigns every file whose path has a folder named "src"

src/** Assigns all files located in directory "src"

src/**/Test* Assigns all files in directory "src" whose name starts with "Test" (e.g.,
"src/some/other/dir/TestFile.c")
21

Suppressing Violations
Suppressing Violations
Suppressions prevent DTP Engines from reporting additional occurrences of a specific static analysis
task (multiple tasks might be reported for a single rule). Suppressions are useful when you want to fol-
low a rule, but do not want to receive repeated messages about your intentional rule violations. If you
do not want to receive error messages for any violations of a specific rule, disable the rule in the test
configuration.

If you are using DTP Engines in an IDE, you can define suppressions using the GUI (see the DTP Plu-
gin documentation for your IDE for details), otherwise suppressions are defined in the source code
using the following syntax.

Line Suppression
<suppression keyword> [<rule category> | <rule category> . <rule id> | <rule
category > - <rule severity> | ALL] <suppression comment>

Line Suppression Examples
// parasoft-suppress CODSTA "suppress all rules in category CODSTA"

// parasoft-suppress CODSTA.NEA "suppress rule CODSTA.NEA"

// parasoft-suppress CODSTA-1 "suppress all rules in category CODSTA with severity
level 1"

// parasoft-suppress ALL "suppress all rules"

// parasoft-suppress CODSTA FORMAT.MCH JAVADOC-3 "suppress all rules in category
CODSTA and rule FORMAT.MCH and all rules in category JAVADOC with severity level 3"

Block Suppression
<begin suppression keyword> [<rule category> | <rule category> . <rule id> | <rule
category > - <rule severity> | ALL] <suppression comment>

 source code block

<end suppression keyword> [<rule category> | <rule category> . <rule id> | <rule
category > - <rule severity> | ALL] <suppression comment>

Block Suppression Examples
// parasoft-begin-suppress CODSTA "begin suppress all rules in category CODSTA"

.....

// parasoft-end-suppress CODSTA "end suppress all rules in category CODSTA"

// parasoft-begin-suppress CODSTA.NEA "begin suppress rule CODSTA.NEA"

.....
22

Suppressing Violations
// parasoft-end-suppress CODSTA.NEA "end suppress rule CODSTA.NEA"

// parasoft-begin-suppress CODSTA-1 "begin suppress all rules in category CODSTA
with severity level 1"

......

// parasoft-end-suppress CODSTA-1 "end suppress all rules in category CODSTA with
severity level 1"

//parasoft-begin-suppress ALL "begin suppress all rules"

.....

// parasoft-end-suppress ALL "end suppress all rules"

// parasoft-begin-suppress CODSTA FORMAT.MCH "begin suppress all rules in category
CODSTA and rule FORMAT.MCH"

.....

// parasoft-end-suppress CODSTA FORMAT.MCH "end suppress all rules in category COD-
STA and rule FORMAT.MCH"

// parasoft-begin-suppress CODSTA "begin suppress all rules in category CODSTA"

.....

// parasoft-end-suppress CODSTA-1 "end suppress all rules in category CODSTA with
severity level 1; however rules with severity level 2-5 in category CODSTA are still
suppressed."

.....

// parasoft-end-suppress CODSTA "end suppress all rules in category CODSTA"

// parasoft-begin-suppress ALL "begin suppress all rules"

.....

// parasoft-end-suppress CODSTA FORMAT-1 "end suppress all rules in category CODSTA
and all rules in category FORMAT with severity level 1; however, others rules in COD-
STA and FORMAT-1 are still suppressed."

.....

// parasoft-end-suppress ALL "end suppress all rules"

//parasoft-begin-suppress ALL "begin suppress all rules, since no end suppression
comment, all rules will be suppressed starting from this line"
23

Flow Analysis
Flow Analysis
Flow Analysis is a type of static analysis technology that uses several analysis techniques, including
simulation of application execution paths, to identify paths that could trigger runtime defects. Defects
detected include use of uninitialized memory, null pointer dereferencing, division by zero, memory and
resource leaks.

Since this analysis involves identifying and tracing complex paths, it exposes bugs that typically evade
static code analysis and unit testing, and would be difficult to find through manual testing or inspection.

Flow Analysis’ ability to expose bugs without executing code is especially valuable for users with leg-
acy code bases and embedded code (where runtime detection of such errors is not effective or possi-
ble).

Run one of the Flow Analysis test configurations during analysis to execute flow analysis rules:

Configuring Depth of Flow Analysis
Flow Analysis engine builds paths through the analyzed code to detect different kinds of problems.
Since the analysis of all possible paths that span through the whole application may be infeasible, you
can set up the desired level of depth of analysis. A deeper analysis will result in more findings, but the
performance will be slower and the memory consumption will increase slightly.

You can specify the depth of analysis by using the test configuration interface in DTP. Go to Report
Center> Test Configurations> Static Analysis> Flow Analysis Advanced Settings> Perfor-
mance> Depth of analysis and choose one of the following options by selecting a radio button:

• Shallowest (fastest): Finds only the most obvious problems in the source code. It is limited to
cases where the cause of the problem is located close to the code where the problem occurs.
The execution paths of violations found by this type of analysis normally span several lines of
code in a single function. Only rarely will they span more than 3 function calls.

• Shallow (fast): Like the "Shallowest" analysis type, finds only the most obvious problems in
the source code. However, it produces a greater overall number of findings and allows for
examination of somewhat longer execution paths.

• Standard: Finds many complicated problems with execution paths containing tens of ele-
ments. Standard analysis goes beyond shallow analysis and also looks for more complicated
problems, which can occur because of bad flow in a single function or due to improper interac-
tion between different functions in different parts of the analyzed project. Violations found by
this type of analysis often reveal non-trivial bugs in the analyzed source code and often span
tens of lines of code.

• Deep (slow): Allows for detection of a greater number of problems of the same complexity and
nature as those defined for "Standard" depth. This type of analysis is slower than the standard
one.

• Thorough (slowest): Finds more complicated problems. This type of analysis will perform a
thorough scan of the code base; this requires more time, but will uncover many very compli-
cated problems whose violation paths can span more than a hundred lines of code in different
parts of the scanned application. This option is recommended for nightly runs.

The depth of Flow Analysis is set to Standard by default.

builtin://Flow Analysis Fast

builtin://Flow Analysis Standard

builtin://Flow Analysis Aggressive
24

Flow Analysis
Setting Timeout Strategy
Apart from the depth of analysis, Flow Analysis engine uses an additional timeout guard to ensure the
analysis completes within a reasonable time. An appropriate strategy can be set by using the test con-
figuration interface in DTP. Go to Report Center> Test Configurations> Static Analysis> Flow
Analysis Advanced Settings> Performance> Strategy for Timeouts and choose one of the follow-
ing options by selecting a radio button:

• time: Analysis of the given hotspot is stopped after spending the defined amount of time on it.
Note: in some cases, using this option can result in a slightly unstable number of violations
being reported.

• instructions: Analysis of the given hotspot is stopped after executing the defined number of
Flow Analysis engine instructions.Note: to determine the proper number of instructions to be
set up for your environment, review information about timeouts in the Setup Problems section
of the generated report.

• off: No timeout. Note: using this option may require significantly more time to finish the analy-
sis.

The default timeout option is time set to 60 seconds. To get information about the Flow Analysis time-
outs that occurred during the analysis, review the Setup Problems section of the report generated after
the analysis.

Running Flow Analysis with Swapping of Analysis
Data Enabled
In this mode, analysis data is written to disk. Swapping of analysis data uses the same persistent stor-
age and is done in a similar process as incremental analysis. If analysis is run on a large project, the
analysis data that represents a semantical model of the analyzed source code may consume all the
memory available for running Flow Analysis. If this occurs, Flow Analysis will remove from memory
parts of the analysis data that are not currently necessary and reread it from disk later.

You can enable or disable the mode by using the test configuration interface in DTP:

Enable swapping of analysis data to disk: Disabled by default. If this option is disabled, it may result
in faster analysis, if you are running Flow Analysis analysis on small to moderate size projects that do
not require a lot of memory or when plenty of memory is available (for example, for 64-bit systems).

Configuring Verbosity of Flow Analysis
You can configure the following options by using the test configuration interface in DTP:

• Do not report violations when cause cannot be shown: Determines whether Flow Analy-
sis reports violations where causes cannot be shown.

Some Flow Analysis rules require that Flow Analysis checks all the possible paths leading to a
certain point and verifies that a certain condition is met for all those paths. In such cases, a vio-
lation is associated with a set of paths (whereas in simple cases, a violation is represented by
only one path). All of the paths in such a violation end with the violation point common to all the
paths in the violation. However, different paths may start at different points in code. The begin-
ning of each path is a violation cause (a point in code which stipulates a violation of a certain
condition later in the code at the violation point). If a multipath violation's different paths have
different causes, Flow Analysis will show only the violation point (and not the violation causes).

Violations containing only the violation point may be difficult to understand (compared to regu-
25

Flow Analysis
lar cases where Flow Analysis shows complete paths starting from violation causes and lead-
ing to violation points). That’s why we provide an option to hide violations where the cause
cannot be shown.

• Do not show more than one violation per point: Restricts reporting to one violation (for a
single rule) per violation point. For example, one violation will be reported when Flow Analysis
detects a potential null dereference with multiple sources of the null value. When verbosity is
set to this level, Flow Analysis performance is somewhat faster.

Null-checking Methods
The Null-checking methods option allows you to specify the expected return value when a null
parameter is passed to a method. This reduces false positives and excessive paths that would nor-
mally be built when the return value for null variables are unknown.

Select the Enabled checkbox and provide the following information:

• Fully-qualified type name (wildcard): the fully qualified name of the type that contains the
method.

• Method name (wildcard): the name of the method.

• Returned value when null: the value that should be returned when a null parameter is
passed to the method.

• + definitions in subclasses: indicates whether the null-checking functions definitions in sub-
classes should be considered null-checking functions as well.

Null-checking Methods Example

Flow Analysis will analyze methods in the analysis scope. Null-checking method parameterizations are
required when the methods are out of the scope of the current analysis (e.g. third-party libraries). The
classes Account and AccountManager in the following example are defined in a different assembly
and are outside the scope of the analysis. The class AccountManager uses static methods to check
Account in following way:
public class Account
 {
 public int Balance { get; set; }
 }

 public class AccountManager
 {
 public static bool IsNullOrEmpty(Account account)
 {
 return account == null || account.Balance == 0;
 }
 }

And there is the following class, which is analyzed by Flow Analysis’s BD.EXCEPT.NR rule:

public class SomeClass
{
 void SomeMethod()
 {
 Account account = null;
 //some other actions
 if (!AccountManager.IsNullOrEmpty(account))
 {
 Console.WriteLine(account.Balance);
 }
 }
}

26

Flow Analysis
Flow Analysis assumes that the return value for the method IsNullOrEmpty() is unknown. This is
because the method is not in the analysis scope. Flow Analysis will analyze the if branch and find a
violation. Calling the IsNullOrEmpty() method, however, returns true when the variable is null.

By adding AccountManager.IsNullOrEmpty() to the list of methods in the Null-checking Methods
parameterization with the specified return value, Flow Analysis will not report a violation if the tracked
variable is passed to this method. This is because the if branch will not be analyzed, resulting in an
avoided false positive.

Null-checking Methods Restrictions

Methods added to this parameterization should be static methods that have a primitive bool return
value. This restriction is managed to avoid excessive complications in parameterization and ensuring
that there are no other variables that could affect the result of the null-checking method. Additionally,
null-checking methods can have only one input parameter.

Specifying Resources
The Resources tab allows you to define which resources the BD.RES category (Resources) rules
should check. These rules check for the correct usage of all resources that are defined and enabled on
this tab.

1. Specify the Type of resource.

2. Select the Enabled checkbox.

3. If appropriate/desired, disable the Do not report leaks at termination option.

4. Click the arrow to expand the Resource Allocators and Resource Closers tabs and com-
plete the tables that open with the information about allocators and closers. Details about com-
pleting these tabs are provided below. .

Configuring Resource Allocators
The Resource allocators table can be completed with the descriptors of methods that can produce a
resource. The table has the following columns:

• Enabled: specifies whether the allocator should be considered during analysis.

• Fully-qualified type name or namespace (wildcard): the fully-qualified name of the type or
namespace where the method is declared. Use '*' if you want to describe a function declared in
any type or namespace, or a global function declared outside of any type.

• Method name (wildcard): the name of the allocating method. '*' can be used to denote any
number of any symbols.

• Resource parameters: specifies that the method allocates a resource in one or more of its
parameters. In this case, either specify a 1-based number of the parameter that is allocated by
the method, or use '*' to denote that all of the parameters are allocated.
27

Flow Analysis
• + definitions in subclasses: a check box that indicates whether the definitions (of methods
with the given name) in subclasses should be considered allocators as well. Note that this
applies to both instance and static methods.

• "this" object is a resource: a check box that indicates that the method allocates a resource in
the object on which the method is called.

• Returns a resource object: a check box that inticates that a the method returns an allocated
resource.

• Return value constraint on error: specifies a return value constraint in case of allocation fail-
ure if a resource allocator returns an integral value. Enter the condition in the following format:
<comparison operator><integer value>. For example, if the function returns non-zero
value on failure, enter "!=0" (without quotes) into the field. If return code on error is -1, type
"==-1" there. In addition to "!=" and "==", you can use the following operators for specifying
error conditions: ">", ">=", "<", and "<=".

It is common that allocation methods return an error code to indicate allocation failure. When an alloca-
tion method returns a resource, a NULL value normally indicates an allocation failure. When Flow Anal-
ysis is looking for resource leaks, it needs to understand if allocation succeeded or failed; this helps it
report only missing calls to deallocation methods on paths where allocation actually occurred. In cases
where a resource allocator method returns a resource, Flow Analysis assumes that the resource is
successfully allocated if the returned value is not NULL.

Configuring Resource Closers
The Resource closers table can be completed with the descriptors of methods that can close a
resource. The table has the following columns:

• Enabled: specifies whether the closer should be considered during analysis.

• Fully-qualified type name or namespace (wildcard): the fully-qualified name of the type or
namespace where the method is declared. Use '*' if you want to describe a function declared in
any type or namespace, or a global function declared outside of any type.

• Method name (wildcard): the name of the closing method. '*' can be used to denote any num-
ber of any symbols.

• + definitions in subclasses: a check box that indicates whether the definitions (of methods
with the given name) in subclasses should be considered closers as well. Note that this applies
to both instance and static methods.

• "this" object is a resource: a check box that indicates that a resource in the object on which
the method is called is closed.

• Resource parameters: specifies that a resource in one or more of its parameters is closed. In
this case, either specify a 1-based number of the parameter that is closed by the method, or
use '*' to denote that all of the parameters are allocated.
28

Metrics Analysis

29

Metrics Analysis
DTP Engines can compute several code metrics, such as code complexity, coupling between objects,
and lack of cohesion, which can help you understand potential weak points in the code. Run the Met-
rics test configuration during analysis to execute metrics analysis rules:

Metrics analysis is added to the HTML and XML report files generated by DTP Engines. See “Metrics
Summary”, page 35, for information about reports.

Setting Metrics Thresholds
You can set upper and lower boundaries so that a static analysis violation is reported if a metric is cal-
culated outside the specified value range. For example, if you want to restrict the number of logical
lines in a project, you could configure the Metrics test configuration so that a violation is reported if the
Number of Logical Lines metric exceeds the limit.

The Metrics test configuration shipped with DTP Engines includes default threshold values. There are
some rules, such as Number of Files (METRIC.NOF), for which thresholds cannot be set.

Metric thresholds can be set using the following methods:

• By using the test configuration interface in DTP (see "Report Center> Test Configurations>
Editing Test Configurations> Metrics Tab" in the Development Testing Platform user manual for
details).

• By editing the test configuration using the interface in an IDE (see "Working with Test Configu-
rations> Creating Custom Test Configurations" in the DTP Plugin manual for your IDE).

• By manually editing the test configuration file:

1. Duplicate the built-in Metrics test configuration ([INSTALL]/configs/builtin) to the user
configurations directory ([INSTALL]/configs/user)

2. Open the duplicate configuration in an editor and set the
[METRIC.ID].ThresholdEnabled property to true.

3. Configure the lower and upper boundaries in the [METRIC.ID].Threshold property
according to the following format:

[METRIC.ID].Threshold=l [lower boundary value] g [upper boundary value]

4. Save the test configuration and run the analysis using the custom metrics test
configuration.

builtin://Metrics

Code Duplicate Analysis

30

Code Duplicate Analysis
DTP Engines can check for duplicate code, which may indicate poor application design, as well as
increase maintenance costs. During code duplication analysis, the code is parsed into smaller lan-
guage elements (tokens). The tokens are analyzed according to a set of rules that specify what should
be considered duplicate code. There are two types of rules for analyzing tokens:

• Simple rules for finding single token duplicates, e.g., string literals

• Complex rules for finding mulitple token duplicates, e.g., duplicate methods or statements

Run the Find Duplicated Code test configuration during analysis to execute code duplicates detection
rules:

builtin://Find Duplicated Code

Using DTP Engines in an IDE

31

Using DTP Engines in an IDE
You can use DTP Engines within Visual Studio. Integrating with an IDE gives you a desktop interface
for executing code analysis locally, viewing results, and leveraging the data and test configurations
stored in DTP server. You can also import findings from DTP Server into your development environ-
ment.

This integration is achieved with the DTP Plugin for Visual Studio and the DTP Engine Plugin. See the
appropriate DTP Plugin User Guide for installation, usage, and other details stored in the [INSTALL]/
integration/vstudio/ directory.

Reporting
DTP Engines print results to the output console, as well as save an HTML report to the
[WORKING_DIR]/reports directory by default. Data for the HTML report is stored in the directory as an
XML file, which can be used for importing results into a supported Parasoft DTP Plugin for the IDE and
Parasoft DTP Plugin for .NET (see "Parasoft DTP Plugin for [IDE] User’s Guide" for additional informa-
tion). For an overview of the HTML report structure, see “Viewing Reports”, page 32.

If the engines are connected to DTP, reports are also sent to the server (see “Sending Results to
Development Testing Platform (DTP) Server”, page 38).

Specifying Report Output Location
You can use the -report switch during analysis to specify an output directory for reports.

You can also use the report.location property to change the location of an HTML report.

Specifying Report Format
You can also generate a PDF report or a report using a custom extension to the specified directory by
setting the report.format property. See “Report Settings”, page 62, for additional information.

Viewing Reports
Open the report.html or report.pdf file saved to the working directory or location specified with the -
report switch. Reports may contain different sections depending on the type of analysis, but the fol-
lowing sections are included in all static and flow analysis configurations.

Header

The following information is included:

dottestcli.exe -solution "C:\Devel\FooSolution\FooSolution.sln"

-config "builtin://Demo" -report "C:\Report"

report.location=<HTML_REPORT_LOCATION>

report.format=pdf
32

• Tool used for the analysis

• Build ID

• Test configuration

• Time stamp of the analysis

• Machine name and user name

• Session tag

• Project name

• Number of findings with the highest severity

• Number of failed tests

Static Analysis
The first part of the report covers the Static Analysis findings and is divided into two main sections.The
first section is a summary which shows an overview of findings displayed as a pie chart. The colors
indicate different severity types and their corresponding number of findings detected during static anal-
ysis.

The second section shows the details of static analysis findings. It starts with a table which includes
static analysis results.

The following information is included:

• Name of module

• Number of suppressed rules

• Total number of findings

• Average number of findings per 10,000 lines

• Number of analyzed files

• Total number of files in the module

• Number of code lines analyzed

• Total number of code lines in the module

All Findings
33

The All Findings section displays the details of findings organized by category or severity. Click the
Severity or Category link to toggle between views.

In category view, findings are reported by rule and grouped by category. A count of how many times
each rule was violated in the scope of analysis is also shown.

In severity view, findings are reported and grouped by severity. A count of findings per severity is also
included.

These sections are merged in PDF versions of the report.

Findings by Author
34

This section includes a table of authors associated with the analyzed code and a count of findings per
each author. Findings are segmented into findings associated with suppressed rules and findings rec-
ommended for remediation. Click on an author link to view their finding details.

The details view includes the following information:

• File containing the finding and its location

• Violation message and rule

• Flow analysis reports also mark the cause of the violation (C), violation points (P), thrown
exceptions (E), and important data flows (!)

Findings by File
You can navigate the analyzed code to the reported findings in the Findings by File section. Each node
begins with a value that indicates the total number of findings in the node. The value in brackets shows
the number of suppressed rules in the node. You can click nodes marked with a plus sign (+) to expand
them. PDF versions of the reports are already fully expanded.

Metrics Summary
If your test configuration includes metrics analysis, a metrics section will appear in the report. See
“Metrics Analysis”, page 29, for additional information.

Test Execution
35

The second part of the report covers the Test Execution results and is divided into two sections.The
first section is a summary which shows an overview of test failures and coverage displayed as pie
charts.

The second section shows the details of test execution. It starts with a table which includes test execu-
tion results and coverage information.

The following information is included:

• Module name

• Number of unit test problems which need to be fixed

• Number of exceptions which need to be reviewed

• Number of assertion failures which need to be reviewed

• Number of unit tests successfully executed

• Number of unit tests failures

• Number of incomplete unit tests

• Total number of unit tests

• Line coverage expressed as percentage

All Findings
The All Findings section displays the details of all unit test problems detected during test execution.

Findings by Author
36

This section includes a table of authors associated with the analyzed code and shows the total number
of findings for each author. Click on an author link to view their finding details.

The details view includes the following information:

• Finding location

• Test name

• Failure message

Executed Tests (Details)
You can view the findings in the Executed Tests (Details) section. The nodes where all the test passed
are marked with "P" in square brackets. The nodes with test failures begin with a set of values in
square brackets. The first value is a count of successfully passed tests and the second indicates the
total number of tests executed in the node.The letter "F" indicates the final node where the test failed.
You can click nodes marked with a plus sign (+) to expand them.

Coverage
This section shows the details of coverage collected during the test execution. Each node starts with a
set of values. The first value shows coverage expressed as percentage. The second value is a count of
the number of lines in the node which were covered during the test execution. The third value indicates
the total number of lines in the node. You can click nodes marked with a plus sign (+) to expand them.

Test Parameters
37

The arguments specified during analysis are shown in the Test Parameters section.

Sending Results to Development Testing Platform
(DTP) Server
See “Connecting to DTP Server”, page 10, for information about configuring your connection to DTP
Server. Use the -publish switch to report test results to DTP server.

Associating Results with a DTP Project
Configure the dtp.project property to associate results with a project in Development Testing Plat-
form.

Publishing Source Code to DTP Server
By default, tested sources are sent to DTP when the report setting is enabled. This enables DTP to
present source code associated with findings.

You can use the report.dtp.publish.src setting to disable the publishing of source code, restrict
the depth of source code publishing, or enable source code publishing when sending reports to DTP
Server is disabled. See “Settings Reference”, page 54, for additional information on DTP Engine set-
tings.

The report.dtp.publish.src setting takes one of the following values:

• off: Code is not published to DTP server.

• min: Publishes minimal part of sources. Only source code that has no reference to source con-
trol is published.

• full: Publishes all sources associated with the specified scope. This is the default settings.

See the "Development Testing Platform User Guide" for additional information about viewing source
code in DTP.

Publishing Sources to DTP Without Running Code Analysis
DTP Engines need to execute to send data to DTP Server, but you may want to send sources without
running analysis.

1. Create an empty test configuration and save it to [INSTALL_DIR]/configs/user (see “Spec-
ifying Test Configurations”, page 15).

2. Run the configuration with appropriate report.dtp.publish.src setting.

dottestcli.exe -solution "C:\Devel\FooSolution\FooSolution.sln"

-config "builtin://Demo" -publish

dtp.project=[PROJECT NAME]
38

Unit Test Connector
Unit Test Connector (UTC) allows you to run unit tests created in open source unit testing tools and
report results to DTP. UTC for .NET currently ships with out-of-the-box support for the following unit
testing tools:

• NUnit

• MS Test versions VS2010, VS2012, VS2013, VS2015

Visit the Parasoft Marketplace (http://marketplace.parasoft.com) for additional unit test tool integra-
tions.

Running Unit Tests with Coverage
You can run NUnit tests with or without coverage analysis. Coverage information is collected by run-
ning a dedicated test configuration. The built-in test configuration for collecting coverage is Run NUnit
Tests with coverage.

Running NUnit Tests
Run one of the built-in test configurations to run NUnit tests on the scope of analysis. See “Specifying
Test Configurations”, page 15 for details on using the -config switch.

Examples

All files associated with NUnit integration are in the [INSTALL_DIR]\integration\NUnit-2.6.3 directory.

Running MSTest Tests
1. MSTest must be integrated with UTC to run MSTest tests. If you did not integrate with MSTest

during installation, you can run Deploy.exe in the MSTest integration directory:
[INSTALLATION_DIR]\integration\MSTest\Deploy.exe

2. Run one of the built-in test configurations for MSTest test and extend your dottestcli.exe
command to include the build script that invokes mstest.exe:

The -- separator indicates the end of the dotTEST command line; arguments following -- form
a command line that is invoked by dottestcli.exe.

In the above example, dotTEST launches the Run_tests.bat script and listens to all MSTests executed
in the script as it runs. Unit test results are collected and code coverage is measured for FooSolu-
tion.sln.

dottestcli.exe -solution "C:\Devel\FooSolution\FooSolution.sln"

-config "builtin://Run NUnit Tests" -report "C:\Report"

dottestcli.exe -solution "C:\Devel\FooSolution\FooSolution.sln"

-config "builtin://Run NUnit Tests with coverage" -report "C:\Report"

dottestcli.exe -solution "FooSolution.sln" -config "builtin://Execute MSTests with
Coverage" -report "Report" -- "Run_tests.bat"
39

http://marketplace.parasoft.com/#query?limit=24&offset=0

Tagging Unique Test Runs
Use the session.tag property to define a tag that can be assigned to results from a specific test run.
The tag is a unique identifier for the analysis process on a specific module. Using the same session tag
overwrites data with results from the most recent run. By default, the tag is set to the name of the exe-
cuted test configuration.

Associating Tests with Development Artifacts
You can configure DTP Engines to associate tests with a broad range of development artifacts, such
as requirements, defects, tasks, and feature requests.

To successfully associate unit tests with artifacts, you need to:

1. Enable the artifact association property.

2. Specify issue tracking tags and configure their URL associations.

3. Use the tags in the NUnit.Framework.PropertyAttribute attribute.

See the sections below for details.

Enabling Artifact Associations
Set the report.associations property to true to enable associations with artifacts. This also enables/
disables test associations in the HTML report.

Specifying Issue Tracking Tags
The following tags for artifact types are associated by default when report associations is enabled:

• pr (defects)

• fr (enhancements)

• task

• asset

• req (user stories)

You can use the issue.tracking.tags property to define any number of additional tracking tags. Sepa-
rate the tags’ names with a comma:

Configuring Issue Tracking Tags and URL Associations
You can generate a link to the association in the HTML report:

URLs can contain [%ID%] or ${id} variables, which will be replaced by issue identifiers. For example:

session.tag=[name]

report.associations=true

issue.tracking.tags=tag1,tag2,tag3

report.assoc.url.tag1=[URL]

report.assoc.url.tag1=http://bugzilla.company.com/show_bug.cgi?id=[%ID%]
40

Enabling Test Details
You can enable or disable showing test details in the HTML report:

The report.contexts_details property must be set to true to enable showing associations.

The product’s property file is preconfigured to enable showing test details.

See “Report Settings”, page 62 for additional information.

Using NUnit Attributes
Use the NUnit.Framework.PropertyAttribute attribute to associate NUnit tests with artifacts. See the
NUnit documentation for additional information about the PropertyAttribute attribute: http://
www.nunit.org/index.php?p=property&r=2.6.3.

Place the tag in the NUnit.Framework.PropertyAttribute attribute to associate it with your tests.

You can also associate a tag with a class. As a result, it will be associated with all the tests within this
class. In the example below, bug 9876 is associated with both tests within the Test class, whereas bug
111 is associated only with the Test2 test.

Multiple Associations

report.contexts_details=[true | false]

[Property("bug", "1234")]

[Test]

public void Test()

{

 ...

}

[Property("bug", "9876")]

public class Tests

{

 [Test]

 public void Test1()

 {

 ...

 }

 [Property("bug", "111")]

 [Test]

 public void Test2()

 {

 ...

 }

}

41

http://www.nunit.org/index.php?p=property&r=2.6.3
http://www.nunit.org/index.php?p=property&r=2.6.3

You can associate one tag with more than one artifact.

You can separate the tasks with a comma, a semicolon or a space character. In the example below, the
test is associated with all the listed tasks:

[Property("bug", "1234, 1199")]

[Test]

public void Test()

{

 ...

}

[Property("bug", "1234, 1199; 2345 1928")]

[Test]

public void Test()

{

 ...

}

42

43

Code Coverage Engine
In this section:

• Application Coverage for Standalone Applications

• Application Coverage for Web Applications

Application Coverage for Standalone Applications
Application Coverage for Standalone
Applications
DTP Engines for .NET ship with the coverage.exe tool that facilitates collecting coverage information
during execution of standalone applications. The tool creates two *.bat scripts: one script runs and
monitors the application and the other script imports and reports coverage data.

Running coverage.exe launches a wizard that allows you to specify the necessary information in the
GUI. Alternatively, you can provide the information with the dedicated command line options.

Using the Coverage Wizard
1. Run the [INSTALL_DIR]\coverage.exe tool and specify the following information:

• Full path to the application

• Command line arguments

• Working directory

2. Define scope of coverage to import by providing -solution or -project switches that will be
passed to DTP Engine executable so that it can locate sources. See “Defining Test Scope”,
page 18, for more information about the switches.

3. Specify the .NET CLR version used by the application.

4. Specify a directory for the scripts generated by the wizard.

5. Enable the Run application immediately option to automatically launch the
monitorCoverage.bat script (optional; you can also open the directory specified in step 4 and
manually run the script).

6. Execute your test cases and close the application.

7. Run the importCoverage.bat script (in the directory you specified in the wizard).
44

Application Coverage for Standalone Applications
8. Check the report for coverage information. The report is written to the 'report' folder by default.

Using the Command Line Options
You can run coverage.exe with the dedicated command line options to specify the information neces-
sary for collecting application coverage :

The following options are available:

You can also collect coverage information during test execution of running web applications. See
“Application Coverage for Web Applications”, page 47 for details.

For information about collecting coverage for unit tests, see “Unit Test Connector”, page 39.

Important

By default, the monitorCoverage.bat script cleans the contents of the directory that con-
tains the logs of the previous execution. If you do not want the logs to be removed, you can
modify the monitorCoverage.bat script by removing the rmdir /s /q [path/to/direc-
tory] command.

Alternatively, you can comment the command with the rem tag, for example:

rem rmdir /s /q "%userprofile%\Documents\Parasoft\dotTEST\Coverage\Cover-
ageLogs"

coverage.exe -app [path] -workingDir [path] -appArgs [arguments] -commandsDir [path] -scope
[dotTEST scope switch] -clr [version] -run

Option Name Value Description

-app [path] The full path to the application

-workingDir [path] The path to the working directory

-appArgs [argument] The application command line arguments

-commandsDir [path] Specifies the directory for the *.bat scripts gener-
ated by the coverage tool

-scope -solution [path]

-project [path]
Specifies the scope of the coverage to import by
providing -solution or -project switches that
will be passed to DTP Engine executable so that it
can locate sources. See “Defining Test Scope”,
page 18, for more information about the switches.

Example:

-scope "-solution C:\temp\Scope.sln"

-scope "-project C:\temp\Scope.csproj"

-clr v20

v40
Specifies the .NET CLR version used by the appli-
cation

-run none Automatically launches the monitorCover-
age.bat script (optional; you can also open the
directory specified with the -commandDir option
and manually run the script).
45

Application Coverage for Standalone Applications
Merging Coverage Data
In order to properly merge coverage data in DTP, you must specify one or more coverage image tags in
the command line or .properties settings file. The coverage image(s) is automatically sent to the con-
nected DTP server where it can be associated with a filter.

You can specify a set of up to three tags that can be used to create coverage images in DTP Server
with the report.coverage.images property:

Associate coverage images in DTP in the Report Center administration page (administration>
Projects> Filters> [click on a filter]).

You can also use the report.coverage.limit property to specify a lower coverage threshold:

Coverage results lower than this value are highlighted in the report. The default value is 40.

report.coverage.images=[tag1; tag2; tag3]

report.coverage.limit=[value]
46

Application Coverage for Web Applications
Application Coverage for Web
Applications
You can monitor and collect coverage data during manual or automated functional tests performed on
a running web application server. You can also send coverage data and test results to DTP, which
merges and correlates the data. The application coverage information can be displayed in the DTP
Coverage Explorer (see the "Coverage Explorer" chapter in the DTP user manual), which provides
insights about how well the application is tested, as well as the quality of your tests.

Prerequisites
The following components are required for collecting coverage:

• Internet Information Services (IIS) version 7.5 or higher

• Coverage Agent Manager (CAM) (contact your Parasoft representative) or SOAtest

Process Overview
The DTP Engine for .NET ships with a component called the coverage agent. The coverage agent is
attached to the application under test (AUT) and monitors the code being executed as the AUT runs.
When the coverage agent is attached to the AUT, a REST API is exposed that enables you to mark the
beginning and end of each test and test session.

Metadata about the lines of code that can be covered (static coverage data) is collected by running a
dedicated test configuration as part of the application build process. During test execution, interactions
with the coverage agent are written to a dynamic coverage map, which contains markers that specify
which lines of code were touched.

The DTP Engine processes the dynamic coverage map and static coverage data. A coverage.xml file,
which contains the coverage information, is produced and sent to DTP. When DTP receives the cover-
age data, it's loaded into a coverage image, which is a special tag that enables you to aggregate cover-
age data from runs with the same build ID. The coverage image enables you to associate coverage
information with specific tests.

Test results are also sent to DTP from the tool executing the tests (i.e., SOAtest, tests executed by the
DTP Engine, manual tests, etc.) in a report.xml file. If the build IDs for the coverage data file and the
report match, DTP is able to correlate the data and display the coverage information.

The complete process is detailed in the following sections.

Configuring the Application Under Test for Coverage
There are a few processes for preparing the AUT:

1. The static coverage file must be generated. The static coverage file contains metadata about
user classes, methods, and lines. This is described in “Generating the Static Coverage File”,
page 47.

2. The coverage agent must be attached to the AUT. See “Attaching the Coverage Agent to the
AUT”, page 48.

Generating the Static Coverage File
If you use a source control system, ensure that your source control settings are properly configured;
see “Settings Reference”, page 54.
47

Application Coverage for Web Applications
Run the following test configuration on the solution:

The dottestcli console output will indicate where the static coverage data is saved:

Customizing Scope of Coverage
By default, coverage is measured for the entire web application. You can customize the scope of cover-
age by adding the following switches when collecting static coverage to measure specific parts of the
application (see “Defining Test Scope”, page 18, for usage information):

The -resource switch points to a path inside the solution, while the -include and -exclude switches
should be paths in the file system.

The scope information is stored in a scope configuration file, which can be provided to the IIS manager
tool during web server configuration (see “Attaching the Coverage Agent to the AUT”, page 48). The
output from the console will indicate the location of the scope configuration file:

It is not possible to use the application coverage scope file for web projects that are compiled on IIS.
This is because the target assemblies of IIS compilations are named unpredictably. Scope files can be
used safely when the assembly name loaded by IIS can be predetermined before coverage collection
starts.

Attaching the Coverage Agent to the AUT
1. Copy the [INSTALLATION_DIR]\integration\IIS directory to the machine were IIS is installed

and the web application is deployed.

2. Run a console as an Administrator

3. Invoke the dotTEST IIS Manager tool on this machine to enable runtime coverage collection
inside IIS:

If you’ve specified a coverage scope, you must also include the path to the scope configuration
file:

dottestcli.exe -config "builtin://Collect Static Coverage" -solution SOLUTION_PATH

Saving static coverage information into:
'C:\Users\[USER]\Documents\Parasoft\dotTEST\Coverage\Static\[FILE].data'

dottestcli.exe -config "builtin://Collect Static Coverage"

-solution "C:\Devel\FooSolution\FooSolution.sln"

-resource "FooSolution/QuxProject"

-include "C:\Devel\FooSolution\src\QuxProject***.cs"

-exclude "C:\Devel\FooSolution\src\QuxProject**\tests***.cs"

Saving static coverage scope configuration into: 'C:\Users\[USER]\Documents\Parasoft\dot-
TEST\Coverage\Static\[FILE].txt'

dottest_iismanager.exe

dottest_iismanager.exe -scope [FILE_PATH]
48

Application Coverage for Web Applications
You can add the -agentTimeout switch to change the default timeout (1500 ms) for connec-
tion with the Coverage Agent. Adjust the timeout to your machine capabilities and provide the
value in milliseconds:

If you provide 0 or a negative value, the connection attempt will not timeout, which may lead to
a considerable slowdown or hang the tool.

You can also add the -port switch to change the port number when you start
dottest_iismanager if the default port is unavailable:

dottest_iismanager initializes the environment for the web server (IIS) and behaves like a ser-
vice, enabling you to execute tests and collect coverage. The service is ready and waiting for
commands as long as the following message is printed to the output:

Write 'exit' and hit Enter to close dottest_iismanager

Be aware that a test session and test can be started even if the tested website or application
has not been loaded yet.

4. Ensure that port 8050 (default port for the coverage agent) allows HTTP traffic in firewall set-
tings on this machine. You can change the coverage agent port number if the default port is
unavailable.

5. Open the web site or application

6. Go to the following address to check the status of the coverage agent:

http://host:8050/status

You should receive the following response:

{"session":null,"test":null}

Collecting Coverage from Multiple Users
You can collect coverage information for multiple users that are simultaneously accessing the same
web application server. This requires launching the dotTEST IIS Manager the -multiuser switch:

See the Coverage Agent Manager (CAM) section of the DTP documentation for details.

Changing IIS Idle Time-outs
By default, IIS application pool processes are recycled after 20 minutes of idle time, which can have
negative consequences on a test session. You can prevent this behavior by changing the default value
so that people working with the application do not experience unexpected stops and restarts during a
test session.

1. Start the Internet Information Services (IIS) Manager

2. Open the Application Pools node

3. Choose the pool for your web application

4. Click Advanced Settings in the Actions panel

dottest_iismanager.exe -agentTimeout [TIMEOUT_IN_MILISECONDS]

dottest_iismanager.exe -port [PORT]

dottest_iismanager.exe -multiuser
49

Application Coverage for Web Applications
5. In Process Model section, change the Idle Time-out (minutes) setting to a value better-suited
to your testing practices.

Test Configuration and Execution
You can use SOAtest to run functional tests (refer the Application Coverage chapter of the SOAtest
documentation to set up the test configuration), as well as execute manual tests. At the end of the test
session, coverage will be saved in runtime_coverage_[timestamp].data files in the directory speci-
fied in SOAtest. This information will eventually be merged with the static coverage data to create a
coverage.xml file and uploaded to DTP.

Uploading Test Results to DTP
For tests executed by SOAtest, the SOAtest XML report will need to be uploaded to DTP. See the
"Uploading Rest Results to DTP" section in the Application Coverage topic in the SOAtest documenta-
tion for details.

Generating a Dynamic Coverage Data File and
Uploading it to DTP
The following settings should be configured in the dottestcli.properties file in order to properly merge
coverage data.

• report.coverage.images - this setting specifies a set of tags that are used to create cover-
age images in DTP Server. A coverage image is a unique identifier for aggregating coverage
data from runs with the same build ID. DTP supports up to three coverage images per report.

• session.tag - this specifies a unique identifier for the test run and is used to distinguish differ-
ent runs on the same build.

• build.id - this setting specifies a build identifier used to label results. It may be unique for
each build, but it may also label several test sessions executed during a specified build.

These settings are in addition to the other properties that must be configured, such as scope, author-
ship, and DTP settings. See the following sections:

• “Connecting to DTP Server”, page 10

• “Sending Results to Development Testing Platform (DTP) Server”, page 38

• “Settings Reference”, page 54

In order to fill the coverage.xml file with runtime coverage data, the DTP Engine must have access to
the runtime coverage data generated during test execution, as well as the static coverage data.Copy
the runtime coverage and static coverage files to a directory on the same machine and run dottestcli
using the -runtimeCoverage and -staticCoverage switches to specify the location of the files:

Stopping Dynamic Coverage Data Collection
In the open console, type exit while the following message is printed to the output to stop
dottest_iismanager:

Write 'exit' and hit Enter to close dottest_iismanager

dottestcli.exe -runtimeCoverage [path] -report [path] -publish -settings [path]

-out [path] -staticCoverage [path]
50

Application Coverage for Web Applications
You can also send a request to the service by entering the following URL in the browser:

http://host:port/shutdown

Stop dottest_iismanager only when all test sessions are finished. Application coverage will no longer
be collected when the service stops, so it is important that dottest_iismanager runs continously while
performing tests to collect coverage.

If any errors occur when dottest_iismanager exits that prevent the clean-up of the Web Server environ-
ment, then execute dottest_iismanager and include the -stop parameter to bring back the original
Web Server environment and settings:

Known Limitations
• You can download coverage information that was collected in a test session. Coverage data

collected when no test session was active cannot be downloaded.

• If multiple users are simultaneously accessing the same web application, the coverage data
they collect may be mixed. To ensure that coverage is properly associated with individual
users, the mutliuser mode must be enabled (see “Collecting Coverage from Multiple Users”,
page 49).

• The HTTP or HTTPS protocols are required to enable the multiuser mode, as the user-specific
information must be provided with the HTTP header.

• In the multiuser mode, collecting coverage for WCF-based applications requires that they have
the ASP.NET compatibility mode enabled.

• In the multiuser mode, the "default" user (the user who has not specified their ID) may collect
extra coverage information from other users who are accessing the same web application.

• In the multiuser mode, assigning coverage collected for multithreaded application to individual
users is limited. Coverage data for child threads is not assigned to the user who is actually
accessing the application, but to the "default" user.

• Coverage data collected for web initialization is not assigned to a specific user, but to the
"default" user.

Reviewing Coverage in DTP
You can use the Coverage Explorer in DTP to review the application coverage achieved during test
execution. See the DTP documentation for details on viewing coverage information.

dottest_iismanager.exe -stop
51

Customizing DTP Engines for .NET
Basic settings can be specified in the dottestcli.properties file in the installation directory. By
default, most settings are disabled. Uncomment the settings you want to enable and specify the
parameters. Modifying the properties file may require administrator access.

You can create custom properties files and point to them with the -settings switch.

The -settings switch may be specified multiple times. Entries with the same key will be overwritten.

General settings are applied in the following order:

1. [INSTALL_DIR]/etc/dottestcli.properties; the base configuration file for Static Analysis
Engine and should not be modified.

2. [INSTALL_DIR]/dottestcli.properties; contains templates for commonly used settings
(license, reporting etc.)

3. [USER_HOME]/dottestcli.properties; optional

4. [WORKING_DIR]/dottestcli.properties; optional

5. Custom settings passed with the command line switch -settings path/to/settings.prop-
erties (e.g., -settings ../settings.properties)

6.

All of the above settings can be overridden by custom settings that are passed with command line
switches (e.g. -report, -config, -dtp.share.enabled).

If you have dotTest 9.5 or later, settings can be prepared in Visual Studio and exported to a *.proper-
ties file.

Use the -showsettings option to print the current settings and customizations, including the origin file
for each configuration.

Auto-configuring Settings from DTP Server
You can specify settings in Development Testing Platform and configure the Static Analysis Engine to
use the settings when it connects to DTP Server. This enables you to use the same settings across
multiple machines and configurations to ensure consistency. Edit the following setting in the dottest-
cli.properties file to enable auto-configuration:

Settings can be auto-configured for the entire organization or per project.

Specifying Organization-wide Settings
1. Log into Development Testing Platform with administrator credentials

dottestcli.exe -solution "C:\Devel\FooSolution\FooSolution.sln"

-settings "C:\Devel\Settings\dtp_server.properties"

dottestcli.exe -solution "C:\Devel\FooSolution\FooSolution.sln"

-settings "C:\Devel\Settings\dtp_server.properties"

-settings "C:\Devel\Settings\email_server.properties"

dtp.autoconfig=true
52

2. Switch to Report Center and click the administration link.

3. Choose Settings> Parasoft Test and enter the settings from dottestcli.properties

4. Click Save.

Specifying Settings Per Project
1. Log into Development Testing Platform with administrator credentials

2. Switch to Report Center and click the administration link.

3. Choose Projects> Search and click Search

4. Click on your project name in the results and click the Parasoft Test Settings tab

5. Enter the settings from dottestcli.properties and click Save.

Using Variables
The following table shows variables that can be used in settings values.

We recommend you avoid using spaces, +, /, or any other special characters when setting variables
or values for configuration settings, as some API calls may require properly encoded URLs.

Variable Description Example

analysis_type Outputs a comma separated list of enabled analy-
sis types (e.g., Static, Generation and Execution)

${analysis_type}

env_var Outputs the value of the environmental variable
specified after the colon.

${env_var:HOME}

config_name Outputs the name of executed Test Configuration. ${config_name}

dtp_project Outputs the name of DTP project specified in the
settings file using dtp.project option.

${dtp_project}

project_module Outputs the name of the tested project's module. If
more than one module is provided as an input, the
first tested module name is output followed by an
ellipsis (...). The variable can be configured in the
settings file with the project.module option.

${module_name}

host_name Outputs the name of the host. ${host_name}

user_name Outputs the name of the current user. ${user_name}

os Outputs the name of the operating system. ${os}
53

Settings Reference
The following tables contain settings that are currently supported in DTP Engines.

Base Configuration Settings

arch Outputs the name of the operating system archi-
tecture

${arch}

exec_env Outputs the execution environment. Ths variable
is a concatenation of ${os} and ${arch} vari-
ables. It can be configured in the sittings file with
the exec.env option.

${exec_env}

scontrol_branch Outputs the source control branch name for the
tested project. If more than one branch name is
detected, the first branch name is output followed
by an ellipsis (...). The variable can be configured
in the settings file with the scontrol.branch
option.

${scontrol_branch}

tool_name Outputs the name of the tool (i.e., Jtest, C++test,
dotTEST).

${tool_name}

jvm_prop Outputs the value of the Java vm property speci-
fied after the colon.

${jvm_prop:os.name}

Setting Value Description/Notes

console.verbosity.level low

normal

high

Specifies the verbosity level for the
Console

low: configures the Console view to
show errors and basic information
about the current steps and status
(done, failed, up-to-date).

normal: (default) also shows com-
mand lines and issues reported dur-
ing test and analysis.

high: also shows warnings.

parallel.mode disabled

auto

manual

Determines which of the following
modes is active:

disabled: configures Parasoft Test
to use only one of the available
CPUs.

auto: (default) allows Parasoft Test
to control parallel processing set-
tings.

manual: allows you to manually con-
figure parallel processing settings to
suit your specific needs.

Variable Description Example
54

parallel.no_memory_limit true

false
Enables/disables restrictions
(beyond existing system limitations)
on the memory consumed by parallel
processing.

Default is false

parallel.free_memory_limit [percentage] Specifies the amount of memory that
should be kept free in low memory
conditions (expressed as a percent-
age of the total memory available for
the application). This is used to
ensure that free memory is available
for other processes.

Default is 25

parallel.max_threads [number] Specifies the maximum number of
parallel threads that can be executed
simultaneously. The actual number of
parallel threads is determined by the
number of CPUs, available memory,
and license settings.

The default value is equal to the
number of CPUs

file.encoding.mode default

auto

user

Specifies how file encoding is deter-
mined.

default: enables use of system
properties

auto: enables automatic detection of
encoding for the Far-East languages
specified with file.encod-
ing.lang

user: enables use of specified
encoding by file.encoding.name.

file.encoding.lang [code] Allows specify language’s numeric
code when file.encoding.mode
is set to auto:

Japanese = 1

Chinese = 2

Simplified Chinese = 3

Traditional Chinese = 4

Korean = 5

Setting Value Description/Notes
55

Test Configuration Settings

file.encoding.name [encoding] Allows you to specify the encoding
name when file.encoding.mode
is set to user:

ASCII-US

UTF-8

UTF-16

UTF-16LE

UTF-16BE

 …

settings.validation true

false
Enables/disables settings validation.

settings.rules.file.dottest path Indicates the path to a file that
contains additional rules for settings
validation. The file should follow the
.properties format and include rules
according to the following examples:

engine.path=$ANY

engine.enabled=$BOOLEAN

engine.analysis.deep=$INTEGER

engine.severity.limit=$REGEXP{[1-
5]}

engine.verbosity.level=$REGEXP_IC{(
low)|(normal)|(high)}

dottest.build.nobuild true

false
Disables/ enables build of the tested
solution or projects. If enabled, the
building phase is skipped during
analysis. The default is false.

Setting Value Description/Notes

configuration.dir.builtin [path] Path to directory with built-in test
configurations.

configuration.dir.user [path] Path to directory with user-
defined test configurations.

configuration.share.path [path] Path on DTP server share with
shared test configuration.

dottest.custom.rule.dir [path to directory] Specifies the location of user-
defined coding standard rules.

Default is [INSTALL_DIR]/
rules/user

Setting Value Description/Notes
56

Development Testing Platform Settings

Setting Value Description/Notes

dtp.server [host] Specifies the host name of the
DTP server.

dtp.port [port] Specifies the port number on
DTP server port. The default
settings is 443.

dtp.user

dtp.password

[username]

[password]
Specifies authentication to con-
nect to DTP server.

dtp.project [project_name] Specifies the name of the DTP
project that you want linked to.
This settings is optional.

dtp.autoconfig true

false
Enables auto configuration with
settings stored on the DTP
server. The default is false.

report.dtp.publish true

false
Determines whether the current
installation is reporting test
results to DTP server. The
default is false.

report.dtp.publish.src off

min

full

Determines whether tested
source code is published to DTP
server.

off: code is not published to
DTP server.

min: publishes minimal part of
sources. In most cases, source
code without references to
source control, e.g., auto-gener-
ated code, is published.

full: publishes all sources
associated with the specified
scope.

The default is full if
report.dtp.publish is
enabled, otherwise the default is
off

dtp.share.enabled true

false
Enables/disables connection to
Team Server. The default is
false.

dottest.license.use_network true

false
Enables/disables license
retrieval from License Service.
The default setting is true.
57

Scope and Authorship Settings

dottest.license.network.type dtp

ls
Sets the network license type.

dtp:file count license that limits
usage to a certain number of
files as determined by your
licensing agreement

ls: floating license (machine
locked) that limits usage to a
certain number of machines

dottest.license.local.password [password] Specifies the local license pass-
word.

dottest.license.local.expiration [expiration] Specifies the local license expi-
ration date.

dottest.license.network.edition desktop_edition

server_edition

custom_edition

Specifies the type of license that
will be retrieve from License
Service for this installation.
Default is custom_edition

dottest.license.custom_edition_features [feature_name, ...] Specifies active features for cus-
tom license edition.

dottest.license.wait.for.tokens.time [minutes] Specifies the time that tool will
wait for a license if a license is
not currently available.

Setting Value Description/Notes

scope.local true

false
Enables/disables code author-
ship computation based on the
local user and system files mod-
ification time. Default is true

scope.scontrol true

false
Enables/disables code author-
ship computation based on data
from a supported source control
system. Default is false

scope.xmlmap true

false
Enables/disables task assign-
ment based on an XML mapping
file that defines how tasks
should be assigned for particular
files or sets of files. See “Creat-
ing Authorship XML Map
Files”, page 21 for syntax
information. Default is false

scope.xmlmap.file [path] Specifies the path to XML map-
ping file that defines how tasks
should be assigned for particular
files or sets of files.

Setting Value Description/Notes
58

authors.ignore.case true

false
Enables/disables author name
case sensitivity.

Example:

true: David and david are con-
sidered the same user.

Default is false

authors.mappings.location local

shared
Specifies where the authorship
mapping file is stored. Default is
local.

See authors.user and
authors.mapping options for
details.

When set to shared, mappings
could be specified in file located
on DTP share. See
authors.shared.path
option for details.

authors.shared.path [path] Specifies the location of authors
mapping file in DTP share.

Example:

authors.shared.path=xte
st/authors_map.txt

authors.user{n} [user_name, email,
full_name]

Specifies a specific author by
user name, email, and full
name.

Example:

authors.user1=dan,dan@p
arasoft.com,Dan Stowe

authors.user2=jim,jim@p
arasoft.com,Jim White

authors.mapping{n} [from_user, to_user] Specifies a specific author map-
ping.

Example:

authors.mapping1=old_us
er,new_user

authors.mapping2=broken
_user,correct_user

Setting Value Description/Notes
59

Suppression Settings

Setting Value Description/Notes

suppression{n}.file.ext [ext] Specifies the extension of types of files
that should be scanned for comment sup-
pressions.

Example:

suppression1.file.ext=xml

suppression2.file.ext=java

Set the comment prefix with the
suppression{n}.comment setting.

suppression{n}.comment [comment] Specifies comment prefix for types of files
identified in suppression.file.ext
setting.

Example:

suppression1.comment=//

suppression2.comment=<!--

suppression{n}.comment.suffix [comment suffix] Defines the suppression comment suffix
when file extensions has been specified
with the suppression.file.ext set-
ting. If not specified then suppression
comments will not be suffixed.

Example:

suppression1.comment.suffix=-->

suppression{n}.block.only true|fales Enables/disables block-only comment
suppressions support when file extensions
have been specified with the
suppression.file.ext setting.

Default is false.

suppression.local.dir [path] Specifies the custom directory for storing
local suppressions. An absolute path
should be provided.

Example:

suppression.local.dir=file:///
C:/parasoft/suppression/storage

suppression.local.dir=../
suppression/storage
60

Technical Support Settings

Setting Value Description/Notes

techsupport.enabled true

false
Enables/disables global auto-
matic technical support data col-
lection is globally enabled with
verbose logging.

Default is false

logging.verbose true

false
Enables/disables verbose logs.

Verbose logs are stored in the
xtest.log file in the location
specified with the local.stor-
age.dir setting.

Verbose logging state persists
across sessions (restored on
application startup).

The log is a rolling file with a
fixed maximum size. A backup is
created whenever the max size
is reached .

Default is false

logging.scontrol.verbose true

false
Enables/disables output from
source control commands in
verbose logs. Note that output
from source control may include
fragments of analyzed source
code.

Default is false

techsupport.create.on.exit true

false
Enables/disables automatic
archive creation when the appli-
cation is shut down.

The techsupport.enabled
setting must also be enabled for
packages to be created automat-
ically.

Default is true.

techsupport.archive.location [path] Specifies the custom directory
where support packages should
be created.

techsupport.include.reports true

false
Enables/disables the inclusion of
reports in the technical support
package.
61

Report Settings

Setting Value Description/Notes

session.tag [name] Specifies a tag for signing
results form the test session.
The tag is a unique identifier for
the specified analysis process
made on a specified module.
Reports for different test ses-
sions should be marked with dif-
ferent session tags.

build.id [id] Specifies a build identifier used
to label results. It may be unique
for each build but may also label
more than one test sessions that
were executed during a speci-
fied build.

The default settings is build-
yyyy-MM-dd HH:mm:ss

project.module [name] Specifies a custom name for the
project's module. The setting
may be used to describe unique
runs. If unspecified, the tested
module is detected automatically
based on code provided to anal-
ysis.

exec.env [env1;env2...] Specifies a list of tags that
describe the environment where
the run was executed. Tags may
describe operating system (e.g.,
Windows, Linux), architecture
(e.g., x86, x86_64), compiler,
browser, etc. The exec.env
tags enable the entire session to
be described. A detailed descrip-
tion of the environment may also
be included in the test suite, test,
or test case levels via services
API.

report.location [path] Specifies the directory where
report should be created.

report.format xml

html

pdf

csv

custom

Specifies the report format. Use
a comma separated list of for-
mats to generate multiple for-
mats.

Default is xml
62

report.custom.extension [ext] Specifies the report file exten-
sion of the XSL file for a custom
format.

Use with report.for-
mat=custom and
report.custom.xsl.file.

report.custom.xsl.file [path] Specifies the location of the XSL
file for a custom format.

Use with
report.format=custom and
report.custom.extension

report.developer_errors true

false
Determines whether manager
reports include details about
developer errors. The default is
true.

report.developer_reports true

false
Determines whether the system
generates detailed reports for all
developers (in addition to a sum-
mary report for managers). The
default is false.

report.authors_details true

false
Determines whether the report
includes an overview of the
number and type of tasks
assigned to each developer. The
default is true.

report.contexts_details true

false
Determines whether the report
includes an overview of the files
that were checked or executed
during testing. The default is
true.

report.suppressed_msgs true

false
Determines whether report
includes suppressed messages.
The default setting is false.

report.metadata true

false
Determines whether additional
metadata about findings should
be downloaded from DTP. Only
findings that are already present
on DTP are affected. The DTP
server must also support the
metadata service for this settting
to have an effect. Default is
true.

Setting Value Description/Notes
63

report.scontrol off

min

full

Specifies if and how much addi-
tional information from source
control is included in the report:

min: repositories, file paths and
revisions

full: includes the same infor-
mation as min, as well as task
revisions and comments.

Default is off

report.associations true

false
Enables/disables showing
requirements, defects, tasks,
and feature requests associated
with a test in the report. The
default is true.

issue.tracking.tags [tag1,tag2,...] Specifies a list of issue tracking
tags. The following tags are sup-
ported by default: pr, fr, task,
asset, req.

report.assoc.url.[tag] [url] Generates link to association
inside the HTML report. The
URL is a query string containing
an [%ID%] placeholder for the
PropertyAttribute value.

report.active_rules true

false
Determines if report contains a
list of the rules that were
enabled for the test. The default
setting is true.

report.rules [url] Specifies a directory for storing
static analysis rules HTML files
(retrieved by clicking the Print-
able Docs button in the Test
Configuration's Static Analysis
tab).

Examples:

report.rules=file:///C:/
parasoft/gendoc/

report.rules=../gendoc/

report.test_params true

false
Determines whether report
includes test parameter details.

The default setting is true.

report.coverage.images [tag1,. . .] Specifies a set of tags that will
be used to create coverage
images in DTP Server.

DTP supports up to 3 coverage
images per report.

Setting Value Description/Notes
64

report.coverage.limit [limit] Value that specifies the lower
coverage threshold. Coverage
results lower than this value are
highlighted in the report.

Default is 40

report.metrics.attributes [attr1;attr2;...] Specifies a list of additional
attributes for metric results. The
following attributes are sup-
ported by default: module,
namespace, type, method.

report.archive true

false
Enables/disables archiving
reports into a ZIP file.

report.graph.start_date [MM/dd/yy] Specifies start date for trend
graphs that track static analysis
task, test execution, and cover-
age.

Use with
report.graph.period=[?d|
?m|?y]

report.graph.period [?d|?m|?y] Determines the duration from
the start date for trend graphs
that track static analysis task,
test execution, and coverage.

Use with
report.graph.start_date=
[MM/dd/yy]

report.mail.enabled true

false
Enables/disables report emails
to developers and additional
recipients specified with the
report.mail.cc setting.

If enabled, all developers that
worked on project code will auto-
matically be sent a report that
contains the errors/results
related to his or her work.

The default setting is false.

report.mail.server [host] Specifies the mail server used to
send reports.

report.mail.port [port] Specifies the port for SMTP
server. The default port is 25.

report.mail.security [security] Specifies SMTP server connec-
tion security. STARTTLS and
SSL are supported. The default
is STARTTLS.

report.mail.subject [subject line] Specifies the subject line of the
emails sent.

Setting Value Description/Notes
65

report.mail.username

report.mail.password

report.mail.realm

[user_name]

[password]

[realm]

Specifies the settings for SMTP
server authentication. The realm
value is required only for those
servers that authenticate using
SASL realm.

report.mail.domain [domain] Specifies the mail domain used
to send reports.

report.mail.time_delay [time] Specifies a time delay between
emailing reports (to avoid bulk
email restrictions).

report.mail.from [email|user_name] Specifies the "from" line of the
emails sent.

report.mail.attachments true

false
Enables/disables sending
reports as attachments. All com-
ponents are included as attach-
ments; before you can view a
report with images, all attach-
ments must be saved to the disk.

The default setting is false.

report.mail.compact trends

links
Specifies how report information
is delivered in the email.

trends: email contains a trend
graph, summary tables, and
other compact data; detailed
data is not included.

links: email only contains a
link to a report available on DTP
server.

This setting is not configured by
default

report.mail.format html

ascii
Specifies content type for the
email. The default setting is
html.

report.mail.cc [email; ...] Specifies email address for
sending comprehensive man-
ager reports. Multiple addresses
must separated with a semico-
lon. This setting is commonly
used to send reports to manag-
ers or architects, as well as
select developers.

Setting Value Description/Notes
66

report.mail.include [email, ...] Specifies email addresses of
developers that you want to
receive developer reports. Multi-
ple addresses must separated
with a semicolon.

This setting is commonly used to
send developer reports to devel-
opers if developer reports are
not sent automatically (e.g.,
because the team is not using a
supported source control sys-
tem).

This setting overrides addresses
specified in the 'exclude' list.

report.mail.exclude [email; ...] Specifies email addresses that
should be excluded from auto-
matically receiving reports.

report.mail.exclude.developers true

false
Enables/disables report emails
to developers not explicitly listed
in the report.mail.cc set-
ting. This setting is used to pre-
vent reports from being mailed
to individual developers.

The default setting is false.

report.mail.unknown [email|user_name] Specifies where to email reports
for errors assigned to
"unknown".

report.mail.on.error.only true

false
Enables/disables email reports
to the manager when an error is
found or a fatal exception
occurs. Developer emails are
not affected by this setting;
developer emails are sent only
to developers who are responsi-
ble for reported errors.

The default setting is false.

report.setup.problems top

bottom

hidden

Determines placement of setup
problems section in report.

The default setting is bottom.

report.setup.problems.category_limit [numerical value] Specifies a limit to the number of
messages reported in a single
setup problem category.

Default is 10

report.setup.problems.display_limit [numerical value] Specifies a limit to the total
number of messages displayed
in the HTML report in the setup
problem section.

Default is 100

Setting Value Description/Notes
67

report.setup.problems.console true

false

Determines whether setup
problems will be printed on the
console.

The default setting is true.

report.ue_coverage_details_htmls LC

DC
Specifies type of coverage
included in an additional report,
which includes source code
annotated with line-by-line cov-
erage details, when a test's
HTML report links to it.

LC: line coverage

DC: decision coverage

report.separate_vm.xmx [size] Specifies how much memory
should be used for reports gen-
eration. The default is 1024M.

report.separate_vm true

false
Enables/disables generating
reports as a separate virtual
machine.

Default is false.

report.separate_vm.launch.file [path] Specifies path to launch file
which should be used during
reports generation.

dupcode.sorting.mode oldest|newest|paths Determines how elements in the
code duplication findings are
sorted.

oldest: the oldest result
appears at the top.

newest: the newest result
appears at the top.

paths: sorts by full path names
in ascending alphabetical order
(A to Z).

The default is paths.

report.coverage.version 1

2
Specifies the version of the XML
coverage report:

1: the standard version will be
used.

2: the size of the XML report will
be optimized.

The default value is 1.

Setting Value Description/Notes
68

General Source Control Settings

AccuRev Source Control Settings

ClearCase Source Control Settings

Setting Name Value Description/Notes

scontrol.timeout [seconds] Specifies timeout value for oper-
ations with source control. The
default value is 60.

scontrol.branch [name] Enables you to specify a custom
name for the tested branch. This
setting may be used to describe
unique runs. If it is not specified,
the tested branch is detected
automatically based on code
provided to analysis.

Setting Name Value Description/Notes

scontrol.rep{n}.type accurev AccuRev repository type identi-
fier.

scontrol.accurev.exec [path] Path to external client execut-
able (accurev).

scontrol.rep{n}.accurev.host [host] AccuRev server host.

scontrol.rep{n}.accurev.port [port] AccuRev server port. Default
port is 1666.

scontrol.rep{n}.accurev.login [login] AccuRev user name.

scontrol.rep{n}.accurev.password [password] AccuRev password.

Setting Name Value Description/Notes

scontrol.rep{n}.type ccase ClearCase repository type name.

scontrol.ccase.exec [path] Path to external client executable
(cleartool).

scontrol.rep{n}.ccase.vob [path] Specifies the VOB's mount point - the
path at which the VOB will be accessed
by user.

Examples:

scontrol.rep.ccase.vob=X:\myvob

scontrol.rep.ccase.vob=/vobs/myvob

scontrol.rep{n}.ccase.vob_tag [tag] The VOB's unique tag in the ClearCase
network region.
69

CVS Source Control Settings

Setting Name Value Description/Notes

scontrol.rep{n}.type cvs CVS repository type identifier.

scontrol.rep{n}.cvs.root [root] Full CVSROOT value.

scontrol.rep{n}.cvs.pass [password] Plain or encoded password. The
encoded password should match
password in the .cvspass file.

For CVS, use the value in .cvs-
pass from within the user's home
directory.

For CVSNT, use the value store
in the registry under
HKEY_CURRENT_USER\Soft-
ware\Cvsnt\cvspass

The password is saved in the
registry when you first log into
the CVS repository from the
command line using cvs
login. To retrieve the pass-
word, go to the registry (using
regedit) and look for the value
under
HKEY_CURRENT_USER-
>CVSNT> cvspass. This dis-
plays your entire login name
(e.g., :pserver:exam-
pleA@exampleB:/exampleC)
and encrypted password value.

scontrol.rep{n}.cvs.useCustomSSHCredentials true

false
Enables/disables using the cvs
login and password for EXT/SSH
connections. Default is false.

scontrol.rep{n}.cvs.ext.server [cvs] Specifies which CVS application
to start on the server side if con-
necting to a CVS server in EXT
mode. Has the same meaning as
the CVS_SERVER variable.
Default is cvs.

scontrol.rep{n}.cvs.ssh.loginname [login] Specifies the login for SSH con-
nections (if an external program
can be used to provide the
login).

scontrol.rep{n}.cvs.ssh.password [password] Specifies the password for SSH
connection.

scontrol.rep{n}.cvs.ssh.keyfile [file] Specifies the private key file to
establish an SSH connection
with key authentication.
70

Git Source Control Settings

scontrol.rep{n}.cvs.ssh.passphrase [passphrase] Specifies the passphrase for
SSH connections with the key
authentication mechanism.

scontrol.rep{n}.cvs.useShell true

false
Enables/disables an external
program (CVS_RSH) to estab-
lish a connection to the CVS
repository. Default is false.

scontrol.rep{n}.cvs.ext.shell [path] Specifies the path to the execut-
able to be used as the
CVS_RSH program. Command
line parameters should be speci-
fied in the cvs.ext.params
property.

scontrol.rep{n}.cvs.ext.params [parameters] Specifies the parameters to be
passed to an external program.
The following case-sensitive
macro definitions can be used to
expand values into command
line parameters:

{host} repository host

{port} port

{user} cvs user

{password} cvs password

{extuser} parameter
cvs.ssh.loginname

{extpassword} parameter
cvs.ssh.password

{keyfile} parameter
cvs.ssh.keyfile

{passphrase} parameter
cvs.ssh.passphrase

Setting Name Value Description/Notes

scontrol.rep{n}.type git Git repository type identifier.

scontrol.git.exec [path] Path to git executable. If not set,
assumes git command is on the
path.

scontrol.rep{n}.git.url [url] The remote repository URL (e.g.,
git://hostname/repo.git).

Setting Name Value Description/Notes
71

Mercurial Source Control Settings

Perforce Source Control Settings

Serena Dimensions Source Control Settings

scontrol.rep{n}.git.workspace [path] The directory containing the local
git repository.

Setting Name Value Description/Notes

scontrol.rep{n}.type hg Mercurial reposity type identifyer.

scontrol.hg.exec [path] Path to external client execut-
able. Devault is hg

scontrol.rep{n}.hg.url [url] The remote repository URL (e.g.,
http://hostname/path).

scontrol.rep{n}.hg.workspace [path] The directory containing the local
Mercurial repository.

Setting Name Value Description/Notes

scontrol.rep{n}.type perforce Perforce repository type identi-
fier.

scontrol.perforce.exec [path] Path to external client executable
(p4).

scontrol.rep{n}.perforce.host [host] Perforce server host.

scontrol.rep{n}.perforce.port [port] Perforce server port. Default port
is 1666.

scontrol.rep{n}.perforce.login [login] Perforce user name.

scontrol.rep{n}.perforce.password [password] Perforce password, optional if
ticket is used for authentication.

scontrol.rep{n}.perforce.client [client] The client workspace name as
specified in the P4CLIENT envi-
ronment variable or its equiva-
lents. Root directory for specified
workspace should be configured
correctly for local machine.

Setting Name Value Description/Notes

scontrol.rep{n}.type serena Serena Dimensions repository type
identifier.

Setting Name Value Description/Notes
72

StarTeam Source Control Settings

scontrol.serena.dmroot [path] Path to the Serena Dimensions exe-
cutable. Example:

C\:\\Program Files
(x86)\\Serena\\Dimensions
2009 R2\\CM\\

scontrol.rep{n}.serena.login [login] Serena user name.

scontrol.rep{n}.serena.password [password] Password.

scontrol.rep{n}.serena.host [host] Serena Dimensions server host name.

scontrol.rep{n}.serena.dbname [name] Name of the database for the product
you are working with.

scontrol.rep{n}.serena.dbconn [connection] Connection string for that database.

scontrol.rep{n}.serena.locale [locale] The language used, (e.g., en_US)

scontrol.rep{n}.serena.mapping [mapping] If the project has been downloaded/
moved to a location other than default
work area, use this option to specify a
mapping between the project or
stream with the Serena repository and
the local project. If you are working in
the default work area, you do not need
to define mappings.

Setting Name Value Description/Notes

scontrol.rep{n}.type starteam StarTeam repository type identifier.

scontrol.rep{n}.starteam.host [host] StarTeam server host.

sscontrol.rep{n}.starteam.port [port] StarTeam server port. Default port is
49201.

scontrol.rep{n}.starteam.login [login] Login name.

scontrol.rep{n}.starteam.password [password] Password (not encoded).

Setting Name Value Description/Notes
73

Subversion Source Control Settings

scontrol.rep{n}.starteam.path [path] Specifies the project, view, or folder that
you are currently working with.

You can specify a project name (all views
will be scanned when searching for the
repository path), project/view (only the
given view will scanned) or project/view/
folder (only the specified Star Team
folder will be scanned). This setting is
useful for working with large multi-project
repositories.

Examples:

scontrol.rep.starteam.path=proj1

scontrol.rep.starteam.path=proj1/view1

scontrol.rep.starteam.path=proj1/
view1/folderA

scontrol.rep.starteam.path=proj1/
view1/folderA/folderB

scontrol.rep{n}.starteam.workdir [path] Specifies a new working directory for the
selected view's root folder (if the path
represents a view) or a new working
directory for the selected folder (if the
path represents a folder) when the
scontrol.rep.starteam.path set-
ting points to a StarTeam view or folder.

Examples:

scontrol.rep.starteam.workdir=C:\\stor
age\\dv

scontrol.rep.starteam.workdir=/home/
storage/dv

Setting Name Value Description/Notes

scontrol.rep{n}.type svn Subversion repository type identi-
fier.

scontrol.svn.exec [path] Path to external client executable
(svn).

scontrol.rep{n}.svn.url [url] Subversion URL specifies proto-
col, server name, port and start-
ing repository path. Example:

svn://buildmachine.foobar.com/
home/svn

scontrol.rep{n}.svn.login [login] Login name.

scontrol.rep{n}.svn.password [password] Password (not encoded).

Setting Name Value Description/Notes
74

Synergy/CM Source Control Settings

Microsoft Team Foundation Server Source Control Settings

Setting Name Value Description/Notes

scontrol.rep{n}.type synergy Synergy/CM repository type iden-
tifier.

scontrol.synergy.exec [path] Path to external client executable
(ccm).

scontrol.rep{n}.synergy.host [host] Computer on which synergy/cm
engine runs. Local host is used
when missing. For Web mode,
the host must be a valid Synergy
Web URL with protocol and port
(e.g., http://synergy.server:8400).

scontrol.rep{n}.synergy.dbpath [path] Absolute synergy database path
(e.g., \\host\db\name).

scontrol.rep{n}.synergy.projspec [specification] Synergy project specification
which contains project name and
its version (e.g., name-
version).

scontrol.rep{n}.synergy.login [login] Synergy user name.

scontrol.rep{n}.synergy.password [password] Synergy password (not encoded).

scontrol.rep{n}.synergy.port [port] Synergy port.

scontrol.rep{n}.synergy.remote_client [client] (UNIX only) Specifies that you
want to start ccm as a remote cli-
ent. Default value is false.
Optional. This is not used for Web
mode.

scontrol.rep{n}.synergy.local_dbpath [path] Specifies the path name to which
your database information is cop-
ied when you are running a
remote client session. If null, then
the default location will be used.
This is not used for Web mode.

Setting Name Value Description/Notes

scontrol.rep{n}.type tfs TFS repository type identifier.

scontrol.rep{n}.tfs.url [url] URL to TFS repository, e.g.,
http://localhost:8080/
tfs

scontrol.rep{n}.tfs.login [login] TFS user name.

scontrol.rep{n}.tfs.password [password] TFS password.
75

Microsoft Visual SourceSafe Source Control Settings

Visual Studio Settings

Setting Name Value Description/Notes

scontrol.rep{n}.type vss Visual SourceSafe repository type
identifier.

scontrol.vss.exec [path] Path to external client executable
(ss).

scontrol.rep{n}.vss.ssdir [path] Path of repository database.

scontrol.rep{n}.vss.projpath [path] VSS project path.

scontrol.rep{n}.vss.login [login] VSS login.

scontrol.rep{n}.vss.password [password] VSS password.

Setting Name Value Description

dottest.configuration Configuration to be used during analysis
when not specified with the -config
switch is not used.

See “Specifying Test Configurations”,
page 15

dottest.build.builder_id msbuild

visualstudio
Specifies which builder to use.

dottest.devenv.2015.path Path to Visual
Studio 2015
devenv.exe file

Allows users to customize the default
path of Visual Studio 2015.

dottest.devenv.2013.path Path to Visual
Studio 2013
devenv.exe file

Allows users to customize the default
path of Visual Studio 2013.

dottest.devenv.2012.path Path to Visual
Studio 2012
devenv.exe file

Allows users to customize the default
path of Visual Studio 2012.

dottest.devenv.2010.path Path to Visual
Studio 2010
devenv.exe file

Allows users to customize the default
path of Visual Studio 2010.

dottest.devenv.2008.path Path to Visual
Studio 2008
devenv.exe file

Allows users to customize the default
path of Visual Studio 2008.

dottest.devenv.2005.path Path to Visual
Studio 2005
devenv.exe file.

Allows users to customize the default
path of Visual Studio 2005.

dottest.visualstudio.version 2005

2008

2010

2012

2015

Allows users to override the default
Visual Studio version automatically
detected from the *.sln file.

Uses the appropriate version of Visual
Studio for building the solution regardless
of *.sln files version.
76

dottest.visualstudio.target Build

Rebuild

Deploy

Allows users to customize the target
name used by Visual Studio during
solution build.

See http://msdn.microsoft.com/en-us/
library/vstudio/xee0c8y7.aspx for details.

dottest.visualstudio.custom_switches Allows users to pass additional switches
to the devenv.exe command line during
builds.

See http://msdn.microsoft.com/en-us/
library/vstudio/xee0c8y7.aspx for details.

dottest.visualstudio.timeout Number of seconds
for the timeout

Allows users to apply timeout during
solution build (default is 3 hours).

Setting Name Value Description
77

http://msdn.microsoft.com/en-us/library/vstudio/xee0c8y7.aspx
http://msdn.microsoft.com/en-us/library/vstudio/xee0c8y7.aspx

78

Integrations
• Integrating with MSBuild

• Integrating with NAnt

• Integrating with Source Control Systems

• Using DTP Engines in an IDE

• Integrating with CI Tools

Integrating with MSBuild
Integrating with MSBuild
Static Analysis Engine for .NET ships with built-in support for integration with MSBuild to simplify run-
ning it in MSBuild build scripts environments. Integration with MSBuild scripts is achieved with the fol-
lowing custom MSBuild task:

Use the following code in your MSBuild script after a task is deployed:

Target File
The target file must be imported in the MSBuild script. If you use deploy.exe, then you can the follow-
ing import statement:

Alternatively, you can import the target directly from the installation directory:

Targets can be directly imported from the installation directory when running multiple Static Analysis
Engine for .NET installations on a single machine.

MSBuild Task
Use <Dottest> task in your build file to run Static Analysis Engine for .NET. The following arguments
are supported:

• Configuration: Defines configuration used during analysis. See “Specifying Test Configura-
tions”, page 15.

• Solutions: Defines solutions that are analyzed. See “Analyzing Visual Studio Solutions”,
page 13.

• Projects: Defines projects that are analyzed. See “Analyzing Visual Studio Projects Without
Solutions”, page 13.

Parasoft.Dottest.MSBuild.Tasks.dll

<Import Project="$(MSBuildExtensionsPath)\Parasoft\Parasoft.Dottest.targets"/>

<Target Name="Demo">

<Dottest

Configuration="builtin://Demo"

 Solutions="C:\Devel\FooSolution\FooSolution.sln"

 Report="C:\Devel\Report"

 Out="C:\Devel\Out.txt" />

</Target>

<Import Project="$(MSBuildExtensionsPath)\Parasoft\Parasoft.Dottest.targets"/>

<Import

Project="[INSTALL_DIR]\integration\MSBuild\Parasoft.Dottest.targets\Parasoft.Dottest.targets

"/>
79

Integrating with MSBuild
• Websites : Defines web sites that are analyzed. See “Analyzing Websites”, page 13.

• Resources: Defines resources that are analyzed. See “Defining Test Scope”, page 18.

• Report: Defines path to report. See “Reporting”, page 32.

• Settings: Path to settings file. “Customizing DTP Engines for .NET”, page 52.

• NoBuild: Disables build of the tested solutions or projects.

• SolutionConfig: Solution build architecture. See “Specifying Solution Configuration and Tar-
get Platform”, page 88.

• TargetPlatform: Solution build architecture. See “Specifying Solution Configuration and Tar-
get Platform”, page 88.

• Out: Path where console output is saved.

• DottestPath: Path to dottestcli.exe file. Allows users to override the auto-detected dottest-
cli.exe path. This can be used to support multiple Static Analysis Engine for .NET installations
on a single machine.
80

Integrating with NAnt
Integrating with NAnt
Static Analysis Engine for .NET ships with built-in support for integration with NAnt to simplify running it
in NAnt build scripts environments. Use the following code in your NAnt script after the task is deployed
to NAnt:

Loading NAnt Task Library
Integration with NAnt scripts is achieved with the following custom NAnt task:

This library must be in the same directory as NAnt.exe for the NAnt scripts to detect the Static Analysis
Engine task. Alternatively, <loadtasks> can be used, which is useful for running multiple Static
Analysis Engine for .NET installations on one machine:

Supported NAnt Task Arguments
• config: Defines configuration used during analysis. See “Specifying Test Configurations”,

page 15.

<target name="analyze">

<dottest

config="builtin://Demo"

report="C:\Devel\Report"

out="C:\Devel\Out.txt">

<solutions>

<include name ="C:\Devel\FooSolution\FooSolution.sln">

</solutions>

</dottest>

</target>

Parasoft.Dottest.NAnt.Tasks.dll.

<project name="sampleProject" default="test">

<target name="test">

<loadtasks>

<fileset>

 <include

name="[INSTALL_DIR]\integration\NAnt\Parasoft.Dottest.NAnt.Tasks.dll" />

</fileset>

</loadtasks>

</target>

</project>
81

Integrating with NAnt
• solutions: Defines solutions that are analyzed. List wildcards in ANT-style format separated
by semi-colons to analyze two or more solutions:

You can also nest <include> elements that point to ANT-style wildcards inside <solutions>
elements:

See “Analyzing Visual Studio Solutions”, page 13.

• projects: Defines which projects are analyzed. List wildcards in ANT-style format separated
by semi-colons to analyze two or more projects:

You can also nest <include> elements that point to ANT-style wildcards inside <projects>
elements:

See “Analyzing Visual Studio Projects Without Solutions”, page 13.

• websites : Defines which web sites are analyzed. List wildcards in ANT-style format separated
by semi-colons to analyze two or more web sites:

<dottest config="builtin://Demo"

solutions="C:\Devel\FooSolution\FooSolution.sln;C:\Devel\Bar***.sln" />

<dottest config="builtin://Demo" >

<solutions>

<include name="C:\Devel\FooSolution\FooSolution.sln">

<include name="C:\Devel\Bar***.sln">

</solutions>

</dottest>

<dottest config="builtin://Demo"

projects="C:\Devel\FooProjects\Qux\Qux.csproj;C:\Devel\BarProjects***.csproj" />

<dottest config="builtin://Demo" >

<projects>

<include name="C:\Devel\Foo\Qux\Qux.csproj">

<include name="C:\Devel\Bar***.csproj">

</projects>

</dottest>

<dottest config="builtin://Demo"

websites="C:\Devel\Foo\WebSite;C:\Devel\Bar*.WebSite" />
82

Integrating with NAnt
You can also nest <include> elements that point to ANT-style wildcards inside <websites>
elements:

See “Analyzing Websites”, page 13.

• resources: Defines which resources are analyzed. Separate two or more paths to resources
with a semi-colon:

You can also nest <res> elements that point to paths inside <resources> elements:

See “Defining Test Scope”, page 18.

• report: Defines path to the report.

See “Reporting”, page 32.

• settings: Defines path to settings file:

See “Customizing DTP Engines for .NET”, page 52.

<dottest config="builtin://Demo" >

<websites>

<include name="C:\Foo\WebSite">

<include name="C:\Bar*.WebSite">

</websites>

</dottest>

<dottest config="builtin://Demo" resources="Foo/Bar/Baz;Foo/Qux/Garply" >

 <dottest config="builtin://Demo">

...

<resources>

<res name="Foo/Bar/Baz" />

<res name="Foo/Qux/Garply" />

</resources>

</dottest>

<dottest

config="builtin://Demo"

report="C:\Foo\Report" >

...

</dottest>

<dottest

config="builtin://Demo"

settings="C:\Foo\settings.properties" >

</dottest>
83

Integrating with NAnt
• nobuild: Disables build of the tested solutions or projects.

• solutionConfig: Solution build architecture. See “Specifying Solution Configuration and Tar-
get Platform”, page 88.

• targetPlatform: Solution build architecture. See “Specifying Solution Configuration and Tar-
get Platform”, page 88.

• Out: Path where console output is saved.

• DottestPath: Path to dottestcli.exe file. Allows users to override the auto-detected dot-
testcli.exe path. This can be used to support multiple Static Analysis Engine for .NET instal-
lations on one machine.

<dottest

config="builtin://Demo"

nobuild="true" >

. . .

</dottest>
84

Integrating with Source Control Systems

85

Integrating with Source Control
Systems
DTP Engines can collect information from source control systems and use the data to assign owner-
ship of violations, filter analyzed files based on time or modification history, and report information
about controlled files to DTP Server. Use the dotTEST 9.5 or later interface to configure integration
with source control systems:

1. In your IDE , choose Parasoft > Preferences and click Source Controls

2. Configure your repository and source control client and click Apply.

3. In the Preferences panel menu, click Scope and Authorship

4. Enable the Use source control (modification author) to compute scope option and click
Apply.

5. In the Preferences panel menu, click Parasoft

6. Click the share to open the Export to localsettings file panel.

7. Select the Source Controls, Scope and Authorship, and any other options you want to save.

8. Choose a location and click OK.

9. Add the following line to the settings file, which ensures that information on source control
details are saved to the report:

10. Either pass the file to the command line or copy the settings in the administration panel of a
project in DTP server (Parasoft Test settings tab) if applicable.

11. Run the analysis.

report.scontrol=min

Integrating with CI Tools
Integrating with CI Tools

Integrating with TeamCity
Team City is a continuous integration build system where Web Service may be installed on different
machine than its builds agents.

Integrating DTP Engines with TeamCity
1. Install DTP Engines for .NET on a machine or machines where the Team City build agent is

installed.

2. Perform one of the following actions:

• Choose "Team City" on the "Select Build System for Integration" tab during installation
and follow the wizard instructions.

• Run the following command manually and follow the wizard instructions:

[INSTALL_DIR]\Integrators\TeamCity\deploy.exe

3. If TeamCity does not automatically recognize and deploy its plug-in to the build agent, restart
TeamCity server and build agent services in Control Panel> Administrative Tools> Ser-
vices.

Configuring a TeamCity Project for DTP Engines
1. Launch TeamCity web services.

2. Choose Projects> [Project Name].

3. Click Edit Project Settings.

4. Create a build configuration or edit an existing configuration.

5. At configuration step 3 under "Build Steps", add a build step.

6. Choose Parasoft dotTEST runner.

7. Complete fields on the form.

8. Save the configuration.

9. Ensure that at least one agent is capable of running the configuration (see Step 8 "Agent
Requirements").

10. Run the Configuration.

Viewing Results
1. Choose Projects> [Project Name].

2. Go to the Configuration that was used for the run.

3. Click Build Log to view the logs.

4. Click Artifacts to view the report.

Integrating with Jenkins
DTP Engines for .NET can be integrated with Jenkins continuous integration software. The Parasoft
Findings Plugin for Jenkins allows you to visualize static analysis and test results as trend graphs and
warnings.
86

https://wiki.jenkins-ci.org/display/JENKINS/Parasoft+Findings+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Parasoft+Findings+Plugin

Integrating with CI Tools
Parasoft Findings Plugin is available directly in Jenkins. See Parasoft Findings Plugin for details.

You can download the plugin source files form GitHub, see Parasoft Findings Plugin Project. If you
need additional information on how to rebuild the plugin, contact Parasoft Support.
87

https://wiki.jenkins-ci.org/display/JENKINS/Parasoft+Findings+Plugin
https://github.com/jenkinsci/parasoft-findings-plugin
https://github.com/jenkinsci/parasoft-findings-plugin

88

Building Solutions and Projects

Many Static Analysis Engine for .NET features require source code to be compiled into binaries. By
default, Static Analysis Engine attempts to build solutions and projects prior to analyzing them.

Delegating the Build to MSBuild or Visual Studio
Static Analysis Engine for .NET delegates the build to msbuild.exe by default when Visual Studio is
not installed on the machine. If an appropriate version of Visual Studio is present, the build is per-
formed by the devenv.exe /Build mechanism.

Define the dottest.build.builder_id setting to either visualstudio or msbuild to explicitly set
Visual Studio or MSBuild as the builder. See “Settings Reference”, page 54, for additional information.

Depending on Pre-built Code
Pass the -nobuild switch to skip the building phase during analysis if the code is compiled prior to
analysis.

Specifying Solution Configuration and Target
Platform
If code is built during or prior to analysis, Static Analysis Engine for .NET needs to know the correct
Solution Configuration (e.g. Debug, Release, or other) and Target Platform (e.g. Any CPU, x86, or
other). Static Analysis Engine attempts to choose the most suitable one, but it is recommended to
specify them explicitly.

You can use the -solutionConfig and -targetPlatform command line switches to specify these
Solution Configuration and Target Platform. See “Switches Reference”, page 91, for additional
information.

These can also be set with the dottest.build.solution_config and
dottest.build.target_platform settings in the dottestcli.properties configuration file.

Verifying the Required Build Artifacts
Prior to analysis, DTP Engines for .NET need to verify that all required build artifacts, such as .exe,
.dll or .pdb files, are available. Artifacts may not be available due to build issues or incorrect setup,
which may prevent DTP Engines from performing analysis or collecting complete analysis results.

If DTP Engines are unable to find all required .exe, .dll or .pdb files, the missing artifacts will be
listed in the Setup Problems section of your report.

Getting Help
Use the the -help switch to access usage information on the command line.

Technical Support
You can configure DTP Engines to create package for technical support. Add the following settings to
your .properties configuration file:

A technical support package will be created in the output directory at the end of an analysis run.

You need to escape the colon and the backslashes to specify the package location. The following
example shows what the path may look like:

You can also collect logs manually from the following location (the domain name may need to be
replaced with the machine name):

If you run dotTEST DTP Engine with Visual Studio, additional logs can be collected form:

Troubleshooting

Floating Machine ID
Changes in the network environment may affect the interface that is used to compute your machine ID
and result in machine ID instability. You can use the PARASOFT_SUPPORT_NET_INTERFACES
environment variable to specify a stable interface and prevent the machine ID from floating.

1. Set up the PARASOFT_SUPPORT_NET_INTERFACES environment variable.

2. Set the variable value to a stable Ethernet network interface. Do not use virtual, temporary or
loopback interfaces.

• On Windows: Set the value to the MAC address of your network card. You can use the
ipconfig -all command to obtain the address. Example:

dottestcli.exe -help

techsupport.enabled=true

techsupport.create.on.exit=true

techsupport.archive.location=[OUTPUT DIRECTORY]

C\:\\Project\\Mailsystem\\Report

%ProgramData%\Parasoft\dotTEST\<Domain>_<User>\logs

%localappdata%\Parasoft\DtpPlugin\logs\

SET PARASOFT_SUPPORT_NET_INTERFACES=00-10-D9-27-AC-85
89

• On Linux: Set the value to one of the network interfaces from the "inet" or "inet6" fam-
ily. For example: You can use the ifconfig command to obtain the list of available
interfaces. Example:

If the problem persists, you can obtain diagnostic information by setting up the environment variable
PARASOFT_DEBUG_NET_INTERFACES and setting its value to true. This will print to the stan-
dard output the checking procedure that can be shared with technical support , as well as the inter-
face that is used to compute your machine ID. The interface will be marked with the [SELECTED]
prefix.

export PARASOFT_SUPPORT_NET_INTERFACES=eth1
90

Switches Reference
The following table describes the switches available in DTP Engines

Switch Description

-solution PATH Path to solution(s) to be analyzed. Specify multiple times to analyze
many solutions. Supports ANT-style wildcards.

-project PATH Path to project(s) to be analyzed when solution is not provided.
Specify multiple times to analyze many projects. Supports ANT-style
wildcards

-website DIR Full path to web site directory to be analyzed when solution is not
provided.

-config CONFIG_URL Path to test configuration. Can point to built-in, user-defined, or team
configurations stored in DTP. Can reference by filename or by HTTP
URL. See “Specifying Test Configurations”, page 15.

-resource RESOURCE Solution path of a resource(s).The path corresponds to path of an
element in Solutions Explorer of Visual Studio. See “Defining Test
Scope”, page 18.

-include PATH File-system paths of files to include in the analysis. Supports ANT-
style wildcards. If not specified, all files are analyzed. See “Fine-tun-
ing the Scope”, page 18

-exclude PATH File-system paths of files to exclude from the analysis. Supports
ANT-style wildcards. See “Fine-tuning the Scope”, page 18.

-report PATH Path to report directory or main report file. See “Reporting”, page 32.

-publish Publishes report to Development Testing Platform (DTP) server.
“Sending Results to Development Testing Platform (DTP) Server”,
page 38.

-settings PATH Path to report directory or main report file. See “Customizing DTP
Engines for .NET”, page 52.

-nobuild Disables build of the tested solution or projects.

-solutionConfig CONFIG Solution configuration, e.g. Debug.

-projectConfig CONFIG Project configuration, e.g. Debug.

-targetPlatform PLATFORM Solution configuration target platform, e.g. Any CPU; or project con-
figuration target platform, e.g. AnyCPU. Note the syntax difference.

-out PATH Path where console output is saved.

-help Displays command line help.

-version Prints version

-listconfigs Prints all available test configurations.

-encodepass PASSWORD Prints an encoded password that can be used in the .properties
configuration file.
91

-reference PATH Path to additional assemblies needed to resolve dependencies of
the analyzed projects. Use this switch if you receive an "Unable to
find reference assembly" message.

-runtimeCoverage PATH Path to the file that contains runtime coverage data

-staticCoverage PATH Path to the file that contains static coverage data

-machineID Prints your machine ID.

-showsettings Prints the current settings and customizations.

Switch Description
92

Third-Party Content
DTP Engines for .NET incorporate items that have been sourced from third parties. The names of the
items and their license agreements have been listed in the table. Click the license name to see the
details.

Item License

commons-collections.jar Apache License 2.0

commons-vfs.jar Apache License 2.0

avalon-framework.jar Apache License 2.0

batik-all.jar Apache License 2.0

fop.jar Apache License 2.0

chardet.jar Mozilla Public License

bcprov.jar MIT License

saxon.jar Mozilla Public License

jfreechart.jar GNU LGPL License

jcommon.jar GNU LGPL License

cvslib.jar CDDL License

javax.xml.stream_1.0.1.jar Eclipse Public License

javax.activation_1.1.1.jar Apache License 2.0

jakarta-log4j.jar Apache License 2.0

xmlgraphics-commons.jar Apache License 2.0

fst.jar Apache License 2.0

truezip.jar Apache License 2.0

jjawin.jar DevelopMentor OpenSource Soft-
ware License

trilead-ssh2.jar Trilead AG License

javanet.staxutils_1.0.0.jar BSD License

commons-codec.jar Apache License 2.0

commons-httpclient.jar Apache License 2.0

org.apache.commons.io_1.4.0.v20081110-
1000.jar

Apache License 2.0

org.apache.commons.logging_1.1.3.jar Apache License 2.0

fluent-hc.jar Apache License 2.0

httpclient.jar Apache License 2.0
93

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
https://www.mozilla.org/en-US/MPL/2.0/
https://opensource.org/licenses/MIT
https://www.mozilla.org/en-US/MPL/2.0/
https://www.mozilla.org/en-US/MPL/2.0/
https://www.gnu.org/licenses/lgpl.html
https://www.gnu.org/licenses/lgpl.html
https://opensource.org/licenses/CDDL-1.0
https://eclipse.org/org/documents/epl-v10.php
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://jawinproject.sourceforge.net/LICENSE.txt
https://github.com/jenkinsci/trilead-ssh2/blob/master/LICENSE.txt
http://www.opensource.org/licenses/bsd-license.php
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

httpcore.jar Apache License 2.0

httpclient-cache.jar Apache License 2.0

httpmime.jar Apache License 2.0

org.apache.jcs_1.3.4.jar Apache License 2.0

org.codehaus.stax2_3.2.4.jar Apache License 2.0

org.json_1.0.0.v201507290100.jar JSON License

javax.mail_1.5.0.jar CDDL License

org.suigeneris.jrcs.diff_0.4.2.jar GNU LGPL License

org.apache.felix.scr-1.6.2.jar Apache License 2.0

osgi.core-5.0.0.jar Apache License 2.0

Java JRE Oracle Binary Code License

Microsoft Visual C++ Redistributable
Libraries

Microsoft Visual C++ Redistrib-
utable Libraries (Visual Stu-
dio License)

IKVM Permissive Free Software
Licence

Metaspec C# Parser Metaspec Commercial License

log4cpp GNU LGPL License

.NET Compiler Platform ("Roslyn") Apache License 2.0

DotNetZip Microsoft Public License

Osgi.Framework Apache License 2.0

Apache Felix Declarative Services Apache License 2.0

Java Native Access (JNA) GNU LGPL License

NUnit The zlib/libpng License (Zlib)

Microsoft.Composition Microsoft Software License
Terms

Microsoft.Tpl.Dataflow Microsoft Software Supplemen-
tal Licence Terms

Nito AsyncEx Microsoft Public License

System.Collections.Immutable Microsoft Software License
Terms

System.Reflection.Metadata Microsoft Software License
Terms

Item License
94

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.json.org/license.html
https://opensource.org/licenses/CDDL-1.0
https://www.gnu.org/licenses/lgpl.html
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.oracle.com/technetwork/java/javase/terms/license/index.html
https://msdn.microsoft.com/en-us/library/ms235299.aspx
http://www.ikvm.net/license.html
https://www.gnu.org/licenses/lgpl.html
http://www.apache.org/licenses/LICENSE-2.0
https://opensource.org/licenses/MS-PL
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
https://www.gnu.org/licenses/lgpl.html
https://opensource.org/licenses/zlib-license.html
https://www.microsoft.com/net/dotnet_library_license.htm
https://support.microsoft.com/en-us/help/19999/microsoft-software-supplemental-license-terms
https://opensource.org/licenses/MS-PL
https://www.microsoft.com/net/dotnet_library_license.htm
https://www.microsoft.com/net/dotnet_library_license.htm

Common Compiler Infrastructure Microsoft Public License

Item License
95

https://opensource.org/licenses/MS-PL

	PARASOFT END USER LICENSE AGREEMENT
	Introduction
	Static Analysis Engine (SAE)
	Unit Test Connector (UTC)
	Code Coverage Engine (CCE)

	Getting Started
	System Requirements
	About .NET Framework Prerequisite
	Manually Installing Visual C++ Redistribution Packages

	Installing DTP Engines
	Installing from a Zip Distribution
	Connecting to Build and Continuous Integration Systems
	Deploying Examples
	Deploying Examples During Installation
	Deploying Examples from the Command Line

	Multiple Installations on a Single Machine
	Running dotTEST with a Local System Account

	Setting the License
	Local License
	Obtaining the Machine ID

	Network License

	Connecting to DTP Server
	Creating an Encoded Password

	Connecting to Source Control
	Known Limitations

	Static Analysis Engine
	Basic Analysis
	Analyzing Visual Studio Solutions
	Analyzing a Single FileSolution
	Analyzing Multiple Solutions

	Analyzing Visual Studio Projects Without Solutions
	Analyzing Websites

	Specifying Test Configurations
	Viewing Available Test Configurations
	Built-in Test Configurations
	Creating Custom Rules

	Defining Test Scope
	Testing a Single Project in a Solution
	Testing a Single Directory of Files in a Project
	Testing a Single Source File
	Testing a Single Project Under a Solution Folder
	Testing a Single Source File When No Solution is Provided
	Fine-tuning the Scope
	Specifying Additional Assemblies
	Examples

	Configuring Authorship
	About Authorship Configuration Priority
	Configuring How Authorship is Computed
	Additional Authorship Configurations

	Creating Authorship XML Map Files
	You can use wildcards to map authors to sets of files. The following table contains examples:
	Description

	Suppressing Violations
	Line Suppression
	Line Suppression Examples
	Block Suppression
	Block Suppression Examples

	Flow Analysis
	Configuring Depth of Flow Analysis
	Setting Timeout Strategy
	Running Flow Analysis with Swapping of Analysis Data Enabled
	Configuring Verbosity of Flow Analysis
	Null-checking Methods
	Specifying Resources
	Configuring Resource Allocators
	Configuring Resource Closers

	Metrics Analysis
	Setting Metrics Thresholds

	Code Duplicate Analysis
	Using DTP Engines in an IDE

	Reporting
	Specifying Report Output Location
	Specifying Report Format
	Viewing Reports
	Header
	Static Analysis
	All Findings
	Findings by Author
	Findings by File
	Metrics Summary
	Test Execution
	All Findings
	Findings by Author
	Executed Tests (Details)
	Test Parameters

	Sending Results to Development Testing Platform (DTP) Server
	Associating Results with a DTP Project

	Publishing Source Code to DTP Server
	Publishing Sources to DTP Without Running Code Analysis

	Unit Test Connector
	Running Unit Tests with Coverage
	Running NUnit Tests
	Examples

	Running MSTest Tests
	Tagging Unique Test Runs

	Associating Tests with Development Artifacts
	Enabling Artifact Associations
	Specifying Issue Tracking Tags
	Configuring Issue Tracking Tags and URL Associations
	Enabling Test Details
	Using NUnit Attributes
	Multiple Associations

	Code Coverage Engine
	Application Coverage for Standalone Applications
	Using the Coverage Wizard
	Using the Command Line Options
	Merging Coverage Data

	Application Coverage for Web Applications
	Prerequisites
	Process Overview
	Configuring the Application Under Test for Coverage
	Generating the Static Coverage File
	The dottestcli console output will indicate where the static coverage data is saved:
	Customizing Scope of Coverage

	Attaching the Coverage Agent to the AUT
	Collecting Coverage from Multiple Users
	Changing IIS Idle Time-outs

	Test Configuration and Execution
	Uploading Test Results to DTP
	Generating a Dynamic Coverage Data File and Uploading it to DTP
	Stopping Dynamic Coverage Data Collection
	Known Limitations
	Reviewing Coverage in DTP

	Customizing DTP Engines for .NET
	Auto-configuring Settings from DTP Server
	Specifying Organization-wide Settings
	Specifying Settings Per Project

	Using Variables
	Settings Reference
	Base Configuration Settings
	Test Configuration Settings
	Development Testing Platform Settings
	Scope and Authorship Settings
	Suppression Settings
	Technical Support Settings
	Report Settings
	General Source Control Settings
	AccuRev Source Control Settings
	ClearCase Source Control Settings
	CVS Source Control Settings
	Git Source Control Settings
	Mercurial Source Control Settings
	Perforce Source Control Settings
	Serena Dimensions Source Control Settings
	StarTeam Source Control Settings
	Subversion Source Control Settings
	Synergy/CM Source Control Settings
	Microsoft Team Foundation Server Source Control Settings
	Microsoft Visual SourceSafe Source Control Settings
	Visual Studio Settings

	Integrations
	Integrating with MSBuild
	Target File
	MSBuild Task

	Integrating with NAnt
	Loading NAnt Task Library
	Supported NAnt Task Arguments

	Integrating with Source Control Systems
	Integrating with CI Tools
	Integrating with TeamCity
	Integrating DTP Engines with TeamCity
	Configuring a TeamCity Project for DTP Engines
	Viewing Results

	Integrating with Jenkins

	Building Solutions and Projects
	Delegating the Build to MSBuild or Visual Studio
	Depending on Pre-built Code
	Specifying Solution Configuration and Target Platform
	Verifying the Required Build Artifacts

	Getting Help
	Technical Support
	Troubleshooting
	Floating Machine ID

	Switches Reference

	Third-Party Content

