
Legacy 9.x Functionality for Concerto
and Development Testing Platform

PARASOFT END USER LICENSE AGREEMENT

REDISTRIBUTION NOT PERMITTED
This Agreement has 3 parts. Part I applies if you have not purchased a license to the accompanying software (the

"SOFTWARE"). Part II applies if you have purchased a license to the SOFTWARE. Part III applies to all license

grants. If you initially acquired a copy of the SOFTWARE without purchasing a license and you wish to purchase a

license, contact Parasoft Corporation ("PARASOFT"):

(626) 305-0041

(888) 305-0041 (USA only)

(626) 256-6884 (Fax)

info@parasoft.com

http://www.parasoft.com

PART I -- TERMS APPLICABLE WHEN LICENSE FEES NOT (YET) PAID GRANT.

DISCLAIMER OF WARRANTY.
Free of charge SOFTWARE is provided on an "AS IS" basis, without warranty of any kind, including without

limitation the warranties of merchantability, fitness for a particular purpose and non-infringement. The entire risk as

to the quality and performance of the SOFTWARE is borne by you. Should the SOFTWARE prove defective, you

and not PARASOFT assume the entire cost of any service and repair. This disclaimer of warranty constitutes an

essential part of the agreement. SOME JURISDICTIONS DO NOT ALLOW EXCLUSIONS OF AN IMPLIED

WARRANTY, SO THIS DISCLAIMER MAY NOT APPLY TO YOU AND YOU MAY HAVE OTHER LEGAL RIGHTS

THAT VARY BY JURISDICTION.

NOTE: For BETA versions, it is possible that some functionality, although mentioned in the

documentation, is not yet fully implemented.

PART II -- TERMS APPLICABLE WHEN LICENSE FEES PAID

GRANT OF LICENSE.
PARASOFT hereby grants you, and you accept, a limited license to use the enclosed electronic media, user

manuals, and any related materials (collectively called the SOFTWARE in this AGREEMENT). You may install the

SOFTWARE in only one location on a single disk or in one location on the temporary or permanent replacement of

this disk. If you wish to install the SOFTWARE in multiple locations, you must either license an additional copy of

the SOFTWARE from PARASOFT or request a multi-user license from PARASOFT. You may not transfer or

sub-license, either temporarily or permanently, your right to use the SOFTWARE under this AGREEMENT without

the prior written consent of PARASOFT.

LIMITED WARRANTY.
PARASOFT warrants for a period of thirty (30) days from the date of purchase, that under normal use, the material

of the electronic media will not prove defective. If, during the thirty (30) day period, the software media shall prove

defective, you may return them to PARASOFT for a replacement without charge.

THIS IS A LIMITED WARRANTY AND IT IS THE ONLY WARRANTY MADE BY PARASOFT. PARASOFT MAKES

NO OTHER EXPRESS WARRANTY AND NO WARRANTY OF NONINFRINGEMENT OF THIRD PARTIES'

RIGHTS. THE DURATION OF IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, WARRANTIES OF

MERCHANTABILITY AND OF FITNESS FOR A PARTICULAR PURPOSE, IS LIMITED TO THE ABOVE LIMITED

WARRANTY PERIOD; SOME JURISDICTIONS DO NOT ALLOW LIMITATIONS ON HOW LONG AN IMPLIED

WARRANTY LASTS, SO LIMITATIONS MAY NOT APPLY TO YOU. NO PARASOFT DEALER, AGENT, OR

EMPLOYEE IS AUTHORIZED TO MAKE ANY MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS

WARRANTY.

If any modifications are made to the SOFTWARE by you during the warranty period; if the media is subjected to

accident, abuse, or improper use; or if you violate the terms of this Agreement, then this warranty shall

immediately be terminated. This warranty shall not apply if the SOFTWARE is used on or in conjunction with

hardware or software other than the unmodified version of hardware and software with which the SOFTWARE was

designed to be used as described in the Documentation. THIS WARRANTY GIVES YOU SPECIFIC LEGAL

RIGHTS, AND YOU MAY HAVE OTHER LEGAL RIGHTS THAT VARY BY JURISDICTION.

YOUR ORIGINAL ELECTRONIC MEDIA/ARCHIVAL COPIES.
The electronic media enclosed contain an original PARASOFT label. Use the original electronic media to make

"back-up" or "archival" copies for the purpose of running the SOFTWARE program. You should not use the original

electronic media in your terminal except to create the archival copy. After recording the archival copies, place the

original electronic media in a safe place. Other than these archival copies, you agree that no other copies of the

SOFTWARE will be made.

TERM.
This AGREEMENT is effective from the day you install the SOFTWARE and continues until you return the original

SOFTWARE to PARASOFT, in which case you must also certify in writing that you have destroyed any archival

copies you may have recorded on any memory system or magnetic, electronic, or optical media and likewise any

copies of the written materials.

CUSTOMER REGISTRATION.
PARASOFT may from time to time revise or update the SOFTWARE. These revisions will be made generally

available at PARASOFT's discretion. Revisions or notification of revisions can only be provided to you if you have

registered with a PARASOFT representative or on the Parasoft Web site. PARASOFT's customer services are

available only to registered users.

PART III -- TERMS APPLICABLE TO ALL LICENSE GRANTS

SCOPE OF GRANT.

DERIVED PRODUCTS.
Products developed from the use of the SOFTWARE remain your property. No royalty fees or runtime licenses are

required on said products.

PARASOFT'S RIGHTS.
You acknowledge that the SOFTWARE is the sole and exclusive property of PARASOFT. By accepting this

agreement you do not become the owner of the SOFTWARE, but you do have the right to use the SOFTWARE in

accordance with this AGREEMENT. You agree to use your best efforts and all reasonable steps to protect the

SOFTWARE from use, reproduction, or distribution, except as authorized by this AGREEMENT. You agree not to

disassemble, de-compile or otherwise reverse engineer the SOFTWARE.

SUITABILITY.
PARASOFT has worked hard to make this a quality product, however PARASOFT makes no warranties as to the

suitability, accuracy, or operational characteristics of this SOFTWARE. The SOFTWARE is sold on an "as-is"

basis.

EXCLUSIONS.
PARASOFT shall have no obligation to support SOFTWARE that is not the then current release.

TERMINATION OF AGREEMENT.
If any of the terms and conditions of this AGREEMENT are broken, this AGREEMENT will terminate automatically.

Upon termination, you must return the software to PARASOFT or destroy all copies of the SOFTWARE and

Documentation. At that time you must also certify, in writing, that you have not retained any copies of the

SOFTWARE.

LIMITATION OF LIABILITY.
You agree that PARASOFT's liability for any damages to you or to any other party shall not exceed the license fee

paid for the SOFTWARE.

PARASOFT WILL NOT BE RESPONSIBLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL

DAMAGES RESULTING FROM THE USE OF THE SOFTWARE ARISING OUT OF ANY BREACH OF THE

WARRANTY, EVEN IF PARASOFT HAS BEEN ADVISED OF SUCH DAMAGES. THIS PRODUCT IS SOLD

"AS-IS".

SOME STATES DO NOT ALLOW THE LIMITATION OR EXCLUSION OF LIABILITY FOR INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU.

YOU MAY ALSO HAVE OTHER RIGHTS WHICH VARY FROM STATE TO STATE.

ENTIRE AGREEMENT.
This Agreement represents the complete agreement concerning this license and may be amended only by a

writing executed by both parties. THE ACCEPTANCE OF ANY PURCHASE ORDER PLACED BY YOU IS

EXPRESSLY MADE CONDITIONAL ON YOUR ASSENT TO THE TERMS SET FORTH HEREIN, AND NOT

THOSE IN YOUR PURCHASE ORDER. If any provision of this Agreement is held to be unenforceable, such

provision shall be reformed only to the extent necessary to make it enforceable. This Agreement shall be governed

by California law (except for conflict of law provisions).

All brand and product names are trademarks or registered trademarks of their respective holders.

Copyright 1993-2016

Parasoft Corporation
101 E. Huntington Drive
Monrovia, CA 91016

Printed in the U.S.A, October 27, 2016

Table of Contents
Introduction

Viewing DTP Tasks in an IDE ..4

Widgets
Build Results Widgets ..6
Code Widgets ..8
Defects Widgets ...10
Project Center Widgets ..12
Static Analysis (9.x) Widgets ...14
Tests (9.x) Widgets ..18

Parasoft Test Tool Reports (9.x and older)
Navigating Reports ..24
Controlling Schedule, Cost, and Quality ..29
Static Analysis ...36
Unit Tests ...47
Source Code Check-ins ...53
Builds ...56
Code Review ...61
Tools Usage ...66
Tests Overview ..74
Tests By Date ..75
Errors by Category ...76
Errors by Severity ..84
Recent Test Logs ...87
Change-Based Testing ..93
Code Metrics Reports ..96
Working with the Security Menu ..103
Policy Report ...108
Project Portfolio Report ..109
Code Base Size ...111
Build Results ..118
Tests (Files) ...119
Defects and Enhancements Reports ...129
Manual Test Sessions ...135
Coverage Report ...137

Policy Center (Legacy)
Policy Center Overview ...140
Connecting to Policy Center (Standard Edition) ..141
Configuring Policy Checking and Reporting ..142
Reviewing Policy Check Results ..146
Policy Settings ...154

Administration
Project Creation and Configuration ..164
Report Center Administration Pages ...172
Project Center Administration Pages ...184
Optional Report Center Configurations ..186
Configuring Cache Report Executor ..190
Report Center Tools ..193
Creating and Locking Down Sandboxes ..196
1

Forwarding DTP Engines 10.x Reports From Data Collector to Team Server204
Changing Multicast DNS Usage ..205
Customizing Exports to Microsoft Word ...206
Disabling and Enabling Applications from the Toolbar ..207

Integrations
Connecting Report Center and Project Center to Parasoft Test ..209
Importing BTS Data from CSV ...210
Integrating with Bug Tracking Systems and Requirement Management Systems215
BTS and RMS Scanner and Updater ...221
Integrating with HP Quality Center ..235
Integrating with Bugzilla ...243
Integrating with IBM Rational ClearQuest ..247
Integrating with Atlassian JIRA ..253
Integrating with IBM Rational Change and Synergy ..261
Integrating with Code Review ..267
Integrating Report Center with Emma ..271
Integrating Report Center with Source Control Management Systems ...275
Integrating with PTC Integrity Source Control Extension ...278
Sending Test Results from Third-party Tools to Development Testing Platform286
Importing Reports to Microsoft Excel ...287
Java API ..289

Managing Report Center Installation
Managing Report Center Installation in Windows ..290
Managing Report Center in Linux ..291
Verifying Development Testing Platform Product Availability ..294
Migrating Data ...295
Upgrading MySQL Server ..297
Configuration Manager Internal Details (Linux/Solaris) ...298
Creating an Initial Database and Upgrading the Database for Linux (Command-line Menu-driven Method)

300
Registering Automated Startup Manually (Linux) ..302

Troubleshooting
Cache Report Executor ...305
Team Server ..306
Show Source Functionality ..307
Switching to Debug Logging Mode ..309
Index ..i
2

3

Introduction
This user manual is for organizations using Parasoft Development Testing Platform (DTP) to collect,
correlate, and report test and analysis data from 9.x tools, such as Jtest, C++test, and dotTEST 9.x.

For documentation associated with using DTP with the DTP Engines for Java, .NET, and C/C++, use
the help link in DTP to access the main user manual. The DTP Engines provide richer data, greater
flexibility for executing third-party analyzers, and stronger support for IDEs, build systems, and other
software development components.

About Parasoft DTP
Parasoft Development Testing Platform (DTP) is an advanced SDLC analytics platform that eliminates
the business risk associated with faulty software, accelerates software delivery, and facilitates
continuous process improvement. DTP monitors and measures the application of quality practices,
such as static analysis, unit testing, coverage analysis, and runtime error detection. Data generated
throughout the SDLC is collected, corrlated, and analyized in order to deliver intelligent, actionable
findings that enable you to focus on the impact of changec ode and demonstrate full compliance
traceability.

For additional information about DTP, see the main user manual by clicking the help link in DTP.

Viewing DTP Tasks in an IDE

4

Viewing DTP Tasks in an IDE
Development Testing Platform integrates with Eclipse and MS Visual Studio IDEs. Parasoft Test,
which is a plugin to Eclipse or MS Visual Studio contains Task Assistant component -- this is a
component that brings Development Testing Platform tasks directly to the developer IDEs. You can
search through Development Testing Platform tasks, without having to leave development IDE
(Eclipse or Visual Studio).

For a detailed description on how to use Task Assistant please see Parasoft Test documentation.

5

Widgets
The widgets in this documentation show data from the 9.x platform and Project Center.

In this section:

• Build Results Widgets

• Code Widgets

• Defects Widgets

• Project Center Widgets

• Static Analysis (9.x) Widgets

• Tests (9.x) Widgets

Build Results Widgets
Build Results Widgets

Build Results
This widget shows the number of files that failed, contain warnings, and passed during build as
reported by 9.x versions of Parasoft tools.

Actions
Click the widget to view the Build Results report. See “Build Results”, page 56, report for more
information.

Custom Dashboard Properties
Use the following properties when adding this widget to a custom dashboard:

"name": "Build Results",

"type": "legacy",

"id": "BuildsHistoryChart"

Settings
• Title: Enter a new title to replace the default title that appears on the dashboard.

• Filter: Choose Dashboard Settings to use the dashboard filter or choose a filter from the drop-
down menu.

• Period: Choose Dashboard Settings to use the dashboard date range or choose a period from
the drop-down menu.

Jenkins Job Results
This widget shows the status and build results from a Jenkins job.The Jenkins server must allow
anonymous read access for the Jenkins-based widgets to function properly.

Custom Dashboard Properties
Use the following properties when adding this widget to a custom dashboard:

"name": "Jenkins Job Result",

"type": "legacy",

"id": "JenkinsJob"

Settings
6

Build Results Widgets
• Title: Enter a new title to replace the default title that appears on the dashboard.

• Jenkins Server: URL of the Jenkins server.

• Jenkins Job: Name of the job.
7

Code Widgets
Code Widgets

Check-ins
This widget shows number of file revisions committed to source control for the associated project by
9.x versions of Parasoft tools.

Actions
Click the widget to view the Source Code Check-ins report. See “Source Code Check-ins”, page 53, for
more information.

Custom Dashboard Properties
Use the following properties when adding this widget to a custom dashboard:

"name": "Check-ins",

"type": "legacy",

"id": "RevisionHistoryChart"

Settings
• Title: Enter a new title to replace the default title that appears on the dashboard.

• Filter: Choose Dashboard Settings to use the dashboard filter or choose a filter from the drop-
down menu.

• Period: Choose Dashboard Settings to use the dashboard date range or choose a period from
the drop-down menu.

Code Base Size
This widget shows the number of lines of code in the project as reported by 9.x versions of Parasoft
tools.

Actions
Click the widget to view the Code Base Size report. See “Code Base Size”, page 111 report for more
information.

Custom Dashboard Properties
Use the following properties when adding this widget to a custom dashboard:

"name": "Code Base Size",
8

Code Widgets
"type": "legacy",

"id": "CodeBaseSizeHistoryChart"

Settings
• Title: Enter a new title to replace the default title that appears on the dashboard.

• Filter: Choose Dashboard Settings to use the dashboard filter or choose a filter from the drop-
down menu.

• Period: Choose Dashboard Settings to use the dashboard date range or choose a period from
the drop-down menu.

Code Review
This widget shows the general status of the code review process as faciliated by 9.x versions of the
Parasoft tools.

Actions
Click on a bar in the graph to view the Code Review Activity report. See “Code Review Activity”,
page 61, for more information.

Custom Dashboard Properties
Use the following properties when adding this widget to a custom dashboard:

"name": "Code Review",

"type": "legacy",

"id": "CodeReviewSummaryChart"

Settings
• Title: Enter a new title to replace the default title that appears on the dashboard.

• Filter: Choose Dashboard Settings to use the dashboard filter or choose a filter from the drop-
down menu.

• Period: Choose Dashboard Settings to use the dashboard date range or choose a period from
the drop-down menu.
9

Defects Widgets
Defects Widgets

Defect Trend
This widget shows changes in the number of defects over time.

Actions
Click the widget to open the Defects report. See “Defects and Enhancements Reports”, page 129, for
more information.

Custom Dashboard Properties
Use the following properties when adding this widget to a custom dashboard:

"name": "Defect Trend",

"type": "legacy",

"id": "PrHistoryChart"

Settings
• Title: Enter a new title to replace the default title that appears on the dashboard.

• Filter: Choose Dashboard Settings to use the dashboard filter or choose a filter from the drop-
down menu.

• Period: Choose Dashboard Settings to use the dashboard date range or choose a period from
the drop-down menu.

Enhancement Trend
This widget shows changes in the number of enhancements over time.

Actions
Click the widget to open the Enhancements report. See “Defects and Enhancements Reports”,
page 129, for more information.

Custom Dashboard Properties
Use the following properties when adding this widget to a custom dashboard:

"name": "Enhancement Trend",

"type": "legacy",

"id": "FrHistoryChart"
10

Defects Widgets
Settings
• Title: Enter a new title to replace the default title that appears on the dashboard.

• Filter: Choose Dashboard Settings to use the dashboard filter or choose a filter from the drop-
down menu.

• Period: Choose Dashboard Settings to use the dashboard date range or choose a period from
the drop-down menu.

New Defects by Week
This widget shows the number of defects reported by week in a bar graph. Defects are color-code by
state:

• red: new or reopened

• yellow: assigned

• light green: resolved

• dark green: verified

Actions
Mouse over a color-coded section of a bar to see a count of defects for the week. Click on a bar in the
widget to open the defects page in Project Center. See “Viewing Defects/Enhancements”, page 115

Custom Dashboard Properties
Use the following properties when adding this widget to a custom dashboard:

"name": "New Defects by Week ",

"type": "legacy",

"id": "DefectsLastWeeks"

Settings
• Title: Enter a new title to replace the default title that appears on the dashboard.

• Filter: Choose Dashboard Settings to use the dashboard filter or choose a filter from the drop-
down menu.
11

Project Center Widgets
Project Center Widgets

Iteration Burndown
This widget shows the rate of work done versus ideal rate for all open iterations in the selected project.

Actions
Click the widget to open the iteration in Project Center.

Custom Dashboard Properties
Use the following properties when adding this widget to a custom dashboard:

"name": "Iteration Burndown",

"type": "legacy",

"id": "ProjectIterationsBurndown"

Settings
• Title: Enter a new title to replace the default title that appears on the dashboard.

• Filter: Choose Dashboard Settings to use the dashboard filter or choose a filter from the drop-
down menu.

• Gate: Choose a quality gate from the drop-down menu. Project does not have quality gates,
then the widget will indicate that no data is available.

Requirements Burndown
This widget shows the change in story points for a requirement over time (burndown).

Actions
Click on the widget to open the requirement in Project Center.

Custom Dashboard Properties
Use the following properties when adding this widget to a custom dashboard:

"name": "Requirements Burndown",

"type": "legacy",

"id": "RequirementsBurndownChartWidget"
12

Project Center Widgets
Settings
• Title: Enter a new title to replace the default title that appears on the dashboard.

• Requirement ID: Enter the Project Center requirement ID.

• Start Date: Enter the start date of the iteration.

• End Date: Enter the end date of the iteration (optional).

Tasks
This widget shows all open tasks for an iteration.

Actions
Click on an iteration ID to open the iteration in Project Center.

Custom Dashboard Properties
Use the following properties when adding this widget to a custom dashboard:

"name": "Tasks",

"type": "legacy",

"id": "TasksInProgress"

Settings
• Title: Enter a new title to replace the default title that appears on the dashboard.

• Project: Choose a project.

• Iteration: Choose an iteration.

• Enable the Show Closed option to include closed iterations.

• Status: Filter widget results by task status.

• Test Status: Filter widget results by test status.
13

Static Analysis (9.x) Widgets
Static Analysis (9.x) Widgets
The widgets in this category return static analysis results from version 9.x of Parasoft Test products,
i.e., C++test 9.x, Jtest 9.x, dotTEST 9.x, and SOAtest 9.x.

Errors by Category
This widget shows static analysis and unit testing results from 9.x versions of Parasoft Test products
grouped by category.

Actions
Click on a graph bar in the widget to open the Errors by Category report. See “Errors by Category”,
page 76, for more information.

Custom Dashboard Properties
Use the following properties when adding this widget to a custom dashboard:

"name": "Errors by Category",

"type": "legacy",

"id": "ErrorsByCategoryHistoryChart"

Settings
• Title: Enter a new title to replace the default title that appears on the dashboard.

• Filter: Choose Dashboard Settings to use the dashboard filter or choose a filter from the drop-
down menu.

• Period: Choose Dashboard Settings to use the dashboard date range or choose a period from
the drop-down menu.

Errors by Severity
This widget shows static analysis and unit testing results from 9.x versions of Parasoft Test products
grouped by severity.

Actions
Click on a graph bar in the widget to open the Errors by Severity report. See “Errors by Severity”,
page 84, for more information.

Custom Dashboard Properties
Use the following properties when adding this widget to a custom dashboard:
14

Static Analysis (9.x) Widgets
"name": "Errors by Severity",

"type": "legacy",

"id": "ErrorsBySeverityHistoryChart"

Settings
• Title: Enter a new title to replace the default title that appears on the dashboard.

• Filter: Choose Dashboard Settings to use the dashboard filter or choose a filter from the drop-
down menu.

• Period: Choose Dashboard Settings to use the dashboard date range or choose a period from
the drop-down menu.

Most Recent Errors by Category
This widget shows details of errors grouped by category detected during the last test run. Results are
from 9.x versions of Parasoft Test products.

Actions
Click on a link in the Errors column to open the Errors Detailed Report for the selected category. See
“Errors by Category”, page 76, for more information.

Custom Dashboard Properties
Use the following properties when adding this widget to a custom dashboard:

"name": "Most Recent Errors by Category",

"type": "legacy",

"id": "ErrorsByCategorySeverityDetailsGrid"

Settings
• Title: Enter a new title to replace the default title that appears on the dashboard.

• Filter: Choose Dashboard Settings to use the dashboard filter or choose a filter from the drop-
down menu.

• Period: Choose Dashboard Settings to use the dashboard date range or choose a period from
the drop-down menu.

Most Recent Errors by Severity
This widget shows details of errors grouped by severity detected during the last test run. Results are
from 9.x versions of Parasoft Test products.
15

Static Analysis (9.x) Widgets
Actions
Click on the widget to open the Errors by Severity report. See “Errors by Severity”, page 84, for more
information.

Custom Dashboard Properties
Use the following properties when adding this widget to a custom dashboard:

"name": "Most Recent Errors by Severity",

"type": "legacy",

"id": "ErrorsBySeverityCategoryDetailsGrid"

Settings
• Title: Enter a new title to replace the default title that appears on the dashboard.

• Filter: Choose Dashboard Settings to use the dashboard filter or choose a filter from the drop-
down menu.

• Period: Choose Dashboard Settings to use the dashboard date range or choose a period from
the drop-down menu.

Static Analysis - Files
This widget shows the number of files that have passed and failed static analysis tests. Results are
from 9.x versions of Parasoft Test products.

Actions
Click on the widget to open the Static Analysis - Files report. See “Static Analysis Files”, page 44, for
more information.

Custom Dashboard Properties
Use the following properties when adding this widget to a custom dashboard:

"name": "Static Analysis - Files",

"type": "legacy",

"id": "StaticFilesHistoryChart"

Settings
• Title: Enter a new title to replace the default title that appears on the dashboard.

• Filter: Choose Dashboard Settings to use the dashboard filter or choose a filter from the drop-
down menu.
16

Static Analysis (9.x) Widgets
• Period: Choose Dashboard Settings to use the dashboard date range or choose a period from
the drop-down menu.

Static Analysis - Violations
This widget shows the number of violations detected in the project. Results are from 9.x versions of
Parasoft Test products.

Actions
Click on the widget to open the Static Analysis - Violations report. “Static Analysis Violations”, page 36,
for more information.

Custom Dashboard Properties
Use the following properties when adding this widget to a custom dashboard:

"name": "Static Analysis - Violations",

"type": "legacy",

"id": "StaticViolationsHistoryChart"

Settings
• Title: Enter a new title to replace the default title that appears on the dashboard.

• Filter: Choose Dashboard Settings to use the dashboard filter or choose a filter from the drop-
down menu.

• Period: Choose Dashboard Settings to use the dashboard date range or choose a period from
the drop-down menu.
17

Tests (9.x) Widgets
Tests (9.x) Widgets

Coverage
This widget shows unit test coverage for the selected project.

Actions
Click on the widget to open the Coverage report. See “Coverage Report”, page 137.

Custom Dashboard Properties
Use the following properties when adding this widget to a custom dashboard:

"name": "Coverage",

"type": "legacy",

"id": "CoverageHistoryChart"

Settings
• Title: Enter a new title to replace the default title that appears on the dashboard.

• Filter: Choose Dashboard Settings to use the dashboard filter or choose a filter from the drop-
down menu.

• Period: Choose Dashboard Settings to use the dashboard date range or choose a period from
the drop-down menu.

Functional Tests - Statistics
This widget shows the percentage of tests passed, number of tests, number of failures, number of
incomplete tests, and total execution time for the most recent functional test run. The widget also
indicates if there has been a change during the selected date range for each statistic.

Actions
Click on the widget to open the Tests (Files) by Type report. See “Tests (Files) By Type”, page 120.

Custom Dashboard Properties
Use the following properties when adding this widget to a custom dashboard:

"name": "Functional Tests - Statistics",

"type": "legacy",

"id": "functionalTestMetricWidget"
18

Tests (9.x) Widgets
Settings
• Title: Enter a new title to replace the default title that appears on the dashboard.

• Filter: Choose Dashboard Settings to use the dashboard filter or choose a filter from the drop-
down menu.

• Period: Choose Dashboard Settings to use the dashboard date range or choose a period from
the drop-down menu.

Functional Tests - Summary
This widget shows the percentage of functional tests that are succeeding, as well as the change in the
success rate during the selected period.

Actions
Click on the widget to open the Tests (Files) by Type report. See “Tests (Files) By Type”, page 120.

Custom Dashboard Properties
Use the following properties when adding this widget to a custom dashboard:

"name": "Functional Tests - Summary",

"type": "legacy",

"id": "FunctionalTestSummary"

Settings
• Title: Enter a new title to replace the default title that appears on the dashboard.

• Filter: Choose Dashboard Settings to use the dashboard filter or choose a filter from the drop-
down menu.

• Period: Choose Dashboard Settings to use the dashboard date range or choose a period from
the drop-down menu.

Manual Tests Sessions
This widget lists all the manual test sessions that have been run or scheduled for the selected project.

Actions
Click on the widget to open the Manual Test Sessions report. See “Manual Test Sessions”, page 135.

Custom Dashboard Properties
Use the following properties when adding this widget to a custom dashboard:
19

Tests (9.x) Widgets
"name": "Manual Test Sessions",

"type": "legacy",

"id": "TestingSessionsRunsHistoryChart"

Settings
• Title: Enter a new title to replace the default title that appears on the dashboard.

• Filter: Choose Dashboard Settings to use the dashboard filter or choose a filter from the drop-
down menu.

• Period: Choose Dashboard Settings to use the dashboard date range or choose a period from
the drop-down menu.

Tests (Files)
This widget shows the number of incomplete, failed, and passed test cases.

Actions
Click on the widget to open the Tests (Files) report. See “Tests (Files)”, page 119.

Custom Dashboard Properties
Use the following properties when adding this widget to a custom dashboard:

"name": "Tests (Files)",

"type": "legacy",

"id": "TestHistoryChart"

Settings
• Title: Enter a new title to replace the default title that appears on the dashboard.

• Filter: Choose Dashboard Settings to use the dashboard filter or choose a filter from the drop-
down menu.

• Period: Choose Dashboard Settings to use the dashboard date range or choose a period from
the drop-down menu.

Unit Tests
This widget shows the number unit test failures and the total number of test cases over time.

Actions
Click on the widget to open the Test Cases report. See “Test Cases Report”, page 152.
20

Tests (9.x) Widgets
Custom Dashboard Properties
Use the following properties when adding this widget to a custom dashboard:

"name": "Unit Tests",

"type": "legacy",

"id": "UnitTestingHistoryChart"

Settings
• Title: Enter a new title to replace the default title that appears on the dashboard.

• Filter: Choose Dashboard Settings to use the dashboard filter or choose a filter from the drop-
down menu.

• Period: Choose Dashboard Settings to use the dashboard date range or choose a period from
the drop-down menu.

Unit Tests - Statistics
This widget shows the percentage of tests passed, number of tests, number of failures, number of
incomplete tests, and total execution time for the most recent unit test run. The widget also indicates if
there has been a change during the selected date range for each statistic.

Actions
Click on the widget to open the Test Cases report. See “Test Cases Report”, page 152.

Custom Dashboard Properties
Use the following properties when adding this widget to a custom dashboard:

"name": "Unit Tests - Statistics",

"type": "legacy",

"id": "unitTestMetricWidget"

Settings
• Title: Enter a new title to replace the default title that appears on the dashboard.

• Filter: Choose Dashboard Settings to use the dashboard filter or choose a filter from the drop-
down menu.

• Period: Choose Dashboard Settings to use the dashboard date range or choose a period from
the drop-down menu.

Unit Tests - Summary
21

Tests (9.x) Widgets
This widget shows the percentage of unit tests that are succeeding, as well as the change in the
success rate during the selected period.

Actions
Click on the widget to open the Test Cases report. See “Test Cases Report”, page 152.

Custom Dashboard Properties
Use the following properties when adding this widget to a custom dashboard:

"name": "Unit Tests - Summary",

"type": "legacy",

"id": "UnitTestSummary"

Settings
• Title: Enter a new title to replace the default title that appears on the dashboard.

• Filter: Choose Dashboard Settings to use the dashboard filter or choose a filter from the drop-
down menu.

• Period: Choose Dashboard Settings to use the dashboard date range or choose a period from
the drop-down menu.
22

23

Parasoft Test Tool Reports (9.x and
older)
Widgets associated with Parasoft Test tools (i.e. C/C++test, Jtest, dotTEST, SOAtest) 9.x and older link
to nested reports that provide detailed information about software quality activities (see “Static Analysis
(9.x) Widgets”, page 14 and “Tests (9.x) Widgets”, page 18). You can also access the reports menu
(previously available in Concerto and DTP 5.1 and older) by entering [DTP_DOMAIN] /grs/reports.jsp
into your browser address bar:

You can bookmark reports, change the scope of a report, sort tables, and refine the presented data in
other ways that enable you to gain insight into your development processes.

In this section:

• Navigating Reports

• Controlling Schedule, Cost, and Quality

• Static Analysis

• Unit Tests

• Source Code Check-ins

• Builds

• Code Review

• Tools Usage

• Tests Overview

• Tests By Date

• Errors by Category

• Errors by Severity

• Recent Test Logs

• Change-Based Testing

• Code Metrics Reports

• Working with the Security Menu

• Policy Report

• Project Portfolio Report

• Code Base Size

• Build Results

• Tests (Files)

• Defects and Enhancements Reports

• Manual Test Sessions

Navigating Reports
Navigating Reports
Reports present data in readily consumable bits. Most reports also enable you to drill down into more
detailed information about a particular segment of the report.

Bookmarking Reports
Click on the Bookmark link to modify the URL so that a report can be bookmarked in your browser.

The Bookmark link does not add the link to the report your browser’s bookmarks folder. You must add
the URL using your browser’s bookmark function after clicking the Bookmark link.

You must be logged in to Report Center to view the bookmarked report. If you select the bookmarked
report page from your browser and are not logged in to Report Center, you will be prompted to do so.
Upon logging in, the bookmarked report will open with current data displayed.

You can also export report data as XML and import it to another program. See “Importing Reports to
Microsoft Excel”, page 287, for more information.

Refreshing Reports
When you view a report, the data from the Development Testing Platform database is cached on the
Development Testing Platform server. If another user uses the same parameters (project, time-span,
etc.) to view the same report, the data is retrieved from the cache rather than the database.

By default, the entire report cache on the Development Testing Platform server is cleared once a day at
00:00. However, you can refresh any report with the latest data from the Development Testing Platform
database on-demand. To refresh a report, click the Refresh link
24

Navigating Reports
All DTP reports, including reports that are accessed from the dashboard view, have a timestamp so
you know the age of the data you’re working with:

Filtering Reports
Depending on the nature of the data, reports may have options to filter by date, time frame, project,
and/or project team members. The following filter options may be available:

Filter by Project
Click the Project drop-down menu and choose a project.

Filter by Project and Team Member
1. Choose a project from the Project drop-down menu.
25

Navigating Reports
2. Choose a team member from the Restrict by Developer drop-down menu.

Filter by Period
You can filter by the most recent number of days or weeks.

• Click on 7, 15, or 30 to filter data by the most recent number of days.

• Click on 12, 26, or 52 to filter data by most recent number of weeks.

Filter by Most Recent Drops
Click on 10, 20, or 50 to filter by the most recent number of drops.

Filter by Custom Date Range
26

Navigating Reports
1. Click on the calendar icon to switch to date range mode.

2. Enter dates in the From and To fields to specify a custom date range.

Sorting Tables
Some tables can be sorted by clicking the column header.

User Startup Report
27

Navigating Reports
You can specify which report displays by default when users access the 9.x and older reports view.
Choose Main> Startup Report and enable a default report:
28

Controlling Schedule, Cost, and Quality
Controlling Schedule, Cost, and Quality
The data sent to Parasoft DTP (or Concerto) from Parasoft code analysis and testing tools version 9.x
and older follows a report-centric paradigm to provide critical insight about the development processes.
This chapter provides guidance on using the report-centric paradigm to help you make decisions about
when to release.

Following are the schedule-, cost- and quality-control topics discussed in this section:

• Verifying Projects Are On-schedule

• Verifying the Amount of Source Code Modified Daily

• Verifying Code was Tested Thoroughly

• Verifying Bugs Are Decreasing and Under Control

• Identifying Weak Requirements and Determining Whether Projects Should Remain in a
Release

Verifying Projects Are On-schedule
The Report Center Project Portfolio provides a single view of all projects across the development
organization. The dashboard’s cross-project view provides quick alert when development metrics
indicate potential trouble with a given project.

Choose Reports> Project Portfolio in the Reports view to access the report.

In addition to an overall project score, Report Center shows trends, differentials, estimated time to
arrival (ETA), estimated days to reach set milestones and separate scores for each of the following
project elements:

• PR

• FR

• Tests (all with the exception of manual tests)

• Unit testing (UT)

• Coding standards (CS)

• Efficiency

Drill downs allow for assessment and analysis of project status.
29

Controlling Schedule, Cost, and Quality
Verifying the Amount of Source Code Modified Daily
As projects progress, you want to know that work is getting done. Integrating with a source control
management system allows you to use the Code widgets, which helps you understand team
productivity. See “Code Widgets”, page 8.

For more information about Report Center integrating with source control management systems see
“Integrating Report Center with Source Control Management Systems”, page 275.

If you are working with a project that has a branch filter (specified using a Source Control Filter in the
Administration> Edit Project area), you can restrict source code reports to display code statistics for
only a specific branch. To do this, simply choose the appropriate branch name from the Branch box.

Drill-downs available from the Code Base Size graph provide answers to the following questions:

• Who is working on the code?

• Who is checking in what code?

• What is each team member actually working on?

The graph provides a comprehensive view of the changing nature of your code base, charting overall
code growth by project, team and individual team member. Report Center dashboards chart such key
code base metrics as number of new file revisions per day or per week, number of lines changed per
file, and author of file changes.

The code growth statistics reported provide the means to objectively monitor development efficiencies
(or inefficiencies), track development progress, and proactively respond when metrics indicate project
goals or deadlines may be at risk. The correlation of code growth with other development metrics
30

Controlling Schedule, Cost, and Quality
delivered on other Report Center reports, such as Feature Requests, PRs, and Test Results enables
regular, on-going evaluation of the impact of code change on code quality and readiness.

Drilling down from the Check-ins graph, you can look at source files and see the entire history of
changes within the file. Projects can be organized so that you are able to see which piece of source
code each team member is working on. The Source Code Statistics - Check-ins graph provides the
architect with development productivity information. You can drill down to the File Details graph to see
the growth of a specific file that makes up a specific feature, and then assess whether its growth is
appropriate to its priority level.

File Details
1. Click on the Code Base Size graph to open the Source Control Summary report.
31

Controlling Schedule, Cost, and Quality
2. Click on a link in the File column to open the File Details drill-down report.

The Code Base Size graph along with its drill-down graphs and tables provide visibiliity into source
control activities. You can see who is working on what and assess the progress of each project, feature
and file.

Verifying Code was Tested Thoroughly
To verify whether code was tested thoroughly, you can examine data from unit tests, along with data
results displayed in the Tests by Type graph and Manual Tests Efforts graph.

Choose Practices> Unit Testing to access the Test Cases anc Coverage graphs and their drill-down
reports.

Automated unit tests provide visibility to exaclty how much testing is being performed and the results of
those tests. If tests are passing but the test coverage is too low, it may be an indication that the code
robust and functionally sound, lacks adequate tests to verify completeness of quality.
32

Controlling Schedule, Cost, and Quality
The Coverage report and its drill-downs to you which test cases passed, how many passed, and the
percentage of code tested that was covered during various stages of the development process.

After reviewing unit testing reports, you can open the Tests graph and drill down to find out whether
coding standards (among other testing types) are being adhered to. The Tests by Type report shows
the number of incomplete, failed, and passed coding standards tests for a specified date. It also lists
the machine and tool on which the tests were run.

To verify thoroughness of manual testing, go to the Manual Test Sessions graph (Figure 1). Drill-downs
from the Manual Test Sessions graph and table provide details about code coverage, as well as the
number of items, use cases, tests pending, tests executed, and time spent manually testing each
module. You can see the testing status (In Progress, Incomplete, Failure, Success) of each module,
too.

Figure 1: Manual Test Sessions

For more details about manual testing, see “Manual Test Sessions”, page 135.

Verifying Bugs Are Decreasing and Under Control
33

Controlling Schedule, Cost, and Quality
Click on a the Defects Trend widget to access the Defects report (see “Defects Widgets”, page 10),
which shows potential bugs in your application. Defect reporting and remediation follows the same
process as features.

Identifying Weak Requirements and Determining
Whether Projects Should Remain in a Release
As features/requirements are being implemented, testing occurs, and then bugs are discovered and
reported. The following questions regarding bugs need to be answered:

• Is the number of bugs decreasing?

• Are bugs under control?

When bugs are under control, the line that represents the number of fixed bugs in the Bugs History
Overview graph will go up and down repeatedly reflecting that bugs were found and then fixed, then
more bugs were found and those were fixed, and so on. It is a jagged pattern, similar to a tooth-edged
saw. Slight patterns are okay. What is important to see is that bugs are being caught and fixed at a
steady rate.

What if you do not see a repeated up and down pattern? Perhaps the line is steadily increasing without
any dips. That means that more and more bugs are being found, but few, if any, are being resolved.
Further, it indicates a problem that needs some investigating.

Perhaps few bugs are being found, or maybe none at all? Such a case would indicate that either
testing is not happening, or developers are writing perfect code. Whatever the case might be, if the
tooth-edged saw patter is not reflected in the graph, it is time to do some investigating and take action!

To find the core of the problem, it is best to have a system that can correlate bug fixes with the source
code. This system can be implemented as an IDE plugin that can be used to track PR's and FR's
information with the relation to the code. This will help to differentiate which files were fixed or modified
for a specific requirement. For instance, if manual testing was performed on a recent project, the
results of manual tests can be viewed and answer questions such as the following so that the source of
the problem can be discovered:

• Who performed the testing?

• How much time was spent testing?

• What were the tests?

• What were the results?
34

Controlling Schedule, Cost, and Quality
When the problem is found, it needs to be determined whether the feature involved should be included
in the release or if it should be waived to the next release so that the projected release date can be
made. A good determinant is to figure out how much code needs to be added to fix the bug. The more
code needed, the higher the cost.

Determining Cost of Violations
Report Center includes the OWASP Top 10 - Pyramid widget, which helps you understand the cost
associated with defects.

The cost of a violation is calculated by multiplying the number of violations for a rule by a respective
weight. By default, the weight is 1. You can update an .xlsx file that contains the rule weights to
configure how the cost associated with violations is determined in your organization. The .xlsx file is in
the following directory: DTP_HOME/grs/datasource/JavaOWASPTop10RulesWeight.xlsx.
35

Static Analysis
Static Analysis
The set of Static Analysis graphs serves as a means to introduce static analysis into your team and
ensure that static analysis becomes an enduring part of your software development life cycle. The
following two graphs are available from the Static Analysis> Violations menu

• Static Analysis Violations

• Static Analysis Files

How do I get here? Practices > Static Analysis

Static Analysis Violations
The Static Analysis Violations graph provides a quick way for developers to see the number of static
analysis violations that have been detected in the selected project’s code, and then drill down to view
the source of those violations along with the developer who is responsible for that code. The report
presents the trend of number of static analysis violations detected in your project source code. Users
36

Static Analysis
can easily see the total number of violations, as well as new violations introduced after the most recent
analysis.

How do I get here? Practices > Static Analysis > Violations

The following information is displayed in the table below the report:

• New Violations: Violations introduced after previous analysis run. *Note: Switch to
"Fixed Base Date" to view new violations relative to a specific date.

• Fixed Violations: Number of violations fixed since previous analysis.

• Remaining Violations: Number of unfixed violations from previous analysis run.

• Suppressed violations: Number of suppressed violations in your source code.

• Violations: Total number of violations detected in your source code.

• Files failed: Number of files in which some violation(s) were detected

For each drop date, the exact number of static analysis violations that have been detected in the
selected project’s code is listed. The report can be switched to non-delta mode (see note below).
37

Static Analysis
.

Static Analysis Violations
Static Analysis Violations data can be displayed in three ways:

• By Violation Type: In the table below the Static Analysis Violations chart, click on the number of
violations in the Violations column to access this view.

• By File: In the table below the Static Analysis Violations chart, click on the number of files in
the Files failed column to access this view.

• By Developers: Open either the By Violation Type or By File view and click the Developer(s)
column header to access this view.

By Violation Type
Each bar in the Static Analysis Violations by Type graph represents a violation category that has the
highest number of reported violations; up to 10 categories are shown.

This report is available in two modes:

• Delta mode is the default view described above that distinguishes between new and
remaining violations.

• Non-delta mode distinguishes between the number of violations and suppressed violations
per date.

Click the [Switch to . .] link to toggle between modes.
38

Static Analysis
How do I get here? Practices> Static Analysis> Violations> Table> "Violations" column> [number
of violations]

The Details table lists the following information for each violation type:

• File: Name of the file that contains violations.

• Violations: Number of violations detected in the listed file.

• Developers: Login ID of the developer responsible for the violation(s) in the listed file.

Click on any link in the table to change views and access additional information:

• Files column header: Switch to By File view.

• Developer(s) column header: Switch to By Developer view.

• [Violation type name]: Opens the Static Analysis Violations Details by Violation Type page.
See “For Violation Type”, page 41 for details.

• [File name]: Opens the Static Analysis Violations Details by File page. See see “For File” on
page 42 for details.

• [Developer name]: Opens the Static Analysis Violations Details by Developer page. See see
“For Developer” on page 42 for details.

By File
Each bar in the Static Analysis Violations by File graph represents a file that has the highest number of
reported violations; up to 10 files are shown.
39

Static Analysis
How do I get here? Practices> Static Analysis> Violations> Table> "Files failed" column>
[number of files]

Click on any link in the table to change views and access additional information:

• Violation Type column header: Switch to By Violation Type view.

• Developer(s) column header: Switch to By Developer view.

• [Violation type name]: Opens the Static Analysis Violations Details by Violation Type page.
See “For Violation Type”, page 41 for details.

• [File name]: Opens the Static Analysis Violations Details by File page. See “For File”, page 42
for details.

• [Developer name]: Opens the Static Analysis Violations Details by Developer page. See “For
Developer”, page 42 for details.

By Developers
Each bar in the Static Analysis Violations by Developers graph represents a developer that has the
highest number of reported violations; up to 10 developers are shown.

How do I get here? Practices> Static Analysis> Violations> Table> "Files failed" or "Violations"
column> [number of files] or [number of violations]> Developer(s)
40

Static Analysis
Click on any link in the table to change views and access additional information:

• Violation Type column header: Switch to By Violation Type view.

• Files column header: Switch to By File view.

• [Developer name]: Opens the Static Analysis Violations Details by Developer page. See “For
Developer”, page 42 for details.

• [Violation type name]: Opens the Static Analysis Violations Details by Violation Type page.
See “For Violation Type”, page 41 for details.

• [File name]: Opens the Static Analysis Violations Details by File page. See “For File”, page 42
for details.

Static Analysis Violations Details
The Coding Standard Violations Details page has three different views and is displayed in one of the
following ways based on the link that you click on the Static Analysis Violations by Type page:

• For Violation Type: Shows the number of rules used, violated and total number of violations for
the selected violation type on the selected date.

• For File: Shows the number of rules used, violated and total number of violations for the
selected file on the selected date.

• For Developer: Shows the number of rules used, violated and total number of violations for the
selected developer on the selected date.

For Violation Type

Coding Standard Violations Details for violation type is displayed when you click the name of
violation type on the Static Analysis Violations by Type page.

Figure 2: Static Analysis - Violations Details for Violation Type

How do I get here? Practices > Static Analysis > Violations > [number of violations] (in table) >
[violation type name] (section headings in table, for example: Maintainability, Global Static
Analysis, Code Duplication Detection, and the like)
41

Static Analysis
For File

Coding Standard Violations Details for file is displayed when you click the name of file on the
Static Analysis Violations by Type page.

Figure 3: Static Analysis - Violations Details for File

How do I get here? Practices > Static Analysis > Violations > Violations > [number of violations]
(in table) > [file name]

For Developer

Coding Standard Violations Details for developer (Figure 4) is displayed when you click the
name of the developer on the Static Analysis Violations by Type page.

Figure 4: Static Analysis - Violations Details for Developer

How do I get here? Practices > Static Analysis > Violations > Violations > [number of violations]
(in table) > [developer name]
42

Static Analysis
The Static Analysis Violations Details reports show the following information:

Summary Section:

• Violation Type: (Applicable to Violation Type view.) Type of rule that was violated.

• File: (Applicable to File view.) Name of the file that the report concerns. Click the file name link
to view the source code of the file.

• Path: (Applicable to File view.) Folder location of the file that the report concerns.

• Developer: (Applicable to Developer view.) Name of the developer who is responsible for the
listed violation.

• Date: Date on which tests were run and the listed violations were found.

• Total rules used: Total number of rules used in the tests that were run. Click to open the Static
Analysis Rules Used report, which lists all rule IDs. See “Static Analysis Rules Used”, page 43.

• Rules violated: Number of rules that were violated. Click to drill down to the Static Analysis
Rules Used report that lists violated rules ID.

• Total violations: Total number of violations detected by Static Analysis tests.

• File History: (Applicable to File view.) Click to open the File Details page.

• Message: Error message of each violation.

Table Section:

• Rule ID: Name of the rule. Click to view a rule description displayed in the browser window.

• Line: (Applicable to Violation Type and File views.) Line of the code where the violation was
detected. Click to view the source of the file with the violated code line highlighted.

• File: (Applicable to Violation Type and Developer views.) Name of the file that contain
violations. Click to open the source code

• Developer: (Applicable to Violation Type and File views.) Name of the developer responsible
for the error. Click the name to view the statistics of that developer.

• Rule Category: (Applicable to Developer and File views.) Click to see the Rule Category
violations statistic.

To change the order by which the statistics in the table are displayed, click any of the table headers.

Note: Source code of a specific file, as well as file history, becomes available to view after
SourceScanner is run.

Static Analysis Rules Used

The Static Analysis Rules Used page (Figure 5) lists all of the rules that were tested on the specified
date. The total number of rules used is shown in the report header.
43

Static Analysis
Figure 5: Static Analysis Rules Used

How do I get here? Static Analysis - Violations Details (any view) > [Total Rules Used]

Click any of the listed rule IDs to open a popup page that lists information such as note, security
relevance, parameters, and the like, for that specific coding standard.

Suppressions for Static Analysis
The Suppressions for Static Analysis page displays information such as the number of rules that are
suppressed for the selected project and the number of suppressed rule violations occurred during
testing. For details see “Suppressions for Static Analysis”, page 150.

Static Analysis Files
The Static Analysis Files report (Figure 6) shows the number of files that failed static analysis tests and
the number that passed during the specified period of time. As any given project progresses, its
tendency to adhere to static analysis or not is evident over time in the Static Analysis Files report.

Figure 6: Static Analysis Files
44

Static Analysis
How do I get here? Practices > Static Analysis > Violations > Files

The Static Analysis Files table is located beneath the graph. For each drop date within the specified
date range, it lists the number of files that contain at least one violation (files failed) and the number of
files that passed without any violations detected (files passed).

Click a statistic listed beneath either of the following columns:

• Files failed: Opens the Static Analysis Violations by File page. See “By File”, page 39 for
details.

• Files passed: Opens the Files without Violations page. See “Files without Violations”, page 45
for details.

Files without Violations
The Files without Violations report (Figure 7) lists all files that passed static analysis tests. With this
report you can answer the following questions:

• What rules were involved in tests?

• What file passed tests without any violations?

• Who/When was the file created?

• Who/When was the file modified?

Figure 7: Files without Violations

How do I get here? Practices > Static Analysis > Violations > Files > [number of files passed] (in
table)

The Files without Violations page consists of two parts:

Summary Information

Date: Date on which tests were run and all listed files passed.

Files: Number of files that passed the tests run on the listed date.

Total rules used: Total number of rules used in the tests that were run. Click to open the Static
Analysis Rules Used report, which lists all rule IDs. See “Static Analysis Rules Used”, page 43.
45

Static Analysis
Files Not Tested: Click to open the Files Not Tested page, which lists all files that were not tested
during the listed date.

Detailed Information

File: Lists path location and name of each file that passed the tests run on the listed date. Click to open
the Static Analysis Violations Details page. See “Static Analysis Violations Details”, page 41 for details.

Created: Date on which the listed file was created.

Last Modified: Date on which the listed file was last changed.

To change the order by which the statistics in the table are displayed, click any of the table headers.

Note: Source code of a specific file, as well as file history, becomes available to view after
SourceScanner is run.
46

Unit Tests
Unit Tests
Unit Testing reports combine the statistics of unit testing results and display them in three reports:

• Unit Testing

• Unit Testing Test Cases

• Unit Testing Coverage

Figure 8: Unit Testing

How do I get here? Practices > Unit Testing

Unit Testing Test Cases
The Unit Testing Test Cases graph shows the total number of test cases and the total number of test
cases that failed for all unit tests. Over time, you want to see that the number of test cases that run are
increasing, while the failures are decreasing. There should be zero failures in the test cases.

How do I get here? Practices > Unit Testing > Test Cases
47

Unit Tests
The Unit Testing Test Cases table is displayed beneath the Unit Testing Test Cases graph and shows
the total number of test cases and the number of failed test cases for each listed drop date.

Click on a value in the Total column to open the Unit Tests - Detailed Report - All Files report.

Click on a value in the Errors column to open the Unit Tests - Detailed Report - Files Failed report.

Unit Tests - Detailed Report - All Files
The Unit Tests - Detailed Report - All Files page provides a quick overview of unit test results and
presents a per file list of test cases ran, failures, estimated coverage, methods tested, methods with
errors..
48

Unit Tests
How do I get here? Practices > Unit Testing > Test Cases> [value in the Total column of chart]

Click on a file to open the This report provides detailed information about a specific file.

Unit Tests - File Detailed Report
This report provides detailed information about a specific file.

How do I get here?

Practices > Unit Testing > Test Cases> [value in the Total column of chart]> [unit test file name]

Click on on the file name to view the source code

Click on value in the Method column to open test case detail.

Unit Tests - Detailed Report - Files Failed
This report provids an overview of files that have failed under unit testing.
49

Unit Tests

How do I get here? Practices > Unit Testing > Test Cases > [number of errors] (from graph)

Click on a file name to open its Unit Tests - File Detailed Report [Failed].

Click on a vaule in the Line column to view the source code.

Unit Tests - File Detailed Report [Failed]
This report provides detailed information about a specific file with failed unit tests. The information
about files in this report is identical to the Unit Tests - File Detailed Report.
50

Unit Tests
How do I get here?

Option 1: Practices > Unit Testing > Test Cases > [total number of tests] (from graph or table) >
[file name] (from tables displayed at bottom of Unit Tests - Detailed Report - Files Failed page)

Option 2: Practices > Unit Testing > Test Cases > [number of errors] (from table) > [file name]
(from tables displayed at bottom of Unit Tests - Detailed Report - Files Failed page)

Unit Testing Coverage
The coverage report helps monitor the progress of unit testing covereage over time. Ideally, the
percentage should increase; no change is an indicator that test are not sufficiently being created. The
Unit Testing Coverage graph shows the following information:

• How much code was actually tested.

• Unit testing coverage of the selected project files.

• A count of tested units and units that still need to be tested

Only line coverage is represented in the graph. MC/DC, branch coverage, and other forms are not
shown. Coverage is represented as percentage of succesfully tested lines of code to the total lines of
selected source code.
51

Unit Tests
.

How do I get here? Practices > Unit Testing> Coverage

The Unit Testing Coverage table is displayed beneath the Unit Testing Coverage graph and shows the
percentage of coverage for each listed drop date. In parenthesis, it shows the total number of tested
units as well as the number of units left to test.

From Unit Testing Coverage, you can click on any date in the graph or table to drill down and view
details about files included in unit tests in Unit Tests - Detailed Report - All Files.

Unit Tests - Detailed Report - All Files
You can click on any test case listed in Unit Tests - Detailed Report - All Files to drill down and view
details about files included in unit tests. See “Unit Tests - File Detailed Report [Failed]” for details about
the data displayed on this page.
52

Source Code Check-ins
Source Code Check-ins
In the Reports view, choose Practices> Source Code Check-ins to open the Source Code Check-ins
report. This report shows the number of revisions that were made to source control files associated
with a specified project during each listed day of the specified date range..

• Click on an area in the Source Code Check-ins graph for a specific date to open the source
control summary for all files updated on that date.

• Click the [group by days] link to view revisions for each user sorted and listed by date.

• Click the [group by weeks] link to view revisions for each user grouped and listed by week
based on the the dates shown in the graph.

• Click on a user name to open the source control summary for all files updated by that user.
53

Source Code Check-ins
Source Control Summary
The source control summary shows the files and directories changed in source control for the selected
date.

• Click Files or Directories to switch between file or directory view.
54

Source Code Check-ins
• In file view, click on a link in the File column to open its detail view, which shows the change in
number of lines of code added for each revision.

• In directory view, click on a link the Directory column to open a source control summary report
for the selected directory.
55

Builds
Builds
The Build Monitor tracks compilation and build processes, analyzes compilation output, and reports
results to Report Center. Such data is reported by Report Center on demand so that users can verify
final results of build processes and uncover exactly where errors occurred.

Build Results
Click on the Build Results widget to open the Build Results report (see “Build Results Widgets”,
page 6). This reports shows the following build information for each listed drop date:

• Number of files that failed

• Number of files that contain warnings and are incomplete

• Number of files and modules that passed t

Click the appropriate date from the graph or table to drill down to the Builds by Platform report.

Builds by Platform
The Builds by Platform page lists the platforms on which the builds were run on the selected date. For
each listed platform, the architecture and version number is also listed, along with the number of files
that failed, contain warnings, or passed during the build process.
56

Builds
Following is the information displayed on the Builds by Platform page:

• Project: Name of the project, which is selected from the drop-down list, for which builds were
run.

• Date: Date of the build selected from the Build Results report.

• OS Name: Name of the operating system installed on the machine that ran the build. Click to
open the Build Execution Details report. See “Build Execution Details”, page 58 for details.

• OS Arch: Type of processor on which the build was run.

• OS Version: Version number of the operating system on which the build was run.

• Fail: Number of files that failed on the listed platform for the selected build. Click to open the
Build Execution Details report. See “Build Execution Details”, page 58 for details.

• Warning: Number of files with warnings on the listed platform for the selected build. Click to
open the Build Execution Details report. See “Build Execution Details”, page 58 for details.

• Pass: Number of files that passed on the listed platform for the selected build. Click to open
the Build Execution Details report. See “Build Execution Details”, page 58 for details.

• Total (column): Total number of files included in the builds on the listed platform for the
selected build.

• Total (row): Combined total of build files that failed, contain warnings, passed and ran on all
platforms. Click to open the Build Execution Details report. See “Build Execution Details”,
page 58 for details.

Click the appropriate platform (via OS Name, Fail, Warning, Pass or Total links) from the Builds by
Platform table to drill down to the Build Execution Details report.
57

Builds
Build Execution Details
The Build Execution Details page (Figure 9) shows builds run on the selected platform on the selected
date. It also shows the files included in each build. You can see the number of files in the build that
failed, contain warning messages, passed, and the total number of files.

Figure 9: Builds Execution Details

The following information is displayed on the Build Execution Details page:

• Build Name: Name of the build that was run on the selected platform on the selected date.
Click to open the Build Modules Details page in a view that lists all build modules, along with
files included in each module. See “Build Modules Details”, page 58 for details.

• Machine: Name of the machine on which the listed build was run.

• OS Name / OS Arch: Name of the operating system installed on the machine that ran the
build. / Type of processor on which the build was run.

• Tool: Name of the tool used to run the build.

• Fail: Number of files that failed in the listed build on the selected platform. Click to open the
Build Modules Details page in a view that only lists files that failed in selected build for the
selected date. See “Build Modules Details”, page 58 for details.

• Warning: Number of files with warnings in the listed build on the selected platform. Click to
open the Build Modules Details page in a view that only lists files with warnings in the selected
build for the selected date. See “Build Modules Details”, page 58 for details.

• Pass: Number of passed in the listed build on the selected platform. Click to open the Build
Modules Details page in a view that only lists files with warnings in the selected build for the
selected date. See “Build Modules Details”, page 58 for details.

• Total: Total number of files included in the listed build on the selected platform.

Drill-down from Build Execution Details report:

Click the appropriate execution details (via OS Name, Fail, Warning, Pass or Total links) from the Build
Execution Details table to drill down to the Build Modules Details report.

Build Modules Details
58

Builds
The Build Modules Details report (Figure 10) lists each module include in the selected build.

Figure 10: Build Modules Details

Let’s examine the first module listed in Figure 10 to get a better understanding of the information
available:

Building wizard\xml: 1 (0, 0, 1)

• Building wizard is the name of the directory where the module is located.

• xml is the module name.

• 1 represents the number of files contained within the listed module.

• (0, 0, 1) represent the number of files that failed, finished with warnings, and passed,
respectively.

For each listed module, a table is displayed beneath it that lists all of the files created for it. For each
listed file, the table also lists the number of messages generated and its status.

In some instances, the actual messages might be displayed right inside the table, as shown in
Figure 10. Messages can appear in the following ways:

• Red font: For failed file status only. Explains the problem exposed during the build.
59

Builds
• Yellow font: For warning status only. Indicates that minor problems were detected during the
build.

The following information is displayed on the Build Modules Details report (Figure 10):

• File Name: Name of the file included in the build. The link selected in the Build Execution
Details report determines the files listed in the Build Modules Details report. Following are the
possible views:

• Clicking a specific Build Name, lists all modules.

• Clicking a number in the Fail column, lists only modules for the corresponding build
name that contain files with failures.

• Clicking a number in the Warning column, lists only modules for the corresponding
build name that contain files with warnings.

• Clicking a number in the Pass column, lists only modules for the corresponding build
name that contain files that passed.

In the Build Modules Details report—if SourceScanner is properly configured—you can click
the name of any file to open the Compiled Files Details pop-up (Figure 11) and view the status,
line number of any failures or warnings, and corresponding messages.

Figure 11: Compiled Files Details

• Messages #: Lists the number of messages available that pertain to the corresponding file.
For messages pertaining to files with a Fail or Warning status, those messages are listed
beneath the file name as shown in Figure 12.

of the build selected from the Build Results graph or table.

Figure 12: Build Modules Details - Messages #

• Status: Fail, Warning, or Pass.
60

Code Review
Code Review
Automated code review is faciliated by the code review functionality executed by the Parasoft Test
solution (Parasoft Jtest, Parasoft C++test, and Parasoft dotTEST, and Parasoft SOAtest). Report
Center stores code review data from these tools and provides a wide variety of code review
reports.The reports provide the visualization and statistical data of Code Review processes performed
in your project.

The following types of Code Review reports are provided:

• Code Review Activity: Presents statistics for the specific period

• Code Review Status: Presents up-to-date status

• Code Review summary chart on Architect Dashboard

Code Review Activity
The Code Review Activity report shows code review process statistics for the selected project during
the specified period.

Each row in the default view of the report shows code review activity metrics for each Author/Reviewer
pair. The following Reviewer metrics are grouped and displayed in each row:

• New To Review: Number of new code reviews created for the specific Reviewer(s) during the
specified period.

• To Review Done: Number of code reviews marked as Accepted or Done during the specified
period.
61

Code Review
• Aging: Number of days the reviewer took to complete the review(s).

• Time Spent: Actual time spent on code review actions, i.e. reviewing source code in Eclipse or
Visual Studio with Parasoft Test.

The following Author metrics are grouped and displayed in each row:

• New To Fix: Number of new code review issues created for the specific Author(s) in the
selected period.

• To Fix Done: Number of code review issues marked as Done during the selected period.

• Aging: Number of days the author took to fix the code review issue(s).

Adjusting Report Filters/Parameters
Users can easily filter the metrics by adjusting the following report parameters:

• Click on a time range to view different periods

• Open the search filter to find specific code review data (e.g. only code from specific author or
only the highest severity issues) from the selected period.
62

Code Review
• Current filter parameters are always shown at the search bar:

By default, the statistics are displayed for the project team members, including session tags (if
specified in the Project Code Review filter on project configuration page in Development Testing
Platform Administration).

• For details about configuring team members for projects, see “Adding Users to Projects” on
page 303.

• For details about configuring projects code review filter, see “Code Review Filter” on page 169
and see “Integrating with Code Review” on page 267.

Users can rearrange the report by grouping the data by reviewer/author or author/reviewer or
requirement/task. Click any developer or reviewer name to see the Code Review activity details for the
pair. See “Code Review Details.” chapter for a more information.

Code Review Status
63

Code Review
This report shows code review status for the selected project and date--including the number of
pending code reviews, as well as the number of code review issues to be fixed..

Each row in the default view of the report shows the following code review status for each Author/
Reviewer pair

• To Review - Number of code reviews pending to be done by the specific reviewer(s)

• To Fix - Number of code review issues pending to fixed by the specific author(s)

Filtering and regrouping the report data is similar to filtering and regrouping data in the Code Review
Activity report (see “Code Review Activity” on page 61).

Code Review Details
The Code Review Details report shows details of code review process for the specified filter (selected
project by default), including:

• Code review process participants.

• Source code files under review.

• Issues that have been found.

• Messages exchanged between the process stakeholders.
64

Code Review
Click on category in the filter tool bar to expand the data and to show details by:

• Tasks

• Authors

• Reviewers

• Files Revisions

• Threads

Click Diff. to view the source code that has been modified by the developer and is subject to code
review by the reviewer.

Related Topics
The code review process is also covered in the following areas:

• “Integrating with Code Review”, page 267

• The Parasoft Test User’s Guide
65

Tools Usage
Tools Usage
The Tools Usage page (Figure 13) displays statistics useful for administration purposes, such as the
number of users who requested a license, number of users who ran listed products, and license usage
by product and platform.

Tools Usage data is displayed in the following reports:

• Product Unique Users Report

• Maximum Hourly Usage by Product

• Maximum Hourly Usage History

• Unique Users by Architecture

You can also customize the data used to generate these reports. To do so, perform the steps described
in the following section:

• WIN32: Number of users that ran the correlating product on this architecture.

Figure 13: Tools Usage

How do I get here? Practices > Tools Usage
66

Tools Usage
Product Unique Users Report
For each listed product, the Product Unique Users Report shows the maximum number of unique
users who requested license(s) during any one hour period.

Figure 14: Product Unique Users Report

How do I get here? Practices > Tools Usage > Product Unique Users Report

Following is the information displayed on the Product Unique Users Report page:

• Day: Select to specify that statistics should be verified on a daily basis.

• Month: Select to specify that statistics should be verified on a monthly basis.

• For: (Product drop-down list) Choose the appropriate product for which to view its data.

• Day: Date on which license access was requested.

• [product name]: On the corresponding date for each product, the table shows the highest
number of licenses that were being used at the same time. Look at Jtest on 2006-06-30 as an
example. As you can see, the number 2 is listed. That means that on June 30, 2006, the
highest number of licenses for Jtest that were used concurrently was 2.

• Total: Lists the maximum concurrent number of licenses for all products stored in License
Server for which requests to access have been submitted on the listed date.

For example, a report similar to Figure 14 could have been produced if:

• USER_1 used the Jtest license from 8:00 am to 10:00 am.

• USER_2 used the Jtest license from 9:00 am to 9:30 am.

• USER_1 used the Jtest license again from 1:00 pm to 2:00 pm.
67

Tools Usage
• USER_3 used the Jtest license from 3:00 pm to 4:00 pm.

In this scenario, the maximum hourly usage by product is 2—when USER_1 and USER_2 license
usage overlapped.

On rare occasions the following scenario is possible:

• USER_1 used license for 15 minutes (from 9:00 am to 9:15 am) and released it.

• After 10 minutes passed, the license was requested by USER_2 (from 9:25 am to 11:00 am).

Here, since the license was requested twice within a one-hour period (once at 9:00 am and again at
9:25 am), the concurrent usage is 2.

To view more details about license requests, click the number specified for the appropriate product and
date. The License Requests Details page opens. See “License Requests Details” for details.

Note: In addition to user names, host names are also taken into consideration to measure license
usage. See “License Summary”, page 137 regarding the Unique Users Recognition Policy setting for
more details.

License Requests Details
The License Requests Details page (Figure 15) lists the history of users' License Server requests for
the listed product on the listed date.

Figure 15: License Requests Details

How do I get here? Practices > Tools Usage > Maximum Hourly Usage by Product > [number of
licenses used]

The License Requests Details page lists the following information for the selected product and date:

• Time: Time at which access was requested.

• Status: Access is either "GRANTED" or "DENIED".

• User: Name of the user who requested access to the displayed product.

• Host: Name of the host through which the product is accessed.

• Arch: (architecture/platform) Name of the platform on which the license is installed.

• LS Host: Name of the License Server host.
68

Tools Usage
Maximum Hourly Usage by Product
The Maximum Hourly Usage by Product graph (Figure 16) shows the total number of unique users who
were granted a license for each listed product. (Unique users are recognized by either the user's name
and machine ID or the user's name only.) The data displayed is grouped by month, so each bar
represents one month of data.

Figure 16: Maximum Hourly Usage by Product

How do I get here? Practices > Tools Usage > Maximum Hourly Usage by Product

The Maximum Hourly Usage by Product page lists the following information:

• Show unique user licenses for: Select the name of the product for which to view license
information.

• Day: Click to open the Maximum Hourly Usage by Product Details page. The data shown is
filtered and shows product usage during the selected month. See “Maximum Hourly Usage by
Product Details” for details.

• <Product name>: Lists the number of product licenses that were granted during the
corresponding month.

By default, data for all products is displayed. To filter data, click the appropriate product name
to show data only for the selected product.
69

Tools Usage
• Total: Lists the total number of licenses granted for the selected products on the listed dates.

• [Show cumulative number of unique users]: Click to open the Cumulative Number of
Unique Users page, which shows the cumulative statistics of unique users for all products. See
“Cumulative Number of Unique Users” for details.

Maximum Hourly Usage by Product Details
The Maximum Hourly Usage by Product Details page (Figure 17) provides license use data, such as
which products were run, by which users, and how many days the products were active. This data
enables you to verify whether products are being used often enough and how many licenses were
granted during the month. It also shows whether the users responsible for using the product are really
running it.

Figure 17: Maximum Hourly Usage by Product Details

How do I get here? Practices > Tools Usage > Maximum Hourly Usage by Product > [date]

The Maximum Hourly Usage by Product Details page lists the following information:

• User: Name of the user who ran the product.

• Machine: Name of the machine on which the product was run.

• <Product name>: Name the product used.

• Total Number of Days: Number of days that the product was active within the displayed
month.

• Number of Users: Number of users who ran the product.

• [Results in CSV format]: Allows you to download the results of this report in Comma
Separated Values format in order to upload them to a specific user’s system—in Excel, for
example.

Cumulative Number of Unique Users
70

Tools Usage
The Cumulative Number of Unique Users shows the cumulative statistics of unique users for all
products (default) or the selected product.

Figure 18: Cumulative Number of Unique Users

How do I get here? Practices > Tools Usage > Maximum Hourly Usage by Product > [Show
cumulative numbers of unique users]

The Cumulative Number of Unique Users page lists the following information:

• #: Number of times the product was run.

• User Name: Name of the user who ran the product.

• Machine Name: Name of the machine on which the product was run.

• Date: Date on which the product was run.

Maximum Hourly Usage History
The Maximum Hourly Usage History uses the same data as the Maximum Hourly Usage by Product,
but instead of sorting data by date, sorts it by product.

In the Maximum Hourly Usage by Product pie chart shown on the main Tools Usage page (Figure 13),
click the product for which you want to view its history. The Product History report (Figure 19) is
71

Tools Usage
displayed in which you can view statistics of granted licenses for the selected product. See “Maximum
Hourly Usage by Product”, page 69 for details about the data shown in this report.

Figure 19: Maximum Hourly Usage History

How do I get here? Practices > Tools Usage > Maximum hourly usage history

Unique Users by Architecture
72

Tools Usage
The Unique Users by Architecture page (Figure 20) shows the number of unique users running
Parasoft products based on operating system architecture (Win or Linux).

Figure 20: Unique Users by Architecture

How do I get here? Practices > Tools Usage > Unique users by architecture

The Maximum Hourly Usage by Product page lists the following information:

• Product: Name of the product that was run. Click a specific product name to filter the report by
that product.

• LINUX2: Number of users that ran the correlating product on this architecture.

• WIN32: Number of users that ran the correlating product on this architecture.
73

Tests Overview

74

Tests Overview
From the Reports view, choose Tests> Tests Overview to open the Tests Overview page. This page
shows the results of all tests run for the selected project during the specified period of time. These
reports display the overall trend of test results, as well as details of the last tests that were run. the
Tests Overview section shows the overall trend of test results. The tests include all of the automated
tests performed for the selected project, including Static Analysis, Unit Testing, Functional Testing, and
so on.

The Tests (Files) graph included in the Tests Overview section reflects the tendency of the tests over
the specified time period.

The graph shows data for unit tests and static analysis differently:

• Unit testing. Number of test (suite) files

• Static analysis. Number of of tested files.

For details about the Tests (Files) report, see “Tests (Files)”, page 119.

Tests By Date

75

Tests By Date
The Tests report (Figure 21) is a quick, overall view of your project in its current state. It lists tests that
ran during the selected time period. Each row shows the number of incomplete, failed, and passed test
cases for all tests that were run on a specific date, including coding standards analysis, unit testing,
regression testing, and so on.

For details, see “Tests (Files)”, page 119.

Figure 21: Tests by Date

How do I get here? Tests > Tests by Date

Errors by Category
Errors by Category
The Errors by Category graph enables you to keep an eye on how coding standards and unit testing
errors in the code are distributed. Error categories vary based on the tool that sends the report.

To open the Errors by Category graph, choose Tests >Errors by Category. This graph uses
visualization as opposed to definitive numbers to show ratios between different error categories. Each
error category (type) is assigned a different color. For each date within the selected drops for the
selected project, colored blocks are stacked atop each other to reflect the number of coding standards
and unit testing errors found during testing of that project so that you can see which types of errors are
most predominant.

Figure 22: Errors by Category

How do I get here? Tests > Errors by Category

Drill-downs from the Errors by Category graph:

Click a specific date in the Errors by Category graph to open the Errors by Category Detailed Report for
that date.

Errors by Category Detailed Report
The Errors by Category Detailed Report graph is displayed at the top of the page and shows the
number of coding standards and unit testing errors sorted by category type for the selected drop date.
76

Errors by Category
Each bar represents a specific type. You can change the drop date from the Options bar. The graph
looks similar to the one shown in Figure 23.

Figure 23: Errors by Category Detailed Report Graph

How do I get here? Tests > Errors by Category > [date] (from graph)

Below the Errors by Category Detailed Report graph, a table (Figure 24) lists each category in
alphabetical order and shows the total number of coding standards and unit testing errors for that
77

Errors by Category
category. Below each category, the number of errors is broken down further and listed by severity level
(1 through 5; 1 is the most severe error, while 5 is the least severe).

Figure 24: Errors by Category Detailed Report Table

Drill-downs from the Errors by Category Detailed Report table:

To change the graph and table view:

• Click one of the following links located above the table to view errors from a different
perspective:

• Severity: Opens Errors by Severity Detailed Report.

• File: Opens Errors by File Detailed Report.

• Developer: Opens Errors by Developer Detailed Report.

To view more details about the errors listed by category:
78

Errors by Category
• Click the statistic that corresponds with the appropriate category and severity level. A page
similar to Figure 25, which contains even more details about the errors appears:

Figure 25: Errors by Category Detailed Report (More Details)

How do I get here? Audit > Errors by Category > [date] (from graph) > [number of errors]

Following are descriptions of each column heading in the Errors by Category Detailed Report (more
details) table, along with drill down options:

• Filename: Name of the file that contains the error.

Click the Filename heading to open Errors by File Detailed Report. Click a specific filename
listed beneath the heading to open its source file.

• Developer: Username of the developer responsible for the corresponding error.

Click the Developer heading to open Errors by Developer Detailed Report.

• Line: Number of the line on which the error is located in the corresponding error.

Click a specific line to open the corresponding source file with this line highlighted in yellow.

• Error: Description of the error that occurred.

• Rule: Name of the rule that was violated in the corresponding error.

Click a specific rule to open a pop-up box that contains a description of that rule, along with
any relevant notes, security relevance, parameters, benefits, drawbacks, examples, repairs,
and references.

Errors by File Detailed Report
79

Errors by Category
The Errors by File Detailed Reports shows the ten files that contain the most errors and looks similar to
the graph shown in Figure 26.

Figure 26: Errors by File Detailed Report

How do I get here?

Option 1: Audit > Errors by Category > [date] (from graph) > [File]

Option 2: Audit > Errors by Severity > [date] (from graph) > [File]

Below the Errors by File Detailed Report graph is a table (Figure 27) that lists the ten files with the most
errors, along with the total number of errors contained in each listed file.

Figure 27: Errors by File Detailed Report Table

Drill-downs from the Errors by File Detailed Report table:

To change the graph and table view:

• Click one of the following links located above the table to view errors from a different
perspective:

• Severity: Opens Errors by Severity Detailed Report.
80

Errors by Category
• Category: Opens Errors by Category Detailed Report.

• Developer: Opens Errors by Developer Detailed Report.

To view source code of a listed file:

• Click the appropriate filename, if link is available.

To view more details about the errors listed by file:

• Click the number of errors that corresponds with the appropriate file name. A page similar to
Figure 28, which contains even more details about the file errors appears:

Figure 28: Errors by File Detailed Report (More Details)

How do I get here?

Option 1: Audit > Errors by Category > [date] (from graph) > [File] [number of errors] (from
table)

Option 2: Audit > Errors by Severity > [date] (from graph) > [File] [number of errors] (from table)

Following are descriptions of each column heading in the Errors by File Detailed Report (more details)
table, along with drill down options:

• Developer: Username of the developer responsible for the corresponding error.

• Click the Developer heading to open Errors by Developer Detailed Report.

• Line: Number of the line on which the error is located in the corresponding error.

Click a specific line to open the corresponding source file with this line highlighted in yellow.

• Error: Description of the error that occurred.

• Rule: Name of the rule that was violated in the corresponding error.

Click a specific rule to open a pop-up box that contains a description of that rule, along with
any relevant notes, security relevance, parameters, benefits, drawbacks, examples, repairs,
and references.

Errors by Developer Detailed Report
The Errors by Developer Detailed Report shows the ten developers with the most errors in their files
and looks similar to the graph shown in Figure 29.
81

Errors by Category
The table below the Errors by Developer Detailed Report graph lists all of the developers who are
responsible for the coding standards and unit testing errors that are detected, along with the total
number of errors for which they are responsible.

Figure 29: Errors by Developer Detailed Report Graph

How do I get here?

Option 1: Audit > Errors by Category > [date] (from graph) > [Developer]

Option 2: Audit > Errors by Severity > [date] (from graph) > [Developer]

Option 3: Errors by File Detailed Report > [number of errors] (from graph) > [Developer]

Drill-downs from the Errors by Developer Detailed Report table:

To change the graph and table view:

• Click one of the following links located above the table to view errors from a different
perspective:

• Severity: Opens Errors by Severity Detailed Report.

• Category: Opens Errors by Category Detailed Report.

• File: Opens Errors by File Detailed Report.

To view more details about the errors listed by developer:
82

Errors by Category
• Click the number of errors that corresponds with the appropriate developer name. A page
similar to Figure 25, which contains even more details about the developer’s errors appears:

Figure 30: Errors by Developer Detailed Report (More Details)

How do I get here?

Option 1: Audit > Errors by Category > [date] (from graph) > [Developer] > [number of errors]

Option 2: Audit > Errors by Severity > [date] (from graph) > [Developer] > [number of errors]

Option 3: Errors by File Detailed Report > [number of errors] (from graph) > [Developer] >
[number of errors]

Following are descriptions of each column heading in the Errors by Developer Detailed Report (more
details) table, along with drill down options:

• Filename: Name of the file that contains the error.

Click the Filename heading to open Errors by File Detailed Report. Click a specific filename
listed beneath the heading to open its source file.

• Line: Number of the line on which the error is located in the corresponding error.

Click a specific line to open the corresponding source file with this line highlighted in yellow.

• Error: Description of the error that occurred.

• Rule: Name of the rule that was violated in the corresponding error.

• Click a specific rule to open a pop-up box that contains a description of that rule, along with
any relevant notes, security relevance, parameters, benefits, drawbacks, examples, repairs,
and references.
83

Errors by Severity
Errors by Severity
To open the Errors by Severity graph, choose Tests >Errors by Severity. This graph uses
visualization as opposed to definitive numbers to show ratios between different coding standards and
unit testing error severities. Each error severity level is assigned a different color. Severity levels are
determined by you, but typically, severity levels range from 1 to 5—1 being most severe and of highest
concern.

For each date within the selected drops for the selected project, colored blocks are stacked atop each
other to reflect the number of errors found during testing of that project so that you can see which
severity levels are most predominant.

The Errors by Severity graph is also a useful means to confirm whether coding standards and unit
testing errors with highest severity are being resolved. The bar height in the Errors by Severity graph
should decrease from day to day to reflect whether errors are being resolved.

Figure 31: Errors by Severity

How do I get here? Tests > Errors by Severity

Drill-downs from the Errors by Severity graph:

Click a specific date in the Errors by Severity graph to open the Errors by Severity Detailed Report.

Errors by Severity Detailed Report
The Errors by Severity Detailed Report shows the number of coding standards and unit testing errors
sorted by severity level for the selected drop date. If, for example, there are five levels of severity (1
being the most severe, 5 being the least severe), a graph similar to the one shown in Figure 32 is
displayed. Each bar represents a different severity level.

The table located below the Errors by Severity Detailed Report graph lists coding standards and unit
testing errors that are detected sorted by severity level. For each severity level, the total number of
coding standards and unit testing errors detected is displayed for the selected date on which testing
84

Errors by Severity
was performed. Below each severity level, all of the rule categories for which coding standards and unit
testing errors were detected are listed, along with the number of errors found for each.

Figure 32: Errors by Severity Detailed Report

How do I get here? Tests > Errors by Severity > [date] (from graph)

Drill-downs from the Errors by Severity Detailed Report table:

To change the graph and table view:
85

Errors by Severity
• Click one of the following links located above the table to view errors from a different
perspective:

• Category: Opens Errors by Category Detailed Report.

• File: Opens Errors by File Detailed Report.

• Developer: Opens Errors by Developer Detailed Report.

To view more details about the errors listed by severity:

• Click the number of errors that corresponds with the appropriate rule category. A page similar
to Figure 33, which contains even more details about the errors appears:

Figure 33: Errors by Severity Detailed Report (More Details)

How do I get here? Tests > Errors by Severity > [date] (from graph) > [number of errors]

Following are descriptions of each column heading in the Errors by Severity Detailed Report (more
details) table, along with drill down options:

• Filename: Name of the file that contains the error.

Click the Filename heading to open Errors by File Detailed Report. Click a specific filename
listed beneath the heading to open its source file.

• Developer: Username of the developer responsible for the corresponding error.

Click the Developer heading to open Errors by Developer Detailed Report.

• Line: Number of the line on which the error is located in the corresponding error.

Click a specific line to open the corresponding source file with this line highlighted in yellow.

• Error: Description of the error that occurred.

• Rule: Name of the rule that was violated in the corresponding error.

Click a specific rule to open a pop-up box that contains a description of that rule, along with
any relevant notes, security relevance, parameters, benefits, drawbacks, examples, repairs,
and references.
86

Recent Test Logs
Recent Test Logs
The Recent Test Logs report (Figure 34) lists all logs that were successfully sent by tools to the Report
Center database for the selected project and time period. It shows whether logs were successfully
retrieved by the Report Center database and contains statistics for administrators, QA team members,
or other designated parties who are responsible for sending logs to Report Center. If logs were not
successfully retrieved, you should check the Report Center tool configuration, and then run the tests
again.

Figure 34: Recent Test Logs

How do I get here? Tests > Recent Test Logs

The Recent Test Logs table shows the following information:

• Log ID: Identification number assigned to the listed log. Click to open Log Details.

• Date: Shows the date of listed log.

• Incomplete tests: Number of tests that were incomplete in the corresponding log.

• Failed Tests: Number of tests that failed in the corresponding log.

• Passed Tests: Number of tests that passed in the corresponding log.

• Tool: Name of the tool from which the log was sent to the Report Center database.

• User: Name of the user who sent the log.

• Total Tests: Total number of tests that were run in the corresponding log.

You can sort the data displayed in the Recent Test Logs table by clicking any column header.
87

Recent Test Logs
Log Details
The Log Details page shows log information such as ID, tool, host, start and stop date, and the test
groups included in this log. The following information is shown for each group of tests that ran:

• Test group user attributes and test results.

• Number of failed, incomplete, passed, and total tests performed.

• Percentage of line coverage (it is presented for Unit Testing results).

Figure 35: Log Details

How do I get here? Tests > Recent Test Logs > [Log ID]

The following information is displayed on the Log Details page:

• Log ID: Identification number assigned to the log.

• Tool: Name of the tool from which the log was sent to the Report Center database.

• User: Name of the user who sent the log.

• Host: The name of the computer from which the log was sent.

• Platform: Platform on which the log was created.

• Start date: The date on which testing represented by this log began.

• Stop date: The date on which testing represented by this log finished.

• Test Groups User Attributes (Key, Value): Lists the key and value of all test groups included
in the log.

• Test Group Name: Name assigned to a group of tests. Click to open the Test Group Details
page. See “Test Group Details” for details.

• Failed Tests: Number of tests that failed within the group.

• Incomplete Tests: Number of tests that were incomplete within the group.
88

Recent Test Logs
• Passed Tests: Number of tests that passed within the group.

• Total Tests: Number of total tests within the group.

• %Coverage: Percentage of unit testing line coverage (when applicable).

Note: Coverage applies to unit testing.

Test Group Details
The Test Group Details report (Figure 36) displays identifying details about the group of tests, along
with information about the tool, host, and platform on which that group of tests were run. It also
provides a list of each test included in the group.

Figure 36: Test Group Details

How do I get here? Tests > Recent Test Logs > [date] > [test group name]

The following information is displayed on the Test Group Details page:

• Test group ID: Identification number assigned to the group of tests.

• Test group name: Name assigned to a group of tests.

• Log ID: Identification number assigned to the log.

• Start date: Date on which tests included in this group started running.

• Stop date: Date on which tests included in this group stopped running.

• Tool: Name of the tool from which the log was sent to the Report Center database.

• User: Name of the user who sent the log.

• Host: The name of the computer from which the log was sent.

• Platform: Platform on which the group of tests were run.
89

Recent Test Logs
• Total Tests: Complete number of tests included within the group.

• Incomplete Tests: Number of tests that were incomplete within the group.

• Failed Tests: Number of tests that failed within the group.

• Passed Tests: Number of tests that passed within the group.

• %Coverage: Percentage of unit testing line coverage (when applicable)

• Test ID: Identification number assigned to the test included in the displayed group.

• Name: Name of the test included in the displayed group. Click to open the Test Details page,
which provides more details about the test. See “Test Details” for details.

• Status: Status of the test included in the displayed group.

• Incomplete Message: Number of incomplete messages generated by the test.

• Fail Message: Number of failed messages generated by the test.

• Pass Message: Number of passed messages generated by the test.

• %Coverage: Percentage of unit testing line coverage (when applicable).

Test Details
90

Recent Test Logs
The Test Details report (Figure 37) provides information about the selected test, along with a detailed
list of all messages sent in the log.

Figure 37: Test Details

How do I get here? Tests > Recent Test Logs > [date] > [test group name] > [name] (test name)

The following information is displayed on the Test Details page:

• Date: Date on which the displayed test was run.

• Test group name: Name assigned to the group to which the displayed test belongs.

• Test ID: Identification number assigned to the displayed test.

• Test name: Name assigned to the displayed test.

• Test Coverage: Line coverage in this test (file).

• All messages: Number of messages generated by running the displayed test.

• Message ID: Identification number assigned to the message.

• Message: Summary text generated by running the displayed test. Click to jump to details
about the message—specifically, a list of attributes, along with values for each.

• Status: Status of the message—passed, failed, incomplete.
91

Recent Test Logs
• Error type: Type of error generated by the test. If none, "No Error" is displayed.

• File: Name of the file where the message is stored.

• User: Name of the user who ran the displayed test.

• %Coverage: %Coverage: Percentage of unit testing line coverage (when applicable).
92

Change-Based Testing
Change-Based Testing
The Change-Based Testing reports indicate what you should re-test in response to recent source code
changes.

This change-based testing identifies exactly which tests, requirements, tasks, and defects are
impacted by source code changes. Not having to re-test the entire system after each modification
yields tremendous productivity improvements.

You can determine which tests require re-testing in the following ways:

• To see which manual test scenarios should be retested due to changes in correlated code,
choose Tests> Change-Based Testing> Test Scenarios.

• To see which requirements/defects should be retested due to changes in correlated code,
choose Tests> Change-Based Testing> Requirements/Defects.

How are Tests Recommended?
Development Testing Platform tracks what source code is related to project functionality If this source
code changes, Development Testing Platform knows that the related implementation should be re-
tested to check whether the changes introduced any regressions.

While developers implement requirements and fix defects, Development Testing Platform monitors the
related source code and associates it with the corresponding requirements/defects. The resulting
functionality is then typically tested by QA.

Often, developers later modify portions of the code that are related to this previously-developed and
tested work. These modifications may change or break the previously-verified functionality.

The Recommended Tests reports help the team identify which functionality needs to be re-tested in
order to verify that the functionality is still working as expected after the code changes. Project artifacts
(requirements, defects, enhancements) are marked as needed re-testing when the source code
associated with them has been changed within a specified timeframe. Re-testing tasks are prioritized;
the highest priority is assigned to the items with the most source code modifications.

How is Source Code Tracked?
Development Testing Platform tracks source code that has been developed or modified when
implementing specific functionality. Code can be tracked in two ways:

• Developers add special @task taskID annotations during source control checkins (see Work
with Tasks for more details)

• Developers work with tasks via the Development Testing Platform Task Assistant (available in
Parasoft Test).
93

Change-Based Testing
Development Testing Platform reports code correlations in the Code tab of the particular artifact
(requirement, defect, enhancement) details page.

When tracked source code changes, Development Testing Platform can determine what specific
functionality (requirements, defects, manual tests) should be re-tested, and alerts you via the
Recommended Tests report.

The Recommended Tests report shows you what functionality should be re-tested from two
perspectives:

• Recommended Tests by Test

• Recommended Tests by Requirement/Defect

Change-Based Testing: Test Scenarios
Assumes usage of Development Testing Platform Manual Testing - described in “Tests in Project
Center”, page 157.

This report indicates which manual test scenarios should be retested because there have been
changes in the source code that was correlated to the previously-tested functionality. In other words, if
a manual test scenario A was correlated to requirement B and the source code related to requirement
B has changed, manual test scenario A will be marked as a recommended test.

The Priority column sorts tests by priority. The more changes that are introduced to the specific
functionality related to a test, the higher the priority is.

The Relations column shows project artifacts with which the scenario is linked.
94

Change-Based Testing
The report date period specifies the period for which code changes are considered. You can adjust the
date range by clicking the Last 7 | 15 | 30 days Last 12 | 26 | 52 weeks area—or by clicking the
Switch to range mode icon then specifying the desired to/from date range.

Clicking the priority cell value will display code details. For example:

The details report presents all the source code revisions that:

• Are associated with specific functionality and

• Were committed to source control after the recent manual test run.

Change-Based Testing: Requirements/Defects
This report indicates which requirements or defects should be retested because there have been
changes in the source code that was correlated to them. In other words, if code correlated to
requirement A has changed, requirement A will be marked as needing re-testing.

Clicking the priority cell value will display details about the entity that changed. For example:

The details report presents all the source code revisions that:

• Are associated with specific requirement/defect and

• Were committed to source control in the specified timeframe.
95

Code Metrics Reports
Code Metrics Reports
Development Testing Platform includes reports that show source code metrics data (statistics), such as
cyclomatic complexity, number of classes, number of methods, number of static attributes, and more.
Metrics are calculated in code analysis tools, and the results are sent to Development Testing Platform.
The results provide details for each code level (package, class, method), enable you to display
documentation for each metric, and view source code to which the results apply. The following metrics
reports are available:

• Metric Top Results

• Single Metrics Overview (9.x)

• Metrics Overview Report

• Single Metric Overview Report

Metric Top Results
The Metric Top Results report presents data DTP collects about the packages, classes, and methods
of your projects that have the highest metric values. By default, the system lists twenty items displayed
for each level, but this setting can be changed, if necessary.

Choose Audit> Metric Top Results in the reports view to open the Metric Top Results report.

Figure 38: Metric Top Results - Packages
96

Code Metrics Reports
Figure 39: Metric Top Results - Classes

Figure 40: Metric Top Results - Methods

The Metric Top Results report presents the following information:

• Project: Name of a project defined and sent by a Parasoft tool.

• Selected Metric: Name of the metric for which values are displayed.

[Show Metric Description]: Click to open a pop-up window that shows a description of the
currently selected metric.

• Drop date: Date of the last metric drop. In other words, the last date on which metric analysis
for the selected project was performed.

• Name/Signature: Name of tested package/class, or signature of tested method.

• Sum: Sum of the metric value of the tested object for the selected metric. In many metrics, this
field is empty.

• Mean: Arithmetic mean of the tested object for the selected metric.

• Number of items: Number of children nodes that belong to a specific tested object.

• Standard Deviation: Statistical standard deviation of a specific metric result.

When you click any item to drill down the report, you are moved to the appropriate page of Single
Metric report. See “Single Metrics Overview (9.x)”, page 97.

Single Metrics Overview (9.x)
The Single Metrics Overview report presents data collected from Parasoft 9.x tools for an individual
project and one of its metrics. This report does not include data from DTP Engines.
97

Code Metrics Reports
1. Choose Audit> Single Metrics Overview in the reports view to open the Single Metrics Over-

view report.

2. Choose a project and a metric from the drop down menus.

Test units (packages, classes, methods) are organized in a form of a tree so that you can drill down
from the project packages to the single method. For each test unit, the following four metric values are
presented:

• Sum

• Mean

• Number of items

• Standard deviation

These values are listed in the table next to each tested object respectively.

Figure 41: Single Metric Overview

The Single Metrics Overview report presents the following information:

• Path: Indicates where you are in the source hierarchy (on which level, which node within the
code source tree)

• Project: Name of a project defined and sent by a Parasoft tool.

• Selected Metric: Name of the metric for which values are displayed.

[Show Metric Description]: Click to open a pop-up window that shows a description of the
currently selected metric.

• Current drop: Date of the last metric drop. In other words, the last date on which metric
analysis for the selected project was performed.

• Drop to compare: Date of the drop which will be used to compare to current drop values

• If more then 10 drops are available, then 10th oldest drop is taken to compare.

• If less then 10 drops are available, then the oldest one is taken to compare.

The Single Metric Overview report includes the following tables:
98

Code Metrics Reports
• Test Unit/Package/Class table: Displays results for the parent tested object—the parent
tested object of the children nodes listed in the table shown in Figure 42.

• Subpackages (Optional) table: Displayed when the parent tested object within a package
contains subpackages. It lists metric values for subpackages and can be used to drill them
down to a single method.

The metric values contain the following info:

• Name: Name of the tested object.

• Sum: Sum of the metric value of the tested object for the selected metric. In many metrics, this
field is empty.

• Mean: Arithmetic mean of the tested object for the selected metric.

• Number of items: Number of children nodes that belong to a specific tested object.

• Standard Deviation: Statistical standard deviation of a specific metric result.

Note: The number in brackets indicates the difference between the last drop and drop to compare.

Figure 42: View Source Code

A magnifying glass icon is displayed next to each class and method. Click on it to view the source
code of that code item.

Note: The magnifying glass icon is visible for project sources after SourceScanner has been run for
those particular project sources.

Metrics Overview Report
Click the more... link in the Metrics Overview widget to open the Metrics Overview report (see “Metrics
Widgets”, page 12). This report shows an overview of metric data for the project selected in the widget.
99

Code Metrics Reports

Only the following metrics are shown in the report:

• General metrics

• Comments/Number of Logical Lines Ratio in the File

• Number of Blank Lines in File

• Number of Comment Lines in File

• Number of Files

• Number of Physical Lines in File

• Number of Source Lines n File

• Number of Types

• Types/Functions

• Cyclomatic Complexity

• Essential Cyclomatic Complexity

• Modified Cyclomatic Complexity

• Strict Cyclomatic Complexity

• Types

• Coupling Between Objects
100

Code Metrics Reports
• Inheritance Depth of Class

• Number of Methods in Type

• Number of Private Members in Type

• Number of Protected Members in Type

• Number of Public Members in Type

You can perform the following actions in this report:

• Click on a column header to sort

• Click on a value in the table to open the Single Metric Overview report (see “Single Metric
Overview Report”, page 101)

Single Metric Overview Report
This report shows how data for one metric is aggregated across the modules in a selected project. It
shows a heat map in which larger, darker tiles contain a higher metric value within the project.
Conversely, the smaller lighter tiles have lower metric values. The report also represents the data in a
table view. You can access the report by clicking on a value in the Metrics Overview widget or by
clicking the more... link in the Top 10 Modules - Tree Map widget (see “Metrics Widgets”, page 12).

101

Code Metrics Reports
You can perform the following actions:

• View different aggregations of the data (method- and type-level metrics only): Click on
Average, Minimum, Maximum, or Sum to change the heat map view. Changing the
aggregation also sorts the table by the selected aggregation. For file-level metrics, only the
sum aggregation is available.

• Click on a tile in the heat map or link in the Module column of the table to open the module in
the Metrics Explorer view. See “Metrics Explorer”, page 140.

• Click on a column header in the table to sort the data (does not change the heat map).
102

Working with the Security Menu
Working with the Security Menu
Report Center offers you the ability to create security reports from the Security menu.

In this section:

• Security Violations

• Security Tests

Security Violations
To display a Security Violations report, choose Security Violations from the Security menu. The
Security Violations report is displayed for the specific period of time.

Figure 43: Security Violations Graph

The Security Violations report shows various categories of Security-type errors. Each bar in the
Security Violations graph represents one day’s test results for the selected project.

Drill-downs from the Security Violations graph:

You can also view the details of the Security Violations report, click any selected bar on the graph.
Once you click on the selected bar, the Security Details page for the selected date displays.

Figure 44: Security Details
103

Working with the Security Menu
This page presents all the security error categories, along with errors belonging to every category. For
each error the basic properties, like File Name, Owner, and Severity are shown.

Security Tests
The Security Tests report shows security-related tests performed in your project, including test resuts
and trend over specified period of time. For static analysis, the number shown represents the number
of files being tested with coding standard rules in the "Security" category.

Figure 45: Security Tests
104

Working with the Security Menu
For each listed drop-date, the Security Tests report (Figure 45) shows the number of incomplete, failed,
and passed security tests run.

Drill-down from Security Tests report:

If there is a problem that warrants investigating, further drill-downs provide more details about the tests.
Click the appropriate date, or corresponding Incomplete, Fail, or Pass data to open the Security Tests
by Type report (Figure 46).

Security Tests by Type
To display a Security Tests by Type report, choose Security Tests from the Security menu. Then click
on one of the date/incomplete/fail/pass table links.
105

Working with the Security Menu
The Security Tests by Type report shows each of the different types of tests that were run on the
selected date. It breaks this information down further to show the exact machine and tool on which the
tests were run.

Figure 46: Security Tests by Type: Pass

Security Tests by Type Details
Drill-down from Security Tests by Type report:

You can continue to obtain more details about statistics for tests, rules, and test cases by clicking on
the links in the Security Test by Type report. You can drill down to the group of tests run against the
code, and then down to the exact erratic lines of code that contain errors from failed test cases.

Figure 47: Security Tests by Type Details

Security Test Group Details
106

Working with the Security Menu
The Summary section lists each type of test. Click on a specific Group Name in the Summary section
to navigate to Security Test Group Details where each individual test run is listed.

Figure 48: Security Test Group Details
107

Policy Report

108

Policy Report
This report shows compliance with development policy over time.

1. Open the Reports view

2. Choose Reports> Policy Report

Development Testing Platform automatically monitors compliance with policies and generates a score.
The policies that are checked are customizable and include test results, features being implemented,
code size, project schedule, budget, code review process, build monitoring, etc. See “Policy Center
(Legacy)”, page 139 for information about configuring project policies.

Project Portfolio Report
Project Portfolio Report
Project Portfolio provides managers with a quick view of the status of projects that they supervise.
Project Portfolio answers the following essential questions for managers:

• Will the project finish on time?

• How effectively and efficiently the team is working,

• How much of the source code is covered with automated tests?

Projects Overview Table
This table lists the projects currently in-progress of which the logged-in manager is in charge. Click on
a project to view its detail page. See “Project Details”, page 110. Projects highlighted in red contain
problems, such as delays or potential defects, and require further investigation.

• The delay column shows the Planned Working Time and Deviation from Plan.

• If the Deviation from Plan is a positive number, then the project is already delayed.

• If Deviation from Plan is a negative number, then the project is on time.

Click the Planned Working Time/Deviation from Plan of the appropriate project to open the Iteration
Status report; see “Iteration Reports”, page 201.

Efficiency Chart
This chart provides an overview of work efficiency of a project for a specific period. It shows the lines of
code in the project against the number of team members working on the project.
109

Project Portfolio Report
[

Each dot in the chart represents one project. The higher it is in the chart, the more efficiently team
members are working. The size of the dot is related to code coverage: a large dot means the project
code coverage is high.

In the above graphic, the C++test 7.1 project is close to ideal because team members are working
efficiently (reflected by the location of the dot high on the chart) and they are regularly writing tests to
cover the source code (reflected by the large size of the dot).

Project Details
This table shows statistics for each project in the Projects Overview Table. You can perform the
following actions:

• Click on the number in the Lines of Code (KLOC) table cell to open the Code Base Size report.
See “Code Base Size”, page 111, for additional information.

• Click on the defects chart or the number in the Defects table cell to open the Defects Detailed
Report. See “Defects and Enhancements Reports”, page 129, for additional information.

• Click on the enhancements chart or the number in the Enhancements table cell to open the
Daily Enhancements report. See “Defects and Enhancements Reports”, page 129, for
additional information.
110

Code Base Size
Code Base Size
You can access the Code Base Size report by clicking on a Code Base Size widget in the Report
Center dashboard view. See “Code Widgets”, page 8, for details.

The Code Base Size graph shows the number of lines of code developed in the project. When the line
goes up it means that people are working and adding code to the code base. You can look at the Code
Base Size graph to see whether code is being checked in on a daily or weekly basis. From this graph,
you can also see the amount of code, files, and lines modified each week. You can actually look at
each of the modifications and see exactly what was modified in the files.

The following information is displayed on the Code Base Size page:

• Date: Date on which code was added to source control. Click on a date to open the Source
Code Statistics report.

• Lines of Code: Total number of lines of code.

• [View Project Source Code]: Click to open the Project Source Code report.

Click in the Code Base Size graph to open the “Source Code Check-ins”, page 142 report for details.

Source Code Statistics
111

Code Base Size
Click on a date in the Code Base Size report table to access the Source Code Statistics report.

Revisions By User
The Revisions by User table lists all team members who made revisions to any source control files
associated with the specified project during the specified date/date range. For each listed team
member, it shows how many revisions were made during each listed week as well as the total sum of
revisions made to the files for the displayed weeks. f

To view more details about the revisions, click the user name of the appropriate team member. The
Source Control Summary page is displayed.

Lines Changed
This report lists the team members who made revisions to any source control file associated with the
specified project during the specified date/date range. There are two Lines Changed views:

• Cumulative: Totals in this view do not adjust for lines removed that have were removed.

• Effective: Totals in this view reflect the net lines of code; total lines of code adjusted per lines
of code removed.

Click on a team member to open the Source Control Summary page, which provides more details
about the line changes.

Source Control Summary
112

Code Base Size
Click on a user in a Source Code Statistics table to access the Source Control Summary page.
Information in the Scource Control Summary report can be viewed by file or by directory. Click the File
or Directory to toggle views.

The Source Control Summary contains the following information:

• Date: Selected date, which was specified in the Source Code Statistics graph and originally
selected from the Code Base Size graph.

• User: Name of the user selected in the Source Code Statistics graph.

• File revisions: Shows the number of files updated on the selected date by the selected user.

• Reviewer Tasks shows the number of code reviews performed on this file on the
selected date (or date range) for the selected user.

• Issues shows the number of code review issues added for this file on the selected
date (or date range) for the selected user.

• File Revisions Covered by Reviewer Tasks calculates coverage as follows:
(Total # of 'Reviewer Tasks' / Total # of file updates) * 100This report shows three types
of source control changes:

• File Updates: Shows the files or directories containing the files that have been modified. Click
on a file (File view) top open the File Details report. Click on a directory (Directory view) to
open the Source Control Summary report.

• Lines Changed: Shows the total number of lines modified on the selected date by the
selected user. The positive number in parenthesis represents the number of lines added. The
negative number in parenthesis represents the number of lines removed.
113

Code Base Size
Click on a file (File view) top open the File Details report. Click on a directory (Directory view)
to open the Source Control Summary report.

• Tokens Changed: Shows the total number of tokens modified on the selected date by the
selected user. The positive number in parenthesis represents the number of tokens added.
The negative number in parenthesis represents the number of tokens removed.

Click on a file (File view) top open the File Details report. Click on a directory (Directory view)
to open the Source Control Summary report..

About Programming Tokens

A (programming) token is the basic component of source code. Characters are categorized as one of
five classes of tokens that describe their functions (constants, identifiers, operators, reserved words,
and separators) in accordance with the rules of the programming language. Consider the following line
in the C programming language:

sum=3+2;
114

Code Base Size
The line can be tokenized as specified in the following table:

Source Control Summary lists only project files that were edited on the specified date. For a list of all
project files see “Project Source Code”, page 116.

File Details
The File Details table shows the history of the selected file, including the history of all revisions made to
that file beginning from the date it was created. The following information displays for each revision
made to the selected file:

• File: Name of the file. Click to view source code.

• Date: Date and time on which the revision was made.

• Version: Version number of which the revision is part.

• User: User responsible for the code in the file.

• Lines changed: Number of lines changed in this revision.

• Tokens changed: Number of tokens changed in this revision.

• Comment: Comments relevant to the listed revision.

Token Token Type

sum indent

= assign_op

3 number

+ add_op

2 number

; semicolon
115

Code Base Size
Project Source Code
Click the [View Project Source Code] link in the Code Base Size report to access the Project Source
Code page. The Project Source Code page lists the main directories of the selected project. Click a
directory to view subdirectories and files. The Project Source Code page lists all project files. By
contrast, the Source Control Summary page lists only project files that were edited on the specified
date.
116

Code Base Size
The following information is listed on the Project Source Code page:

• Directory of: Displays where you are within the source repository tree. The example shown in
displays a blank field because the root directory contents are listed and a directory has not
been selected, yet.

• Directories: Shows the number of directories included in the selected directory.

• Files: Shows the number of files located in the selected directory.

• Name: Lists the names of the directories/files located in the selected directory. Click to drill
down to the next level of the directory until you reach the appropriate file. When you click the
filename, the File Details report is displayed. See “File Details”, page 115 for details.

• Type: Shows whether the listed name is a directory or, if it is a file, it lists the format extension
of the file.
117

Build Results

118

Build Results
From the Reports view, choose Practices> Builds to access the Build Results report. For details about
the Build Results page, see “Builds”, page 56.

The Build Results graph shows the following build information for each listed drop date:

• Number of files that failed

• Number of files that contain warnings and are incomplete

• Number of files and modules that passed

Tests (Files)
Tests (Files)
The Tests (Files) report provides an overview of your project’s current state. It lists tests that ran during
the specified time period.

1. From the Reports view, choose Tests> Tests Overview

2. Click Tests (Files)

Each row shows the number of incomplete, failed, and passed test cases for all tests that were run on
a specific date, including coding standards analysis, unit testing, regression testing, and so on—with
the exception of manual testing. Results of manual tests are shown in the Manual Testing Efforts
graph. See “Manual Test Sessions”, page 135, for details about manual tests.)

Click on a date to view static analysis and unit tests:

• For static analysis, the number of files tested are shown.

• For unit testing, test (suite) files are shown.

Additionally, the Tests (Files) report enables you to quantitatively and qualitatively compare tests. You
can also check how many tests have been added to a selected test group, as well as see view the
number of tests that changed from Failed status to Passed status and vice versa. Dor example, if the
report shows that previously passing tests are now failing, you can investigate the cause and solve any
problems. Use the drill-downs to help uncover the source of the problem.

Drilling down enables you to compare two separate test runs for your project from specified dates. You
can compare tests at different levels—from general run results to single test message results. Report
Center enables enables test analysis by comparing data from the following processes:

• Test runs by trio (Tool, Machine, Analysis type). See “Tests (Files) By Type”, page 120.

• Test group runs within single trio. See “Tests By Type Details”, page 122.
119

Tests (Files)
• Test runs within single test group. See “Test Group Details”, page 123.

The following entity factors are compared:

• Total number of executed test runs, test groups, or tests.

• Number of incomplete/passed/failed within total number of executed test runs, test groups, or
tests.

• Cumulative time execution of test run, test group, or test.

For each executed test listed, the Tests report shows the following information:

• Manage Baselines (): Enables you to mark results from the selected date as baseline
results. Base line results indicate tested source code that is in good condition and serve as a
reference against which to draw comparisons. (See “Setting a Baseline”, page 126 for details.)

• Date: Date on which tests were run.

• Incomplete: Number of test cases that were incomplete due to an unexpected error that
occurred during the test run.

• Fail: Number of test cases that failed the test run.

• Pass: Number of test cases that passed the test run.

• Total: Total number of test cases (except for manual tests) that were run on the selected date.

• Execution Time: Cumulative amount of time that it took for all test cases to run on the
selected date.

• Execution Time Difference: Time difference between the previous test case run and the
current test case run.

Tests (Files) Drill-down Reports
There are several statistics available to view by drilling down from the Tests (Files) report. Click any of
the available links listed beneath the Date, Incomplete, Fail, and Pass columns to open the Tests
(Files) By Type report.

Tests (Files) By Type
Open the Test (Files) report and click on a date or a value in the Incomplete, Fail, or Pass column to
open the Tests (Files) By Type report.

The Tests (Files) By Type graph shows test result comparisons by way of the unique trio (test type,
tool, and machine) on which tests were run. Each row shows the number of tests per trio that were
incomplete, failed, or passed for the date on which you clicked in the Tests table. The table presents
both quantitative and qualitative changes in test runs.
120

Tests (Files)
Following is additional information available on the Tests (Files) By Type page:

• Base: Test results for the date against which you want to compare current test results.

• Curr.: Current (most recent) test results.

• New: Either test results that were present in the current test run, but were not present in the
comparison run (Base), or test results that had a status change.

• Diff: Difference between Base and Curr. results.

Qualitative Changes (Example)
To explain qualitative changes, let’s work with an example. The Tests (Files) By Type report shows test
activity. The numbers in the table are differentiated by different fonts to help you spot anything that
might be wrong or should be improved:

• Bold: Reflects current data and indicates that the analysis was run on that very date. Data in
bold links to drill-down reports.

• Gray, italic: Indicates that analysis was not run for the current date—leaving an inability for the
system to compare data and only showing analysis data for the date against which a
comparison was to be made.

• Red, italic: Indicates that the analysis uncovered discrepancies between the current data in
comparison to the base data. In other words, there is an unwelcome situation that should be
examined thoroughly.
121

Tests (Files)
The report enables you to see improvements to the source code, as well as how your changes affected
tests and functionality of the application.

Take a look at the first trio listed in the graphic above—JUnit executed Functional Testing on the Thorn
machine. As reflected beneath the Total column, you can see that the total number of current test runs
(Curr. column) did not change from the set baseline (Base column). Previously, there were 47 test runs
and the current day shows the same number. The exact comparison dates are displayed in the upper-
right corner of the Tests (Files) By Type page (not shown).

Now, take a look at the Fail and Pass columns. You can see that there are some differences in the
number of tests that passed and failed. This means that some tests’ statuses changed—either due to
application source code changes or test scenario variations.

Let’s consider failed tests. There were 8 failed tests previously (Fail / Base column); today there are 6
failed tests (Fail / Curr. column) but 3 of them are new (Fail / New column. New failed tests are tests
that were previously passed, incomplete or were not run; but changed to failed.

Walking though the math:

• 6-3= 3: Indicates that only 3 previously failed test cases are still failed.

• 8-3= 5: Indicates that 5 of the previously failed test cases changed to passed and
explains why there are 5 new tests in the Pass section—most likely, some
erroneous code was fixed so that those test cases could pass.

• Previously, 39 test cases passed. From the calculation above, we have 5 new test
cases that passed; that is 39+5= 44. However, we can see that only 41 test cases
passed.

• 44-41= 3: Indicates that 3 of the previously passed test cases now failed. That is 3
new fails.

You can click any of the available links within the Tests (Files) By Type table to drill down to the Tests
By Type Details report.

Tests By Type Details
Open the Tests (Files) By Type report and click on any link to open the Tests By Type Details report.

The data displayed in the Tests (Files) By Type Details table reflects details of the trio (test type, tool
and machine) selected in the Tests By Type table. Essentially, the Tests By Type Details table
compares test group runs within the selected trio.
122

Tests (Files)

Following is additional information available on the Tests By Type Details page:

• Total (row): Displays summarized data for all test groups existing within the selected trio.
There are some drill-downs available from this row. See below for details.

Note: If necessary, you can filter the information displayed in the Tests By Type Details table
directly on this page. In other words, there is no need to return to the Test by Type report to
select a new trio.

• Group Name: Name assigned to the displayed group of tests.

Following are the data filters available on the Tests By Type Details page:

• Status: Shows only test results with the selected status.

• New Status: Shows only test results with a new status. (A new status is derived when the
analysis uncovers discrepancies between the current data and the base data.)

• Tests Type/Machine/Tool: Shows test results for the selected trio on the selected date.

• Base Date/Curr. Date: Compares test results between the selected dates.

Aside from the Calendar icon located to the right of each date field, you can also use the
calendar(s) displayed in the middle of the Tests By Type Details page to select the Base Date.
Dates that have data available for comparison are underlined in the calendar(s). Drops for up
to two months are available. You can click any underlined date to compare it against the
current date’s data, and then display the results. A grayed out date indicates the baseline date.
(See “Setting a Baseline”, page 126).

Click one of the following to open the Test Group Details report (Figure):

• Number of failed test cases for a specific test group

• Test group name (listed beneath the Group Name column)

• Total number of failed new tests (listed in the Total row)

Test Group Details
Open the Tests By Type Details report and click any link the table to open the Test Group Details report.
123

Tests (Files)
The Test Group Details report displays details for the selected test group, and filters the list of test
groups based on the selected result and change status.

Comparing results from different dates helps uncover code regressions. A change in base/current
status is a good indication that code introduced between the old and new results caused incorrect
behavior. Similarly, a drastic increase in duration could indicate a performance problem (or
optimization, if the duration decreases).

The data displayed in the Test Group Details report is sorted based on how you access the report:

For all results except for SOAtest Results, test group details are presented as follows:

This report shows the following information:

If accessed by clicking... This report lists...

The number of incomplete/failed/passed test
cases for a specific test group on the Tests By
Type Details report.

All of the test cases run for that particular test
group and with the selected status.

A specific test Group Name on the Tests By
Type Details report.

All of the test cases run for that test group with
any status.

The total number of incomplete/failed/passed
tests (listed in the Total row).

All test groups that were run for the selected trio,
along with each test case run for each test
group. It provides a comprehensive view of the
condition of the project per test Group Name.

Item Description

Name Name assigned to the listed test

Base Runs Number of times the set baseline test was run

Base Status Status of the current test—incomplete, failed, or
passed

Current Status Status of the current test—incomplete, failed, or
passed
124

Tests (Files)
Color indicators are used to mark files as follows:

For these results, you can:

• Check what problem occurred where by clicking the test group name to open the Test Details
report. Here, you can see the source code by clicking on the line number link (if
SourceScanner runs on your project).

• Filter results by status:

• Any will display all tests.

• Any Error will display tests with a current status of "Fail" or "Incomplete".

• Fail, Incomplete, and Pass will display the tests with the selected status.

• Filter results to show all tests or only tests whose results changed (e.g., from "Pass" to "Fail" or
from "Incomplete" to "Pass."

• Combine the two filtering options to display specific types of results—for instance. "Pass /
Show Changed" will show only tests whose status changed from "Fail" to "Pass".

SOAtest Results
Open the Tests By Type Details report and click on any available link to SOAtest results in the table.
SOAtest results are displayed somewhat differently than other results:

• Tests are grouped by test suite. Tests are arranged in a tree as shown below. The nodes are
expandable and collapsible.

• Test suite nodes contain aggregate information of all the child tests. If test suite information is
not available, all tests are children of the root node.

• Test status for a suite is "Fail" if one or more tests fail; otherwise it is "Pass".

• Durations are the sum of all child tests.

For these SOAtest results, you can:

Base Duration Amount of time it took for the set baseline test to
complete

Current Duration Amount of time it took for the current test to
complete

Duration Diff Difference between the amount of time it took
for the set baseline test to complete and the
amount of time it took for the current test to com-
plete

Color Indicates

Green The problem is fixed - it used to occur (on the
base date) but did not occur in the date for
which report is shown

Red The problem is new - it did not occur (on the
base date) but did occur in the date for which
report is shown.

Item Description
125

Tests (Files)
• Click the arrows on the tree to expand or collapse the nodes.

• View either the previous or current test details by clicking the base and current status for
individual tests.

Test Details
Open the Tests By Type Details report and click on a name to open the Test Details report.

The Test Details report provides information about the selected test, along with a detailed list of all
messages sent in the log.

Setting a Baseline
The baseline option lets you mark a specific report (test results on selected date) as a reference for
tested source code in good condition. The purpose is to have a point of reference against which you
can compare future results and see the project development tendency.

You can access the Baseline pop-up window in the following ways:
126

Tests (Files)
• From the Tests report, either click the baseline icon located at the top of the first column of

the table, or one of the plus symbols listed beneath it (select the one that corresponds

with the appropriate date).

• From any Tests report drill-down page (Tests By Type, Tests By Type Details; or Test Group

Details), click the baseline icon located in the upper-right corner.

To set a baseline:

1. In the Date field of the Baseline pop-up window, type or select a date to set as your base for

comparison against future test results.

2. In the Description field, type an appropriate description to identify the baseline, such as "best

results for Report Center 2.7", and then click Add.

The new baseline is listed beneath Existing baselines:

3. Click the check box next to the new baseline to activate it, and then click Close.

4. Open or refresh the Tests By Type Details page.

The baseline date is displayed in gray:
127

Tests (Files)
5. Click the baseline date.

The report displays data from the most recent test run, along with the baseline data so that you
can compare the results.

To deactivate a baseline:

• In the Baseline pop-up window, clear the check box next to the baseline date, and then click
Close.

To delete a baseline:

• In the Baseline pop-up window, verify that the appropriate baseline date is selected, and then
click Delete. Next, click Close.
128

Defects and Enhancements Reports
Defects and Enhancements Reports
The Defects/Enhancements report shows the trend of your project's defects/enhancements for the
given status (Unresolved, Not Tested, Test Failed, Fixed) in a specified period of time. This helps you
monitor work on your project’s defects/enhancements.

Understanding the Defects and Enhancements Reports
These reports provide key information about project status. They give you a snapshot of the project
quality and show you where and how the project is progressing.

For example, when you view your project defects/enhancements for last 12 weeks period, you might
see that:

• The total number of defects is growing fast, but the trend of items being resolved is not
keeping pace. This can be a trigger to spend more development time on fixing the defects or
to take some measures to prevent the bugs.

• The number of untested items is growing over a time. This means that the team is
resolving PRs/FRs in the Bug Tracking System, but they are not adding automated or manual
tests to ensure the quality of their work.

Drilling Down into Details
You can drill down into each status column to see the list of the project defects/enhancements that
belong to the specified category (Unresolved/Not Tested/Test Failed/Fixed).The following pages show
129

Defects and Enhancements Reports
all defects/enhancements reported for selected date and status, along with basic properties like name,
creation date, and owner:

Exploring Details
From these pages you can:

• Open a specific defect/enhancement details page: Click a defect/enhancement ID number.
130

Defects and Enhancements Reports
• Open the original Bug Tracking System page: Click on the Show button. A Bug Tracking
System that has a web interface, such as JIRA and Bugzilla, is required.

• Check the defect/enhancement status from the Bug Tracking System: Click the bug icon
in the General tab.

• See the Report Center status, which indicates the defect/enhancement’s test status as
follows:

Filtering by Status

Status Description

Unresolved The defects/enhancements are not yet resolved in the Bug Tracking System.

Not tested The defects are resolved, but not tested.

Test failed The defects are resolved and tested.
Tests failed.

Fixed The defects are resolved and tested.
Tests passed successfully.
131

Defects and Enhancements Reports
Using the Status bar located above the table, you can focus on defects/enhancements with a given
status (e.g., defects/enhancements that are resolved, but not yet tested). For example, if you wanted to
check all defects/enhancements whose tests failed and see the details of those tests, you would filter
this page by clicking the Test Failed status link:

Viewing Additional Test Run Details
You can click the ID of a specific defect/enhancement to see additional test run details:

• Automated test runs are shown in the Automated Tests tab.
132

Defects and Enhancements Reports
• Manual test runs are shown in the Scenarios tab.

What if Testing Is Not Required for a Specific Defect/Enhancement?

If you do not want to require testing for a specific defect/enhancement, you can mark that defect/
enhancement as not requiring testing by clearing its Test Required check box.
133

Defects and Enhancements Reports
134

Manual Test Sessions
Manual Test Sessions
From the Reports view, choose Tests> Manual Test Sessions to open the Manual Test Sessions
report.

This report lists all the manual test sessions that have been run or scheduled for a selected project.
The Test Session Status Chart shows the number of tests and their status.

The details for each test session are displayed in a table, which lists data regarding the tests run in
each test session, as shown in.

The Test Session Details Table provides the following information:

• Session Name: Name of each session. Click to open the Edit Manual Test Session page,
where you can edit the test session details. See the Project Center User’s Manual for details
about scheduling and editing Manual Test Sessions.

• Start Date: Actual date on which test session is started.

• Closure Date: Date when the session was marked as closed.

• Duration: Based on whether the listed session is in progress or complete, duration means one
of the following:

• In progress: Length of time session has run, so far.
135

Manual Test Sessions
• Complete: Length of time session took to complete.

• Iteration ID: Identification number of the iteration to which a test session belongs.

• Planned Start Date: Planned start date of test session.

• Deadline: Scheduled end date of test session.

• Not Run: Number of manual tests not yet run.

• In Progress: Number of manual tests in progress.

• Fail: Number of manual tests failed.

• Pass: Number of manual tests passed.

• Incomplete: Number of manual tests incomplete.

• Rank: Final grade given to the listed session based on manual test results.
136

Coverage Report
Coverage Report
1. From the Reports view, Choose Tests> Tests Overview

2. Click the Coverage graph to open the Coverage report.

The Coverage graph shows the following information:

• Ratio of tested code to total lines of code.

• Unit test coverage of the selected project.

• A count of tested units and units that still need to be tested.

The coverage report helps monitor the progress of unit testing covereage over time. Ideally, the
percentage should increase; no change is an indicator that test are not sufficiently being created.

The Coverage table is displayed beneath the Coverage graph and enables architects to see whether
coverage is improving.

For each drop date listed, the Coverage table shows the following information:

Notes

• Only line coverage is represented in the graph. MC/DC, branch coverage, and other
forms are not shown.

• Coverage is the percentage of succesfully tested lines of code to the total lines of
source code selected for testing.
137

Coverage Report
• %Coverage: Percentage of coverage.

• Tested Units: The number of tested lines of source code.

• Units To Test: Total number of lines of source code files that were tested.

Coverage Details Report
Click on a date in the Coverage table to open the Coverage Details report (for Jtest, dotTEST and
Emma results only).

Click on a package name to view coverage for the classes in the package.

Click on a class to view the unit test coverage by method.
138

139

Policy Center (Legacy)
This chapter describes the Policy Center technology that ships with Parasoft Development Testing
Platform. You can also download and install an advanced edition of Policy Center that leverages
additional features that are not available in the standard edition. Contact your Parasoft representative
for additional information.

• Policy Center Overview

• Connecting to Policy Center (Standard Edition)

• Configuring Policy Checking and Reporting

• Reviewing Policy Check Results

• Policy Settings

Policy Center Overview

140

Policy Center Overview
Policy Center is a system for automatically monitoring the overall status of a software development
project. The core of the technology defines several criteria, each of which measures an aspect of the
software development process. Each criterion assimilates data from one or more sources and
determines whether, and to what extent, a resulting calculation warrants corrective action. Finally, the
system determines an overall score and emails all results to specified personnel in a very simple and
direct format.

The Policy Center process works by collecting information about the software life cycle from disparate
tracking systems (source control, bug tracking, reporting, etc) and applying project specific settings
and metrics to determine the overall status of a project each morning.

Connecting to Policy Center (Standard Edition)

141

Connecting to Policy Center (Standard
Edition)
If you have a license for Policy Center, you can download and install the advanced edition or activate
the standard edition. Contact your Parasoft representative for information on obtaining a license for
Policy, as well as information about accessing the advanced Policy Center.

To activate the standard edition of Policy Center:

1. Open the <DTP_HOME>/conf/ExternalServicesConfig.xml configuration file.

2. Add the following line in the <policyCenter> element:

<url>/grs/jsf/policy/project_policy.jsf</url>

Configuring Policy Checking and Reporting
Configuring Policy Checking and
Reporting
Configure Policy Check settings to check your policies at the intervals you designate, email reports to
the recipients you designate, as well as report policy check results in Report Center’s Management
Dashboard.

Setup for automated checking and reporting requires:

• Setting Up Email Report Recipients

• Setting Up Project Policy Checking and Reporting

In addition to (or in place of) automated checking, you can also run policy checks on demand as
described in Running a Policy Check on the Fly.

Setting Up Email Report Recipients
Before using Policy Center, you must perform the following steps to specify who receives email report
with policy compliance status:

1. Choose Administration> Report Center from the administration toolbar.
142

Configuring Policy Checking and Reporting
2. Choose Settings> E-mail and configure your email settings

3. Click Save.

Setting Up Project Policy Checking and Reporting
To enable Policy Center checking and reporting, perform the following steps:

1. In Policy Center, click the Policy tab and select Project Policy from the menu.

The Project Policy page is displayed, as shown in Figure 49

Figure 49: Project Policy Page

2. Click the Enable Project Policy check box.

3. Configure the Policy Settings and other settings as described in “Policy Settings”, page 154.

Be sure to specify which days you want emails generated and mailed.
143

Configuring Policy Checking and Reporting
4. Click the Save button.

Running a Policy Check on the Fly
Policy check is set to run based on your specifications. Clicking the Run Policy Check button enables
you to run a policy check on the selected project "on the fly" at any time. To run a policy check, perform
the following steps:

1. Click the Run Policy Check button.

2. When the policy check finishes successfully and you see a status message that includes a link

to the latest manager report, click that link to view the manager report.
144

Configuring Policy Checking and Reporting
145

Reviewing Policy Check Results
Reviewing Policy Check Results
1. Choose a project from the Project drop-down menu

2. Click Run Policy Check button. This may take a few moments

3. Click the Click here to see the updated report link to view the Policy Check results.
146

Reviewing Policy Check Results
Reviewing the Email Report
With the appropriate configuration, managers and designated team members receive an email that
indicates the status of all projects, and provides a breakdown of each project’s status in terms of its
budget, schedule, and functionality.

Responding to Results
The recommended process for working with these reports is:

• Step 1: Review the Report of Overall Project Health

• Step 2: For "Unhealthy" Projects, Review the Project’s Overall Deadline, Budget, and
Functionality Risk

• Step 3: For Each Reported Risk, Explore Iteration Level Details

• Step 4: For Projects with Quality Risks, Review the Project-Level Health Details

• Step 5: Determine the Appropriate Response

Step 1: Review the Report of Overall Project Health
Yellow or green indicators mean that projects are on schedule, on budget, and on track with the
expected functionality—so no action is required.

A red indicator means that the manager should click the Detailed Report link to access the project
budget analysis, deadline analysis, and functionality completion analysis.

The manager can “manage by exception” and only dedicate resources to addressing items that don’t
adhere to expectations or policies.

Step 2: For "Unhealthy" Projects, Review the Project’s Overall
Deadline, Budget, and Functionality Risk
147

Reviewing Policy Check Results
The manager clicking on a light in the top-level report opens a dashboard for the project that shows
what part or parts of the project are at risk.

At a glance, the manager can obtain objective, real-time answers to the questions needs to effectively
manage the project
148

Reviewing Policy Check Results
• Is the project’s expected functionality implemented properly—and will it work? (Answered in
Functionality Completion Analysis)

• Will the project hit the deadline? (Answered in Deadline Analysis)

• Is the project on budget? (Answered in Budget Analysis)

The manager can then drill-down into a per-iteration, detailed report on the at-risk variable, as
described in steps 3 and 4. This exploration allows him to get the details needed to make informed
decisions about how to address the problem, as covered in step 5.

It is important to note that the functionality completion light carries more information than the budget
and deadline lights. It not only considers whether tasks to implement the expected functionality were
completed, but also looks at whether the functionality is implemented according to the multiple policies,
selected by the management, to guard against quality failures. For example, the manager can use the
web interface to specify that the team’s test cases must cover at least a certain percentage of the
project’s source code.

Step 3: For Each Reported Risk, Explore Iteration Level Details
After the manager clicks on the part of the dashboard that corresponds to a project-level red light for
budget, deadline, or functionality, he is shown a detailed page that provides a per-iteration breakdown
of what iteration is at risk, and why it is at risk The precise page displayed at this point depends on
which score was clicked (budget, deadline, or functionality). The various pages are described in
“Exploring Policy Check Reports”, page 151.

Step 4: For Projects with Quality Risks, Review the Project-Level
Health Details
If a Work Quality problem was reported in the Functionality Details report at the previous level, the
manager will want to click on any color-coded (red, yellow, or green) item in that report. This opens a
149

Reviewing Policy Check Results
Policy Check Details report that provides easy access to additional details that the manager might be
interested in exploring (e.g., to determine why the unacceptable Work Quality score was reported, and
to review it in the context of all the project-level health indicators).

Step 5: Determine the Appropriate Response
150

Reviewing Policy Check Results
At this point, the manager can use the information provided to make an informed decision about how to
address the reported problem. If he feels that the policies or variable thresholds are not reasonable, he
can adjust them in the GUI. For instance, if a budget problem is reported, but the manager wants to be
more lenient on the Budget Analysis, he can adjust the related criteria.

Or, if the manager is being alerted about functionality problems because he imposed too strict of a
policy for fixing static analysis violations, he could adjust those settings.

Otherwise—if he believes that the project is truly in danger—he needs to determine how to get it back
on track. Software development management inevitably involves compromises. For instance, assume
that the manager saw a red light reported for Deadline Analysis. He has two main options:

• Reduce the functionality (reducing the amount of work that needs to be complete)

• Increase the budget (complete the remaining work faster by adding more people to the project)

The best solution depends on the manager’s priorities. If the manager can find some functionality that
is not critical, the first option might be the best course of action. If all of the expected functionality must
be completed by the desired deadline, increasing the budget is probably the most viable option.

However, if the manager signed a fixed cost contract and budget is a constraint, then he needs to
determine how to manage the functionality and deadline in a way that allows him to stay in the budget.
If the budget is allocated incrementally (several disbursements over the project duration) he needs to
lay out the project accordingly.

Exploring Policy Check Reports
Both the emailed reports and the manager dashboard report present policy compliance results in a
similar manner.

Overall Status
One of three lights (red, yellow, or green) is used to indicate the overall status of each project, which is
based on analyses of the project’s budget, deadline, and functionality.

These lights, like every light in the Policy Center reports, correspond to a variable score from 0 to 1. A
green light always indicates a score of 1. A red light always indicates a score of 0. Yellow lights indicate
that the score is somewhere in between. Default values for acceptable or unacceptable scores for
each measured variable are provided by default, and can be customized as described in “Policy
Settings”, page 154.

Deadline Analysis
This indicates if the project is currently late or is in jeopardy of being delayed as of the day of the report.

A green light is presented when the project is on-time or within a reasonable threshold of being on-time
as determined by a “not to exceed” boundary percentage. The bounds can be specified as described in
“Policy Settings”, page 154.
151

Reviewing Policy Check Results
Real-time feedback on how the project is progressing is used to improve the accuracy of the deadline
that was initially estimated for the project.

Functionality Completion Analysis
The Functionality Analysis light communicates whether planned features are completed and comply
with the designated quality policies.

The Functionality Completion Details reports the actual amount of work completed vs. the expected
amount of work completed.

If planned functionality is currently late or is in jeopardy of being delayed as of the day of the report,
you will receive a warning. A green light is presented when the planned functionality is delivered on-
time or within a reasonable threshold of being on-time, as determined by a “not to exceed” boundary
percentage. The bounds can be specified as described in “Policy Settings”, page 154.

If the team does not adhere to any of the designated policies (e.g., perform static analysis, perform unit
testing, etc.), this raises doubt about whether the functionality is actually implemented properly.

Budget Analysis
This report indicates if the project is currently exceeding budget or is in jeopardy of exceeding budget
on the day of the report.

A green light is presented when the project is on budget or within a reasonable threshold, which is
parameterizable. The bounds can be specified as described in “Policy Settings”, page 154.
152

Reviewing Policy Check Results
153

Policy Settings
Policy Settings
A policy is the basis for how well a project is performing. Development Testing Platform allows you to
set the threshold for each policy.

From Project Center’s Policy drop-down menu, you can configure:

• Manager E-mail Settings: Allows you to define the list of people who will receive manager
report e-mails after the policy check is run.

• Global Policy: Allows you to set default values for each checker.

• Project Policy: Allows you to enable Policy Center reports for Development Testing Platform
and configure the policy checkers for each project. Policy Center can also send e-mail to
managers about the policy status of projects.

Configuring Policy Center Settings
The data presented in manager reports is calculated based on the values set in the configuration of
each policy on the Project Policy page. There are default values provided but we recommend that you
configure each checker that best fits your environment. You could also enable/disable each checker.

The following project policies can be enabled and configured for Policy Center.

• Project Settings

• Budget Analysis

• Schedule Analysis

• Functionality Analysis

• Application Security

• Application Security

• Functionality Verification

• Defect Trend/Remediation

• Code Analysis

• Build Results

• Regression Testing

• Test Coverage

• Defect Trending

• Source Code Trending

• Peer Review

• Unit Tests Executed

UI Indicators

• An asterisk (*) is used to indicate changed values

• Italics are used to indicate that a checker is disabled.
154

Policy Settings
Project Settings
Project Settings specifies general settings for project policies. They indicate when the policies should
be checked and what actions should be performed after the check is completed.

.

Budget Analysis

Setting Description

Target Date The specified project is checked daily by a background job. This "Health
Check Back End" job is run at 7 am by default.

The date offset specifies which day’s data should be considered for the
policy check.

For instance, if it is set to -1, Policy Center looks for the previous day’s
data (e.g., if it is run at 7 a.m. Tuesday, it will analyze the project data (test
results, schedule/budget) from Monday). If was set to 0, it would look for
the current day’s data.

Group Email List After the policy check is run, it sends an email report to all members of the
User Administration groups specified here.

For details about User Administration groups, please see “User Adminis-
tration”, page 301

To specify multiple groups, use CSV format (e.g., MyProjectA,
MyProjectB, MyProjectC).

Post Analysis Action Specifies one or more commands (for example .bat/.sh scripts) that the
server will execute after the policy check is completed.

If you want to specify post analysis actions, check the Post Analysis
Action box, then specify the command in the appropriate field:

• Successful: If you want the command (script) to be executed
when the specific project policy check has a "Successful" result
(Green light).

• Acceptable: If you want the command (script) to be executed
when the specific project policy check has an "Acceptable" result
(Yellow light). This occurs when the result falls between the
defined Lower/Upper bounds.

• Failed: If you want the command (script) to be executed when the
specific project policy check has a "Failed" result (Red light). This
occurs when one (or more) of the policy factors has "Failed" (Red
light) status

Since this command (script) will be executed by the server, it’s important
to ensure it is available to run on this machine.

Execution Days The days of the week for which Policy Check executes to generate the
report.
155

Policy Settings
Budget Analysis reports if the project is currently exceeding budget or is in jeopardy of exceeding
budget on the day of the report. A green light is presented when the project is on budget or within a
reasonable threshold (parameterizable).

In Development Testing Platform, a project’s budget and costs are measured in days (not funds).

The initial budget analysis is based on the sum of the estimations of work for individual tasks in an
iteration. Individual tasks are estimated by team members when they add tasks. Development Testing
Platform determines an estimation for the entire project by combining this information. This estimation
of the total number of work hours is spread over the expected duration of the project as a linear
function.

As team members work on tasks, Development Testing Platform measures how much time they are
actually spending on each task. Then, Development Testing Platform compares this data with the
estimates to determine if the iteration is on budget. If measurements indicate that the team is not within
the expected range of work hours projected for the current point in the project, then a red light is used
to alert the manager to this problem.

You can also select which Task Types will be included when Policy Center calculates the budget.To
select task types, check the appropriate box corresponding to the task type you would like to include.
For an explanation of different task types, see /* x-ref to creating tasks in pc man */.

Schedule Analysis
Schedule Analysis reports if the project is currently late or is in jeopardy of being delayed as of the day
of the report. A green light is presented when the project is on-time or within a reasonable threshold of
being on-time as determined by a not to exceed boundary percentage.

Any percentage value in between lower bound and upper bound is considered to be yellow. The
schedule analysis checker only analyzes iterations whose “estimated end date" is in the future, relative
to the day of analysis.

Functionality Analysis

Setting Description

Lower Bound Lower bound for budget threshold in percent. Lower than this threshold
will be reported as good.

Upper Bound Upper bound for budget threshold in percent. Higher than this threshold
will be reported as bad.

Setting Description

Lower Bound Lower bound threshold for deadline due in percent. Lower than this
threshold will be reported as good.

Upper Bound Upper bound threshold for deadline due in percent. Higher than this
threshold will be reported as a problem.
156

Policy Settings
Functionality Analysis reports on the status of planned features. If planned functionality is currently late
or is in jeopardy of being delayed as of the day of the report you will receive a warning. A green light is
presented when planned functionality is delivered on-time or within a reasonable threshold of being on-
time, as determined by a not to exceed boundary percentage.

The functionality analysis indicates—for each project iteration—the actual amount of work completed
vs. the expected amount of work completed. A red light for any iteration will trigger a red light at the
project level.

Work Completed is calculated as follows:

Sum of the estimated cost of work completed / all Estimated work completed * 100

Expected Work Completed is calculated as follows:

all Estimated work completed / # of days for the iteration * # of days past since their iteration
begins

Application Security
The Application Security report monitors the number of failed security tests per thousand lines of code
(KLOC). A warning is issued based on where the number of failed security tests per KLOC falls on the
specified bounds. A green light is presented when this number is below the lower bound.

Functionality Verification
Functionality Verification monitors the percentage of "development tasks" that have either missing or
failing test cases as of the day of the report. A warning is issued based on the percentage of tasks with

Setting Description

Lower Bound Lower bound for task completion in percent. Lower
than this threshold will be reported as a problem
(Overdue).

Upper Bound Upper bound for task completion in percent. Higher
than this threshold will be reported as good (On-
time).

Grace Period Thresh-
old

Percentage of expected task completion required
before reporting current task completion as a prob-
lem. A warning is reported only if you pass the grace
period threshold.

Setting Description

Lower Bound Lower bound for # of security tests per 1KLOC.

Upper Bound Upper bound for # of security tests per 1KLOC.
157

Policy Settings
a missing or failing test suite. A green light is presented when the percent of missing or failing test
suites are in an acceptable range.

Defect Trend/Remediation
Defect Trend/Remediation report monitors the percentage of "defects" with failed test cases or missing
tests cases. A warning is issued based on the percentage of defects with a missing or failing test suite
or a minimum count of defects with missing or failing test suites is exceeded. A green light is presented
when the percent of missing or failing test suites are in an acceptable range.

DefectTestsChecker checks to ensure that every defect has at least one test case associated with it—
and that the test passes during the nightly test. If the test case associated with a defect fails, this
indicates that a serious regression was introduced and the defect should be reviewed as soon as
possible.

If no tests are associated with a defect, it is not possible to automatically check whether code
modifications re-introduced the defect. This should be reviewed as a second priority (yellow) issue.

If the ratio of unresolved defects is higher than the threshold, it should be reviewed (yellow).

Code Analysis
The Code Analysis report is triggered by a range of detected code analysis violations per KLOC. If
code analysis violations exceed a parameterized number of violations per KLOC as of the day of the
report you will receive a warning. Additionally, a warning is issued when an upper bound of new

Setting Description

% of Tasks with Miss-
ing Tests

% of Tasks missing test cases for upper bound.

% of Tasks with Failed
Tests

% of Tasks with failed test cases for upper bound.

Setting Description

% of Defects with
Failed Tests

% of Defects with failed tests.

Acceptable Minimum
Total Defects

Acceptable or allowable minimum # of total defects

% of Defects with Miss-
ing Tests

% of defects with missing tests.
158

Policy Settings
violations are discovered on the day of the report. A green light is presented when code analysis
violations are within an acceptable range of defects per KLOC.

Build Results
Build Results monitors the warning messages from the build process and reports if the project exceeds
a percentage of files with warning messages. A green light is presented when the percentage of files
without a warning message is within a reasonable threshold.

Regression Testing
The Regression Testing report monitors the percentage of "test failures" versus an upper and a lower
boundary. A warning is issued based on exceeding a specified percentage of test failures. A green light
is presented when the percentage of test failures is within an acceptable range.

Test Coverage
The Test Coverage report monitors the percentage of unit testing line coverage for the project versus
an upper and a lower boundary. A warning is issued based on too low of test coverage. A green light
appears when the unit testing line coverage percentage is within an acceptable range.

Setting Description

Acceptable New Viola-
tions Per Day

Upper bound for # of new violations for the day

Lower Bound Lower bound for # of violations per 1KLOC

Upper Bound Upper bound for # of violations per 1KLOC

Setting Description

Acceptable % of Warn-
ing Messages

Acceptable % of files with warning messages for the
project.

Setting Description

Lower Bound Lower bound for % of test failures.

Upper Bound Upper bound for % of test failures.

Setting Description

Lower Bound Lower bound for % of test coverage.

Upper Bound Upper bound for % of test coverage.
159

Policy Settings
Defect Trending
The Defect Trending report monitors an upper and lower bound of defects injected in the project. A
warning is issued based on a relatively high number of new defects discovered versus total defects.

The Defect Trending checker checks for the total number of new defects introduced the day before,
divided by the total number of defects fixed in same time period. If the ratio is greater than upper
bound, it means that more defects were filed than fixed. This indicates that a project may go into
defects creep and should be reviewed.

Source Code Trending
Source Code Trending is a macro monitor for the development team’s progress. A warning is sent if a
high percentage of lines of code are removed compared to the total lines of code. A warning is also
issued when code is not committed to the source code repository within a determined day range. A
green light is presented when the code is being committed to the source repository and in a reasonable
time interval and total lines of source code is growing.

Peer Review
The Peer review report monitors if peer code reviews are being executed as expected and issues
discovered via the peer review process are being fixed. A warning is issued if an individual has too
many peer review tasks queued in their task list or if the number of tasks with issues exceeds an

Setting Description

Lower Bound Lower bound for # of new defects / # of new defects.

Upper Bound Upper bound for # of new defects / # of new defects.

Setting Description

Line Change Lower
Bound

Lower bound % for the line difference between target
date and previous date

Line Change Upper
Bound

Upper bound % for the line difference between target
date and previous date.

Activity Date Lower
Bound

Lower bound for last commit date range in days.

Activity Date Upper
Bound

Upper bound for last commit date range in days.
160

Policy Settings
acceptable range or the total number of outstanding tasks exceeds an acceptable count. A green light
is presented when the peer review is being executed as expected.

A green light is presented if there are fewer outstanding tasks than the Outstanding lowerbound, as
well as fewer tasks with issues than the Issues Lowerbound.

A red light is presented if there are more outstanding tasks or tasks with issues than their upper bounds
allow, respectively.

The rate of issues is calculated as:

If Outstanding rate is lower than Lower bound for outstanding rate threshold AND issue rate is
lower than Lower bound for issues, check if total # of today's review is lower than acceptable
outstanding issue.

The rate of outstanding code review tasks is calculated as:

(Today's Total review (including "To Review" and “Issues for developer" - Yesterday's Total
Review)/Yesterday's Total Review * 100

Unit Tests Executed
The Unit Test Executed report monitors both the execution of all unit tests associated with the project
as well as the percentage of unit test failures. If the total percentage of unit tests executed falls below
an acceptable percentage (over the last 10 drops) or the percentage of test case failures exceeds an
acceptable percentage then a warning will be issued. A green light is presented when unit tests are
being executed as expected with an acceptable range of failures.

Setting Description

Maximum Tasks Lower
Bound

Lowerbound for # of Maximum tasks allowed.

Maximum Tasks Upper
Bound

Upper bound for # of Maximum tasks allowed.

Issues Lower Bound Lower bound for # of tasks with issues (Reviewer
found issues in code).

Issues Upper Bound Upper bound for # of tasks with issues (Reviewer
found issues in code).

Outstanding Lower
Bound

Lower bound for # of outstanding tasks (Reviewer
didn't review issues yet).

Outstanding Upper
Bound

Upper bound for # of outstanding tasks (Reviewer
didn't review issues yet).

Setting Description

Total Test Cases Differ-
ence Lower Bound

Lower bound for % of total test case difference during
last 10 drops.

Total Test Cases Differ-
ence Upper Bound

Upper bound for % of total test case difference during
last 10 drops.
161

Policy Settings
Redeploying a BPEL Process Over the File System
If you are deploying a BPEL process over the file system, you perform the following steps to reload it:

1. Copy the process into the appropriate directory.

2. In Report Center, select Administration,

3. Select Settings > Policy Center > Process Center Engine. The Process Center Engine

page is displayed, as shown below.

4. Select the reload process description, click the version number on the right column, and then

click Reload Process.

5. Check to see if the "process description has been reloaded" message is displayed at the top of

the page.

Test Failed Ratio
Lower Bound

Lower bound for % of failed test case.

Test Failed Ratio
Upper Bound

Upper bound for % of failed test case.

Setting Description
162

163

Administration

• Installing Development Testing Platform

• Configuring Development Testing Platform

• Integrations

• Development Testing Platform APIs

• Build Administration

• Appendix for Development Testing Platform Administration

Project Creation and Configuration
Project Creation and Configuration
Most activities are performed in context of specific project. Generally, a project name and the team
members involved need to be specified. The Project Creation and Configuration chapter in the DTP
user manual covers most project-related actions. Click the help link in the navigation bar in the DTP UI
to access the documentation.

Project Definitions
You can define project parameters, such as filters that allow you to control the data associated with
your project. By default, team members are restricted from all data for all projects, but a project
manager can configure the project definitions to grant team members access. All data is available
when the No restrictions option is enabled for a definition, but project managers can disable the
option to restrict data.

Wildcard Usage in Project Definition Filters
You can use the percentage symbol (%) as a wildcard to represent any character or string in your
search to expand your search. The following example demonstrates how to use the wildcard:

If you want your search to include all milestones for C++test 7.1, instead of listing each one separately
(such as 7.1.1., 7.1.1.0, 7.1.1.23, 7.1.2.0, and so on) you can add the following Milestone value: 7.1%.

Search results will include all milestones for C++test 7.1.

Defect/Enhancement Filter
Project Center integrates with many bug tracking systems, as described in “Integrating with Bug
Tracking Systems and Requirement Management Systems”, page 215.

To associate a project with a bug tracking system:

1. Choose Bug Tracking Systems from the Defect/Enhancement Filter drop-down menu and
click Add

A list of bug tracking systems that have been integrated with DTP appears. The list uses labels
assigned by your DTP administrator.
164

Project Creation and Configuration
2. From the list of systems on the right, select the bug tracking system (BTS) you wish to inte-

grate, then click the < button to associate this BTS with your project.

This integrates the project with *all* items from the selected bug tracking system.

To narrow the filter criteria to a specific project:

1. From Bug Filter drop-down menu, choose Project.

2. Click Add. A list of projects is displayed. These are the projects that were imported from the

integrated BTS.

3. From the list of project on the right, choose the component you wish to integrate, then click the

< button to associate this component with your project.

You can continue fine-tuning the filter in this manner (selecting a filter category from the Bug Filter
drop-down, then adding the desired filter values in to the left side list).

Log Filters
You can use the Log Filter to configure restrictions based on logs that are sent to Report Center, for
example, configuring Report Center to show only data sent by Jtest. Every tool that sends results to
Report Center creates a log, which is a record of a tool run. Every log has the following pre-defined
properties:

• Machine: Name of the machine on the system that ran the tool.

• OS Architecture: Architecture of the system that ran the tool.

• OS Name: Name of the operating system on the system that ran the tool.

• OS Version: Version of the operating system on the system that ran the tool.

• Tool: Name or symbol of the tool that conducted the test, for example, if the test was run by
Jtest 4.5.1, the tool is Jtest.

• Tool Version: Version number of the tool that conducted the test, for example, if the test was
run by Jtest 4.5.1, the version is 4.5.1.

• User: Account of the user who was logged in to the system when the system ran the tool.

To create a filter that restricts data based on one of the log filters listed above:
165

Project Creation and Configuration
1. In the Log Filter box, ensure that the No restrictions option is cleared.

Figure 50: Project Filters Definition

2. Choose an item from the Log Filter drop down list, and then click the Add button next to it. A

page similar to the following is displayed:

Figure 51: Log Filter

3. Specify your restrictions.

The list on the right shows all of the values for the given property that have already been sent
to Report Center. Consequently, if C++test x.x has already sent results to Report Center, that
list will contain the value “C++test x.x”. Some values are added to the Report Center database
during installation, so this list will contain values for tools even if the tools have not run yet.

• To configure the log restriction: Select the proper item(s) from the list on the right,
and then click the less than symbol (<). The selected items move to the list on the left
to define restrictions for data.

• To remove any restrictions: From the list on the left, click the more than symbol (>).
The selected items move back to the list on the right.

• To set restrictions for a value that is not yet represented in the Report Center
database (and, thus, is not available in the drop-down list): Type the name of the
value in the text field below the multi-selection list, and then click the plus symbol (+).
The value you typed is added to the multi selection list and can be selected from that
list.

4. Save the configuration.

Log Properties Filter
Each log can have attributes as well as fixed properties, and you can use the Log Properties Filter to
filter data based on these attributes.

To configure a Log Properties Filter:

1. In the Log Properties Filter Box, deselect the No restrictions option (if it isn’t already).
166

Project Creation and Configuration
2. Select the appropriate log property from the drop-down list, and then click Add.

If the log property that you want to add is not listed, go to the next step.

Figure 52: Log Properties Filter

3. Perform any of the following tasks:

• To add a new log property to the list: Type the name of the value in the Add New
text field, and then click Add New. The value you typed is added to the list and
selected in that list.

• To configure multiple log properties: You can configure as many log properties as
required. Each log filter can be reconfigured as often as needed, but only one
configuration per log can exists for given project.

• To remove log properties: Next to each previously configured log property that you
want removed, click the red button with the plus symbol (+) on it.

4. Click Save at the bottom of the Project Filters Definition page.

Test Group Properties Filter
You can filter data by test group attributes. The Test Group Properties Filter works the same way as the
Log Properties Filter does—with one difference: the Test Group Properties Filter attributes are
assigned to a test group rather than to a log.

Report Center handles many tests and to keep the results of those tests organized, they are grouped
into "test groups". A test group is made up of a set of tests and other test groups. Each test group can
have associated attributes (just as logs have associated attributes). The attributes describe a given
test group, not the entire test run. For example, a test group of static analysis tests will have attributes
associated with static analysis. A test group of white box tests will have attributes related to white box
testing.

You can use the Test Group Properties Filter to provide greater flexibility in defining projects for Report
Center reporting. Apply the Test Group Properties Filter in the same way that you apply the Log
Properties Filter.

Figure 53: Test Group Properties Filter

Example
You can create filters for defining which automated test results received by Development Testing
Platform should be associated with a specific project.

Before defining a filter, you must ensure that your Parasoft Test tools are sending results; for details,
see “Connecting Report Center and Project Center to Parasoft Test”, page 209. Once this configuration
is performed, each automated test run by Parasoft tools (Jtest, C++test, dotTEST, etc.) will send
results marked with "User-Attribute: ProjectName".

To configure Project Center to associate the related automated tests with a project:
167

Project Creation and Configuration
1. From Test Group Properties Filter drop-down menu, choose User-Attribute: ProjectName.

2. Click Add. You will see a list of project names that a) match your search criteria and b) have

test results in Development Testing Platform.

• Note that if your project name is not listed, it means that test results marked with such
attributes have not yet been received by Development Testing Platform. You can add
such attribute manually by typing the name add clicking the [+] sign.

3. Select the name of the appropriate project, then click the < button to add it the left panel.

Now when automated test results are sent from Parasoft Tool to Development Testing Platform and
they are marked with the attribute you specified (in this example, "User-Attribute: ProjectName=My
Online Shop 2.0"), the results will be associated with the project.

Source Control Filter
Project Center integrates with multiple source controls, as described in “Integrating Report Center with
Source Control Management Systems”, page 275.

When you integrate a source control system with Parasoft Development Testing Platform, it is
periodically scanned by Parasoft Source Scanner, and your project code revision information is fed into
the Project Center database.

To integrate Project Center with a source control system, perform the following steps:
168

Project Creation and Configuration
1. From the Source Control Filter drop-down menu, choose Repository.

2. Click Add. A list of repositories (the names of Source Scanner projects that were specified by

your Development Testing Platform Administrator) will be displayed.

3. From the list on the right, choose the name of the repository you wish to integrate, then click

the < button to add this as a part of source filter for your project.

To further narrow the source filter, continue adding conditions in this manner. For example, to specify
only the specific source path which should fall into the project:

1. From the Source Control Filter drop-down menu, choose File Name.

2. In the values field, specify the path to the associated source code.

• All paths to source code that begin with the chosen File Name will be associated with
your project.

• You can use the percentage sign as a wildcard.

3. Click Add. A list of File Names is displayed.

4. From the list of File Names, choose the one you wish to associate with your project.

5. Click the < button to add this as a File Name associated with your project.

6. Click Save to complete the project configuration and save it.

If you want to apply this filter to your existing data, click Recalculate.

Code Review Filter
This filter determines what code review results are displayed in Report Center’s Code Review reports
for any specific project. The procedure for defining code review filters is similar to that of defining log
filters (see “Log Filters”, page 165).

A code review session tag is a custom string that is attached to code review results and used to
distinguish different code review data packs. The session tag should be set to match the Session Tag
from your Parasoft Test "Code Review" Test Configuration as described in “Configuring Code Review
Reporting for a Project”, page 267.

In addition to specifying session tags, you can also control restrictions as follows:
169

Project Creation and Configuration
• With No restrictions selected: The Code Review report shows ALL code review results of the
selected project team members (regardless of the project or source file for which the selected
team members performed the code review).

• With No restrictions cleared (and session tags defined and set): The Code Review report
shows all code review results marked with the selected session tag as long as at least one
project team member defined in the Development Testing Platform Project settings participates
in the code review. Code reviews of users who are not on the project’s team list will not be
shown, even if their code review data is present in results with the specified session tag. See
“Configuring Code Review Reporting for a Project”, page 267 for details.

Parasoft Test Settings
This page lets you specify the "localsettings" to be used when using a Parasoft Test product (C++test,
dotTEST, SOAtest, Jtest) to run tests for the current project.

Instead of creating files for each of your Parasoft Test tools, you can specify your preferred settings
once in this centralized location, and they will automatically be propagated to the Parasoft Test
products when they connect to a Development Testing Platform project.

For example:

#Report Center Settings
grs.data.port=32323
#License Settings
license.network.host=dtp.company.com
license.network.port=2222
license.use_network=true
#Mail Settings
report.mail.domain=company.com
report.mail.from=john.doe
report.mail.password=123456789
report.mail.server=mail.company.com
report.mail.username=john
#Team Server Settings
tcm.server.accountLogin=true
tcm.server.enabled=true
tcm.server.name=dtp.company.com
tcm.server.password=123456789
tcm.server.port=18888
tcm.server.username=team_user

If the values listed below are not defined, Development Testing Platform automatically completes them.
The values are completed as follows, based on the general configuration (such as in Data Collector
port, Mail Server port, etc.):

#Report Center Settings
grs.data.port
#License Settings
license.network.host
license.network.port
#Mail Settings
report.mail.domain
report.mail.from
report.mail.password
170

Project Creation and Configuration
report.mail.server
report.mail.username
#Team Server Settings
tcm.server.name
tcm.server.port

The automatically-completed values will be overwritten when you specify them manually.

For more details, see the Parasoft Test User’s Guide.
171

Report Center Administration Pages
Report Center Administration Pages
Users with administrator privileges can use Report Center Administration. This page provides access
to administrative settings for projects, tools and reports. Choose Report Center from the
Administration drop-down menu to enter Report Center Administration:

Pruning the GRS Database
Use the following command to remove obsolete or over-limit data as necessary:

1. Choose Tools> Update Database> Prune Database (GRS DB).

2. Adjust the time period if necessary and click Execute.

Files older than the time period specified will be pruned from the database. You can also enable
automatic database pruning; see “Automatically Pruning the Database”, page 180.

Uploading Reports to Data Collector
You can upload XML report files generated by Parasoft code analysis tools directly to DTP.

1. Choose Tools> Data Collector Uploader Form

2. Click Choose File and browse for the report you want to upload

3. Click Upload

4. Use the browser navigation buttons to return to Report Center Administration.
172

Report Center Administration Pages
Checking Status of Reports Directly Uploaded to DTP
1. Open the Report Center dashboard view (see “Dashboards”, page 26)

2. Add the Data Collector Diagnostics widget to your dashboard (see “Adding Widgets”, page 15)

The widget displays information about data collected by DTP (see “Diagnostics Widgets”, page 65).

Check your report configuration settings if the widget returns a status error. See the Parasoft Test or
Static Analysis Engine documentation for additional information.

Recalculating Project Data in GRS Database
The following command recalculates project logs, test groups, source control entries, and bugs:

1. Choose Tools> Calculate (GRS DB)> Recalculate Projects

2. Click Execute for individual projects or recalculate all project data at once

Recalculating Artifacts in GRS Database
You can recalculate test statuses of defects and enhancements. After executing this calculation, the
updated status will display in individual defects and enhancements in Project Center. The test status is
also used in the Project Center > Defect/Enhancement Status report.
173

Report Center Administration Pages
1. Choose Tools> Calculate (GRS DB)> Recalculate Defects/Requirements

2. Click Execute in one of the following sections:

• The Defects/Enhancements test status quick calculation option calculates status
based on changes made since last calculation.

• The Defects/Enhancements test status full calculation option calculates the full
test status history.

Recalculating Run Jobs
1. Choose Tools> Calculate (GRS DB)> Run Recalculation Jobs

2. Click Execute

Automatically Run Scans and Calculations
By default, BTS Scanner runs in incremental mode every 15 minutes. Immediately following a scan, a
quick calculation of test statuses is run for defects and enhancements. See “Running BTS Scanner”,
page 223 for more details.

You can modify BTS Scanner scan and calculation settings to meet your needs by editing
$DTP_HOME/grs/config/CronConfig.xml. The following table describes the settings you can
add to the CronConfig.xml file:

You can also run the BTS Scanner on-demand. See “Running BTS Scanner On Demand”, page 224,
for details.

Clearing Report Center Data Cache
Use the following command to remove all data stored in the data cache when users browse through
Report Center reports:

1. Choose Tools> Invalidate (GRS DB)> Invalidate Data Cache

2. Click Execute

Defect/Enhancement
Calculation Option

CronConfig.xml Setting

Full rescan of Defects/
Enhancements from Bug
Tracking Systems.

com.parasoft.grs.rserver.cronjobs.bts.BtsFullScannerJob

Incremental rescan of
Defects/Enhancements from
Bug Tracking Systems.

com.parasoft.grs.rserver.cronjobs.bts.BtsScannerJob

Defects/Enhancements test
status quick calculation.

com.parasoft.grs.rserver.cronjobs.RequirementCalculationJob

Defects/Enhancements test
status full calculation.

com.parasoft.grs.rserver.cronjobs.RequirementFullCalculationJob
174

Report Center Administration Pages
Invalidating File Restrictions
File restrictions map the information about files reported by Parasoft testing tools, such as failed coding
standards tests, to specific file information imported by SourceScanner. Use the following command to
invalidate current file restrictions stored in the Report Center database:

1. Choose Tools> Invalidate (GRS DB)> Invalidate File Restrictions

2. Click Execute.

This action can take several minutes.

Deleting Logs
You can search for logs you want to remove from the database:

• Choose Tools> Update Logs (GRS DB)> Remove Logs.

• Enter search criteria (wildcards are not supported) and click Find.

3. Select a row in the search results and click Delete to remove a single log or click Delete as

indicated in the user interface to remove all logs.
175

Report Center Administration Pages
Logs cannot be retrieved once they’ve been removed.

Automatically Overwriting Logs
The Duplicate Logs Eradicator is an integral part of the Development Testing Platform Data Collector. It
automatically overwrites previous logs to ensure that your database contains the most recent data. You
must configure the main parameters (tool, user, and machine) and attribute keys.

1. Choose Tools> Update Logs (GRS DB)> Duplicate Logs Eradicator

2. Select the Eradicator enabled option

3. Enter parameters (see “About Eradicator Parameters”, page 177) and attribute keys (see

“About Eradicator Keys”, page 177).

4. Click Save .

Logs cannot be retrieved once they’ve been removed.
176

Report Center Administration Pages
About Eradicator Parameters
You can set the following parameters for the eradicator:

• Tools: Specify the tool(s) the eradicator must verify to prevent log duplication.

• Machines: Specify the machine(s) the eradicator must verify to prevent log duplication.

• Users: Specify the user(s) the eradicator must verify to prevent log duplication.

To specify multiple tools, machines, or users, separate items with a comma (e.g. Jtest, SOAtest,
C++test). To specify all tools, machines, or users, insert an asterisk (*) in the appropriate fields.

About Eradicator Keys
Enter a value into the keys field to specify the top-level group attributes the eradicator should use to
compare logs and determine if they can be overwritten.

• If the field is blank, the test group keys are not taken into consideration when the new log
report is received.

• If an asterisk (*) is used, all test groups key values are taken into consideration.

• "User-Attribute: Project" is the most common key. This key references the General Project field
in the Parasoft Test GUI. The Duplicate Logs Eradicator will look for this key and overwrite logs
for results containing the same value in the General Project field.

• You can specify multiple keys in a comma-separated list, e.g. "User-Attribute: Project, User-
Attribute: TestMode".

• When specifying multiple keys, all keys must be present in the test results for the eradicator to
remove existing logs.

About the Duplicate Logs Eradicator
177

Report Center Administration Pages
When a new log is sent to Data Collector, the eradicator checks it against defined parameters,
compares time-stamps, and performs other checks to determine if the log is should be overwritten to
prevent duplicates. The following chart describes the Duplicate Logs Eradicator verification processes:

Scanning Code Review Results
You can force Report Center to read the latest code review scan results in Team Server:
178

Report Center Administration Pages
1. Choose Tools> Scan Code Review (GRS DB)

2. Click Execute.

The command runs the CRHistoryHarvestingJob job, which reads code review scan results and
feeds the data into the Report Center database. The command connects to Team Server using
configurations defined in the DTP_HOME/grs/config/CRHistoryScanners.xml file.

Configuring Emails Notifications
See “Task, Defect, and Requirements Email Notifications”, page 226, for additional information about
configuring setting for emailing notifications to team members.

1. Choose Settings> E-mail

2. Enter email settings

3. Click Save

Enabling/Disabling Report Center Data Cache
Data Cache stores data read from the database while you view reports.

1. Choose Settings> Report Center (GRS DB)> Data Cache

2. Choose the on or off option to enable or disable the cache

3. Enter a value in the idle time section to set how long the report server should wait before auto-

matically generating reports

4. Click Save.
179

Report Center Administration Pages
Data Cache Details
When you generate a Report Center report, the DTP GRS Server records and saves the following
information to Reports Statistics:

• The number of times each report (with specified parameters) has been displayed.

• The amount of time it took to generate each specific report.

Report Statistics is used by Report Center to auto-generate selected reports. Report Center refers to
the statistics to generate and store data in the cache that is either frequently used or requires
considerable time to generate. The cache can significantly speed up users' work, but it can also slow
down the server while reports are auto-generated. The administrator's task is to configure the data
cache settings to achieve a balance that facilitates efficient activity. See “Clearing Report Center Data
Cache”, page 174, for more information about emptying the cache.

Setting Data Collector Time Restrictions
You can specify a block of time during which data is temporarily stored on disk instead of being saved
directly to the Report Center database. Setting Data Collector time restrictions ensures that retrieving
and saving data does not significantly slow down Report Center.

1. Choose Settings> Report Center (GRS DB)> Server

2. Select the Enable Data Collector Time Restrictions option

3. Enter a start and end time

4. Click Save

Automatically Pruning the Database
You can configure Report Center to automatically remove data in the database once a week.

1. Choose Settings> Report Center (GRS DB)> Server

2. In the Enable database pruning section, select Yes or No to enable or disable automated

pruning

3. Enter the maximum number of days data should be kept in the field provided

4. Click Save

Using Deprecated Team Server-based Code Review
You can switch to Team Server-based code review, which draws data from Team Server instead of the
Report Center database. For more details, see “Integrating with Code Review”, page 267.

1. Choose Settings> Report Center (GRS DB)> Server

2. Enable the Use deprecated Team Server based Code Review option

3. Click Save
180

Report Center Administration Pages
Configuring Manager Policy Center Email Settings
You can configure which team members receive comprehensive reports on all projects, set the range
of data for the report, and specify which days the report should run and be emailed to specified users.

1. Choose Settings> Policy Center> Manager Email

2. Perform one of the following tasks:

• Click in the Manager(s) field and choose users from the drop-down menu

• Click Show, select users in the overlay, and click Assign to add them to the
Manager(s) field

• Click Clear to remove users from the Manager(s) field

3. Set the report range

4. Select the days of the week that the Manager Email report should be sent

5. Click Save

Integrating with Development Components
Report Center integrates with bug tracking systems, requirement management systems, and other
third-party software development tools that provide visibility into the development process. Integration
with bug tracking systems, requirement management systems, and Emma code coverage tool for Java
are discussed in the following sections:

• Integrating Report Center with Emma

• Integrating with Bug Tracking Systems and Requirement Management Systems

• Integrating with Custom Processors

See “Integrations”, page 208, for information about all Development Testing Platform integration
capabilities.

Connecting Parasoft Test
Parasoft Test is the infrastructure that facilitates the configuration, usage and interoperation of
Parasoft’s family of development testing technologies. You must configure Development Testing
Platform to connect to Parasoft Test to import and use project settings defined Parasoft products that
use Parasoft Test (e.g. C++test, Jtest, dotTEST, SOAtest, etc.).

1. Choose Settings> Parasoft Test Global Settings

2. In the space provided, enter the configuration settings from Parasoft Test (see documentation

for your Parasoft Test-based tools)

3. Click Save

About File Encoding
181

Report Center Administration Pages
By default, DTP assumes that source code is encoded in UTF-8. If the source code is encoded with a
different character set, you can specify it in the Parasoft Test Settings form by adding the
file.encoding.name property. See “Parasoft Test Settings”, page 170, for additional information.

Viewing Report Center Administration Reports
The administration includes several reports for understanding Report Center activity.

Data Collector Activity Report
You can see when Data Collector retrieves data to be stored in the database and when developers
retrieve data from the same database. Understanding the difference between data is stored and when
it’s needed enables you optimize the data collection and storage process so that you can prevent
bottlenecks and improve efficiency associated with the movement of data.

1. Choose Reports> Data Collector Activity (GRS DB)

2. Choose a preset time period or click the calendar icon to select a custom range

3. Click Refresh to update the report without reloading the page

Database Stats Report
182

Report Center Administration Pages
Choose Reports> Database Stats (GRS DB) to view all tables that in the Report Center database and
how many rows each table contains. If Report Center is running slowly, you can look at this report to
check the sizes of all the tables.

183

Project Center Administration Pages
Project Center Administration Pages
A Project Center Administration web page is accessible to users with administrator privileges. This
page provides access to configurations for items such as task notifications, custom statuses and fields,
e-signature requirements, and more. This chapter describes the following functions available in Project
Center administration:

• BTS and RMS Scanner Configuration

• Entering SOAtest Server Settings

Accessing Project Center Administration Page
1. Click administration from the Project Center main navigation bar to access the administration

page.

BTS and RMS Scanner Configuration
Development Testing Platform can integrate with bug tracking and requirement management systems
either through the graphical user interface or by configuring the integration XML files stored in the
$DTP_HOME/grs/config/bts directory. See “Integrating with Bug Tracking Systems and Requirement
Management Systems”, page 215 for more information.

Entering SOAtest Server Settings
If you want to enable the team to run SOAtest .tst files from the Project Center interface (via the
SOAtest Server web service), enter SOAtest server settings in this page as follows. Please note that
Parasoft Development Testing Platform does not currently support accessing SOAtest server
when access controls are required. If Development Testing Platform needs to access SOAtest
server, it will need to use a SOAtest server that has access controls disabled.:

1. Under SOAtest Server URL, enter the server and port for the SOAtest server web service

interface.
184

Project Center Administration Pages
2. Under SOAtest Test Settings, specify the Test Configuration that you want set as the default

for SOAtest tests run from the Project Center interface.

3. Click Save.

Note that these settings will be set as the default for SOAtest test types. If desired, they can be altered
at the test level (for instance, if a specific test requires a different Test Configuration).
185

Optional Report Center Configurations
Optional Report Center Configurations

Configuring Report Center to Work with Source
Code Branches/Tags
Several Report Center reports show statistics associated with development project source files. You
can define the source repository files that should be scanned for data retrieval, along with their folders,
naming patterns, and so on.

For instances when a project is developed in a source repository branch, or when you want to see
statistics of source files from a specific tag, Report Center can be configured to work with source
repository branches and tags.

Following are the tasks to perform to configure Report Center to work with branches/tags:

• Configuring SourceScanner to Scan Specific Branches/Tags

• Configuring Report Center Projects: Assigning Specific Branch/Tag to a Project

• Viewing Source Statistics on Report Center Reports

Configuring SourceScanner to Scan Specific Branches/Tags
When SourceScanner runs, it scans specified CVS files (branch/tag), and then sends that data to
Report Center. In order to be able to view the source code changes as necessary in Report Center,
SourceScanner needs to be configured so that it scans the appropriate branch or tag, for example,
my_project_6_0_branch.

For details about how to accomplish this task, see Parasoft SDLC Integration Extensions User’s Guide.

Important! It is strongly recommended that any one specific source repository location be scanned by
only ONE SourceScanner project. For instance, if you intend to scan the sources for two branches and
trunk of the same files, then you should define it in only one SourceScanner project. Do not define and
run three separate projects.

Configuring Report Center Projects: Assigning Specific Branch/Tag
to a Project
Now that your Report Center project is configured, you must specify which source files scanned by
SourceScanner should be shown in your specified Report Center project. To do so, follow these steps:

1. From the Report Center Admin menu, choose Project> Search.

Find the appropriate project or create a new one.

Note About Parasoft SDLC Extensions

SourceScanner does not ship with Development Testing Platform. It is part of the Parasoft SDLC
Extensions module. Contact your Parasoft representative if you would liike to use Parasoft SDLC
Extensions.
186

Optional Report Center Configurations
2. Select the Project Filters Definition tab and go to the Source Control Filter section:

3. In the Source Control Filter section, specify any restrictions.

a. Select the Branches/Tags/Labels from the drop-down box, and then click Add:

The window on the right lists the names of all branches/tags that have been scanned
by SourceScanner so far.
187

Optional Report Center Configurations
b. Select the appropriate branch/tag/label—continuing with the example, let’s select
webking-6-0—and then, click the Less Than (<) symbol:

The branch is marked as a part of the Source Control Filter of the Report Center
project that was just modified.

c. (Optional) If you have any restrictions that need to be set for Developer, File Name,
or Repository, perform steps similar to Step a. and Step b.

Note: Restrictions for developer, file name and repository are usually set when
defining the Source Control Filter for your Report Center project.

4. Save the configuration, and then recalculate the project.

Viewing Source Statistics on Report Center Reports
188

Optional Report Center Configurations
To view the statistics of the branch sources for which you configured SourceScanner and Report
Center, go to any Report Center report that displays source files data. Code Base Size (shown below)
and Check-ins are two examples of such Report Center reports.

Notice the Restrict Code – From Branching Point Only option near the top of the page:

• If Restrict Code - From Branching Point Only is selected, then only the file revisions that
were committed after the date on which the branching point occurred are taken into account
when calculating the specific report.

The branching point occurs when a branch is created in a revision. In other words, the branch
is separated from the main trunk/head or its parent branch.

• If Restrict Code - From Branching Point Only is not selected, then all file revisions are taken
into account to calculate the specific report.
189

Configuring Cache Report Executor
Configuring Cache Report Executor
The Cache Report Executor job browses reports defined in the staticLinksConfig.xml configuration file,
thus making them cached. By default, this job is scheduled to start at 5 a.m. (allowFromHour=5). If the
default settings do no accommodate your needs, you can modify the Cache Report Executor job to
change scheduled cache times and the list of reports to cache.

If you encounter any difficulties with the Cache Report Executor, see “Cache Report Executor” on
page 305.

Configuring Scheduled Cache Times
You can configure the scheduled cache time in the CronConfig.xml file in the Job id="Cache
Report Executor" xml element.

Configuring List of Reports to Cache
To configure the list of reports to cache when the Cache Report Executor job runs, edit the file in
staticLinksConfig.xml. Following is an example of the configuration file:

<?xml version="1.0" encoding="UTF-8"?>
<reports>
 <report descr="Architect Dashboard" xreport-id="architect_dashboard/
composite_desc" composite="true" params=""/>
 <report descr="Practices > Coding Standards" xreport-id="practices/
cs_composite_desc" composite="true" params=""/>
 <report descr="Practices > White Box" xreport-id="practices/wb-bb/
wb_composite_desc" composite="true" params=""/>
 <report descr="Practices > White Box > Coverage" xreport-id="practices/
wb-bb/WBCoverageDetails" composite="false" params="period=10drops&date-
Mode=period"/>
 <report descr="Practices > Black Box" xreport-id="practices/wb-bb/
bb_composite_desc" composite="true" params=""/>
 <report descr="Practices > Black Box > Coverage" xreport-id="practices/
wb-bb/BBCoverageDetails" composite="false" params="period=10drops&date-
Mode=period"/>
 <report descr="Audit > Drop Grade" xreport-id="audit/DropGrade" compos-
ite="false" params="period=10drops&dateMode=period"/>
 <report descr="Audit > Errors By Category" xreport-id="errors/ErrorsBy-
Category" composite="false" params="period=10drops&dateMode=period"/>
 <report descr="Audit > Errors By Severity" xreport-id="errors/ErrorsBy-
Severity" composite="false" params="period=10drops&dateMode=period"/>
</reports>

The following table lists some of the tags contained in the file above, along with descriptions of each:

Tag Description

reports Root element.
190

Configuring Cache Report Executor
Adding a New Report to Cache
An xreport-id attribute can be set by copying it from the appropriate report URL. To explain this more
clearly, the following steps contain the architect dashboard as an example:

1. Go to Report Center web page: http://localhost/grs.

2. Go to the report that you want to be cached, such as:

http://localhost/grs/
xarchitect_dashboard.jsp?xreportcomposite=architect_dashboard/
composite_desc.

3. Copy the link. In this example it is architect_dashboard/composite_desc, and then

paste it as xreport-id attribute value.

4. Verify that the composite attribute is set to true.

Working with the Reports Caching Mechanism in
Report Center
Reports in Report Center are cached in two different ways:

• When users browse and then generate a report, it is stored in cache.

• Each night the Report Center background job is run, which generates cache for reports
specified in the dtp\grs\config\staticLinksConfig.xml configuration file.

Reports cache can be invalidated in three different ways:

• Nightly (after midnight) run of the Report Center background job. The invocation time can be
configured in dtp\grs\config\CronConfig.xml, in CleanCacheReportExecutor part. See
“Customizing Reports Caching” for more details about configuring nightly jobs.

• Manually from the Report Center Administration menu: Settings> Report Center> Data Cache.

• Restarting the Development Testing Platform server.

Notes:

• When a specific report is cached and a new log from the Parasoft tool is received by Data
Collector, that report cache is not invalidate. The report is shown from cache, so in order to see

report Tag that contains information for single report to cache.

descr Simple description of report to cache.

xreport-id Contains xreport descriptor, which identifies report to cache.

composite If report is a composite report, then set this attribute to true. If not,
set it to false.

params Attribute that contains report parameters used to cache report. Multi-
ple parameters should be concatenate by the an ampersand symbol:
&.

Tag Description
191

Configuring Cache Report Executor
the new log on the report, the cache should be invalidated from the menu. Otherwise, it will be
done automatically after midnight.

• Reports cache data is stored on disk in the dtp/reportcenter/datacache directory. For each
report with a specific parameter, there are two different files stored there: one with .dat
extension and the other with .par extension.

Customizing Reports Caching
There are two locations where the caching mechanism can be customized:

• dtp/grs/config/CronConfig.xml configuration file contains Report Center background jobs
configuration.

The following two jobs deal with caching:

• CacheReportExecutor: Background job that browses the reports defined in the
dtp\reportcenter\staticLinksConfig.xml configuration file, thus making them cached. By
default, this job run at 5 a.m. each morning.

• CleanCacheReportExecutor: Job that invalidates reports cache. By default, it runs just
after midnight each night at 12:01 a.m.

• From the Report Center administration page: Settings> Report Center> Data Cache

1. Switch caching on/off.

2. Report Server idle time (in minutes) after which reports cache auto-generation Cach-
eReportExecutor continues to work after being paused.

CacheReportExecutor starts at the hour defined in CronConfig.xml (allowFromHour=5 a.m., by default)
and works until any of the following circumstances occur:

• All reports from staticLinksConfig.xml are cached.

• Any user begins to browse Report Center reports during CacheReportExecutor work,
CacheReportExecutor pauses to work, and continues when "Report Server idle time" elapses
after all users stop browsing Report Center reports.

• CacheReportExecutor reaches allowToHour, which is defined in CronConfig.xml.
(CacheReportExecutor stops here if it did not stop earlier when all reports from
staticLinksConfig.xml were cached).
192

Report Center Tools
Report Center Tools
Report Center tools include sizer (which helps you monitor the size of the Report Center database),
Report Center testing tools such as chk and send, and additional utilities that will help you install the
AEP infrastructure and troubleshoot problems.

Extracting and Customizing the Scripts
To use the Report Center tools, untar the distribution (SDLCExtensions--{version}.tgz or
SDLCExtensions--{version}.exe) to some directory on your system. For example:

 Unix: $HOME/proserve

 Windows: C:\Program Files\Parasoft\ProserveTools

The following shell scripts are included:

UNIX scripts:

• chk.sh checks the data in Report Center

• send.sh sends test message to Report Center

• size.sh checks size of Report Center and stores it in Report Center

 Windows scripts:

• chk.cmd checks the data in Report Center

• send.cmd sends test message to Report Center

• size.cmd checks size of Report Center and stores it in Report Center

Note: These scripts typically must be modified before they run properly. You usually need to modify
them so that their path information specific to the system where they are installed. The scripts are
designed only to be run from the local directory, but can easily be modified to run from your path.

UNIX Script Customizations
Edit the shell script of your choice. It is likely that you will need to alter JAVA_HOME to point to the
location where your java is installed.

For bash users: export JAVA_HOME=/usr/local/java

For tcsh users: setenv JAVA_HOME/usr/local/java

If you want to run from your path, you will need to comment out the line that says "set GTDIR" and
make a new line that sets GTDIR to the full path of your installation directory:

#export GTDIR=`pwd`
export GTDIR=$HOME/proserve/ReportCentertools

 Windows Script Customizations
Note: If you install in the C:\Program Files\Parasoft\ProserveTools and have Report Center installed on
the same system, you won't need to make any changes.

Edit the cmd file of your choice. It is likely that you will need to alter JAVA_HOME to point to the
location where your java is installed:
193

Report Center Tools
set JAVA_HOME=C:\j2sdk5.0

If you want to run from your path, you will need to comment out the line that says "For /F "tokens=*"
and make a new line that sets GTDIR to the full path of your installation directory.

REM For /F "tokens=*" %%v in ('CD') Do @Set GTDIR=%%v
set GTDIR=C:\Program Files\Parasoft\ProserveTools

Running the Tools

Running chk.sh | chk.cmd (v2.1)
There are several ways to run the chk tool that checks the data in the database. The default is only to
look at the current day and one day previous. The basic mode to test is type the command and name
of the Report Center server:

Unix:

./chk.sh reportcenter_server_name

Windows:

chk reportcenter_server_name

To check the source scanner data instead, just add the -scanner parameter:

Unix:

./chk.sh reportcenter_server_name -scanner

Windows:

chk reportcenter_server_name -scanner

To dump the basic Report Center data to a csv file in the local dir:

Unix:

./chk.sh reportcenter_server_name -dump -all

Windows:

chk reportcenter_server_name -dump -all

Note for Oracle users:

If your Report Center server is using an Oracle db instead of the default MySQL server, add "-oracle" to
any of the above commands. For example:

chk reportcenter_server_name -oracle

Running send.sh | send.cmd (v1.2)
To run the send tool that sends data to Data Collector, type the command and the name of the Report
Center server to which you want it to send data:

Unix:

./send.sh reportcenter_server_name
194

Report Center Tools
Windows:

send reportcenter_server_name

Running size.sh | size.cmd (v2.1.1)
To run the size tool that checks the size of the Report Center database, type the command and the
name of the Report Center server:

Unix:

./size.sh reportcenter_server_name

or for oracle

./size.sh -oracle reportcenter_server_name
to do local size check use "-f"

./size.sh -f reportcenter_server_name

Windows:

size reportcenter_server_name

or for oracle

size -oracle reportcenter_server_name
to do local size check use "-f"

size -f reportcenter_server_name
195

Creating and Locking Down Sandboxes
Creating and Locking Down Sandboxes
As utilization of Team Server grows to include sharing data of data and uploading reports, it is now
imperative to provide a clearer delineation between data sets.

Using sandboxes on Team Server (organized as directories to the file structure) allows for logical
separation of data for different development groups within the organization. It also provides a scalable
way to control permissions as well as isolating backup and restore procedures.

Built-in corporate default configurations are stored in the default area as templates to allow deriving
custom team sandboxes by the team’s leads. Default tool installations have no username/password set
in the Team Server properties of the tool. Therefore, by default, it will have read access to the
corporate default configurations, but will not have the ability to alter them or upload results to the
default area.

Administering Team Server
To administer Team Server, complete the following tasks:

• Lock Down Team Server and Create Admin Account

• Creating New Sandboxes

• Loading the Default Configurations into a Team’s Sandbox

Lock Down Team Server and Create Admin Account
Lock Down Team Server and create the admin account:

1. Go to the Team Server Home Page and choose General> Named Account .
196

Creating and Locking Down Sandboxes
2. Deselect Enable unauthorized connections, and then click [Save].

3. Click [Add new account] to add a global admin account.

4. Type the appropriate information in the following fields as specified, and then click [Add

account]:

• Username: Type "admin".

• Password: Type "password".

• Path prefix: Leave blank.

5. Validate access to the root file system.

a. Choose Management > Data Storage from the menu.

b. Click Manage path permissions to confirm the following settings for the admin and
unauthorized users:
197

Creating and Locking Down Sandboxes
Creating New Sandboxes
When a new project needs to be created, the team lead is required to contact the Team Server
Administrator and they should follow the steps outlined below (e.g. for ‘team1’):

1. Go to the Team Server Home Page, and select Named Accounts.

2. Add the following users by clicking [Add new account]:

• Team account: admin account

• Username: team1_admin

• Path Prefix: team1

• Select [Add account]

• Team account: user account

• Username: team1_user

• Path Prefix: team1

• Select [Add account]

3. Setup team account permissions:

• For the team admin account (team1_admin in this example):
198

Creating and Locking Down Sandboxes
a. Click Manage.

a. In Path:/, change can modify to false.

2. Select [Add New Path], and then enter the default path (for example, /usr/
team1).

3. Set can modify to true, and then click [Add].

4. Click [Save] to save all of the user settings.

• For the team user account, (team1_user in this example)

a. Click Manage.

a. In Path:/, change can modify to false.
199

Creating and Locking Down Sandboxes
b. Click [Save] to save all the user settings.

Loading the Default Configurations into a Team’s Sandbox
Since the sandbox is created with no configurations loaded, the team lead or Team Server
administrator is required to load the default configurations by doing the following:

1. Start up the appropriate tool, such as Jtest.

2. Load Test Configuration by choosing Jtest > Test Configurations from the menu.

3. Select the appropriate configuration from the Team folder.

4. Right click on the configuration and select Duplicate.

A copy of the configuration is placed in your user-defined folder.
200

Creating and Locking Down Sandboxes
5. Rename the copied user-defined configuration as appropriate.

6. Close the Configuration dialog and load the Preferences dialog by using the tool’s pull-

down menu (for example, Jtest > Preferences).

7. Select the Team item.

8. Check the Enable Team Server and Enable account login check boxes.

9. Enter the team admin account supplied by Team Server administrator.
201

Creating and Locking Down Sandboxes
10. Click Test connection to assure the Parasoft Application has successfully connected to the

Team Server manager.

11. Reload the Test Configuration dialog.

12. Right click on defined user configuration and select Upload to Team Server.

A copy of the configuration entry created will appear under the Team folder.
202

Creating and Locking Down Sandboxes
Important!

• Developers on the team should be using the team user account to connect to the Team Server
supplied by either the team lead or Team Server administrator.

• The command line/server execution of the appropriate tool (such as, Jtest) should be using the
team admin logon details in the local settings to ensure that the data from the run is uploaded
to the correct sandbox.

• The Team Server administrator should setup a backup process for the data stored on the Team
Server.

• Cleaning Configuration on the Team Server (Team Server Home Page > General
Configuration > Cleaning Configuration) should be set to every 30 days. The time of day for
cleaning can be customized as appropriate. Be sure to click Save after every modification.
203

Forwarding DTP Engines 10.x Reports From Data Collector to Team Server

204

Forwarding DTP Engines 10.x Reports
From Data Collector to Team Server
You can configure DTP so that static analysis reports from DTP Engines 10.x are forwarded to Team
Server. This enables users to download static analysis violations detected by DTP Engines to a
desktop IDE version of Parasoft Test 9.x. This may be useful if your organization has a combination of
DTP Engines 10.x on the build server (such as DTP Engine for C/C++) and Parasoft Test 9.x desktop
machines (such as Parasoft C/C++test 9.6).

1. Open the DTP_HOME\conf\PSTRootConfig.xml configuration file

2. Add the following entry under the <root-config> tag:

<enable-forward-to-team-server>true</enable-forward-to-team-server>

If the Enable unauthorized connections option is enabled for Team Server, all static analysis reports
from DTP Engines received by Data Collector are forwarded to Team Server by default.

If the Enable unauthorized connections option is disabled and named accounts are in use (see
“Configuring Named Accounts”, page 91), the Parasoft Test Global settings or Parasoft Test settings for
the project must specify the username and password. Basic usage:

tcm.server.username=team_user

tcm.server.password=123456789

For more information, please refer to Parasoft Test User Guide.

Changing Multicast DNS Usage

205

Changing Multicast DNS Usage
Development Testing Platform uses multicast DNS to broadcast its services in the local network—to
Parasoft Test and to other Development Testing Platform servers. This allows Parasoft Test to
automatically detect available Development Testing Platform servers, which enables easy
configuration of Parasoft Test settings.

We strongly recommend that you leave this service enabled. However, you can disable it if needed.

To disable multicast DNS:.

1. Open the <Development Testing Platform installation directory>/conf/pcc.conf file and add the

<jmdns-autoconf-disabled>true</jmdns-autoconf-disabled> node as a child of

the <Root> node.

The file should now look like this:

<Root>
 <license>
 ...
 </license>
 <jmdns-autoconf-disabled>true</jmdns-autoconf-disabled>
 ...
...

2. Open the <Development Testing Platform installation directory>/tomcat/webapps/bpel/WEB-

INF/engine.xml file and set the advertiseEndpoint option to false.

Customizing Exports to Microsoft Word

206

Customizing Exports to Microsoft Word
Some reports provide the option to export to a Microsoft Word document (docx). Clicking the [Export
to Word] button opens the current report in a docx file. This file is based on a Microsoft Word template
that is predefined with the Parasoft Development Testing Platform header and footer.

If you prefer to use a custom template (e.g., with your organization’s branding):

1. Copy your .docx template to the $DTP_HOME/grs/xreports/planning/common/docx

directory.

2. Change its name to template.docx.

Disabling and Enabling Applications from the Toolbar

207

Disabling and Enabling Applications
from the Toolbar
You can disable applications, such as Report Center and Policy Center, from the DTP toolbar.

1. Open the [INSTALLATION_DIR]\conf\PSTRootConfig.xml configuration file in an edi-

tor.

2. Uncomment the <visible-apps> section and set each application to false to disable or

true to enable in the toolbar.

If your installation does not have the <visible-apps> section, you must manually add it under
the <root-config> node:

 <!-- Configures which web application can be visible in DTP head menu -->

 <visible-apps>

 <report-center>true</report-center>

 <project-center>true</project-center>

 <policy-center>true</policy-center>

 <team-server>true</team-server>

 <license-server>true</license-server>

 <user-administration>true</user-administration>

 </visible-apps>

3. After re-configuring, the Parasoft DTP Server needs to be restarted.

A license for each application is also required. Individual users must also have credentials to see
enabled applications (see “User Administration”, page 301).

208

Integrations
In this section:

• Connecting Report Center and Project Center to Parasoft Test

• Importing BTS Data from CSV

• BTS and RMS Scanner and Updater

• Integrating Report Center and Project Center with Third Party Tools

• Subscribing To Development Testing Platform Events

Connecting Report Center and Project Center to Parasoft Test

209

Connecting Report Center and Project
Center to Parasoft Test
ITo import results from Parasoft Test products, such as Jtest, C++test, dotTEST, and SOAtest,
connection parameters must be properly configured:

1. In your Parasoft Test product, choose Parasoft> Preferences to open the Preferences dialog.

4. Select the Parasoft> Concerto.

5. Specify the appropriate connection properties. For details, see the "Connecting to Parasoft

Report Center and Project Center" topic in the Parasoft Test User’s Guide.

6. Click Apply.

7. Click OK to set and save your settings.

Importing BTS Data from CSV
Importing BTS Data from CSV
Development Testing Platform can be integrated with any bug tracking system by means of using CSV
(Comma Separated Values) files. Any defect/enhancement data that your bug tracking system can
export to a CSV file can be imported into Development Testing Platform.

To integrate Development Testing Platform with a BTS/RMS using CSV files, perform the steps in the
following sections:

• Preparing CSV Files

• Formatting your CSV Files

• Providing a Configuration File for BTS Scanner

Note: If your CSV file contains national characters (for example, in defects names), please ensure that
it is saved using UTF-8 encoding before it is imported into Development Testing Platform.

You can also import internal defects to projects in Development Testing Platform from a .csv, .xls, or
.xlsx file. When defects are imported from file, Development Testing Platform recognizes them as
internal defects, which enables more properties to be defined. See “Importing Defects from File”,
page 45 for more information.

Preparing CSV Files
Development Testing Platform requires two files for BTS/RMS integration via CSV:

• CSV_bugs.csv: This file should contain a list of defects from your BTS.

• CSV_activities.csv: This file should contain the history of the status changes of your
defects.

Examples of these files can be found in: DTP\grs\extras\csv-bts.

These files will be scanned periodically by the BTS Scanner job (every 20 minutes by default, or on-
demand from the Web interface) and the data will be fed into Development Testing Platform.

It is recommended that you update these data files (export from your BTS) periodically, e.g. every day
(or ideally on each change in BTS), to ensure that Development Testing Platform has up-to-date defect
data.

The following sections describe how to create the CSV files used for BTS integration.

Creating a CSV Defects File
Development Testing Platform can use a CSV defects file to read the basic properties of each defect/
enhancement. Let’s assume this file is named CSV_bugs.csv.

Note that Development Testing Platform scans this file periodically.

There are 2 possible approaches to what data should be exported to the CSV_bugs.csv file:
210

Importing BTS Data from CSV
• Delete CSV_bugs.csv periodically and save into it only the defects which have changed their
properties or which have been added recently and which you want to be imported into
Development Testing Platform.

For example, if one defect (already scanned into Development Testing Platform) has changed
its status, and another defect has been added to your BTS (and has not been scanned into
Development Testing Platform), the CSV_bugs.csv should contain 2 rows with the current
properties of these defects.

• Include all the defects from your BTS in CSV_bugs.csv - When scanning periodically,
Development Testing Platform will update only the properties of bugs which have changed or
have been added since the last scan.

Note: when a specific defect is imported into Development Testing Platform, it is never deleted
from it. You can only update the defect properties or add new defects by changing the
CSV_bugs.csv file.

CSV_bugs.csv columns:

The following defect properties are required in the CSV file:

• ID: The identifier of your defect/enhancement in your bug tracking system.

• Type: This field is used to identify the item in your bug tracking system as either a defect or an
enhancement. Values of this column will be interpreted as features if and only if they match
one of the items specified under the <feature-request> tag (defined in #2 step ix) <bts>/
<feature-request>). Otherwise, values will be interpreted as defects.

• Summary: The summary of the defect.

• Status: Designates whether the defect is in open or closed state. See also #2 vi) <bts>/
<resolved-status> below

• Created On: The date when the defect has been created in BTS

The following defect properties are strongly recommended to be present in CSV file (as they are
displayed on Development Testing Platform reports):

• Owner: The current assignee of this defect in BTS.

Tip: For the owner property, it is recommended that you use a login name which matches the
user’s login in Development Testing Platform, or the email address as defined for the user in
Development Testing Platform, in the Users Administration module. This facilitates scheduling
tasks from defects/enhancements in the Project Center module, and assigning them to
Development Testing Platform owners.

• Priority/Severity: priority of the defect

• Resolution: designates the way in which the defect has been resolved. Leave empty if not yet
resolved. See also vii) <bts>/<inactive-resolution>

The following additional properties (columns) can be present in CSV_bugs.csv: Version, Milestone,
Hardware, Os, Project, and Component. These properties will be imported into Development Testing
Platform for future use. An example file that includes these properties can be found in
DTP\grs\extras\csv-bts\CSV_bugs_ext.csv.

Creating a CSV Defect History File
Development Testing Platform can use a CSV defect history file to read the history of status changes
made to defects in your BTS. Let’s assume this file is named CSV_activities.csv.

Note: You can also provide the history of changes of the other (than status) fields of your
defects, however they will not be used by Development Testing Platform until a future release.
211

Importing BTS Data from CSV
As in CSV_bugs.csv, there are 2 possible approaches to what data should be exported to the
CSV_activities.csv file:

• Delete CSV_activities.csv periodically and save into it only the changes made to the
statuses of the defects recently and you would like to update them in Development Testing
Platform.

• Have whole the history of the status of the defects changes from your BTS in
CSV_activities.csv - Development Testing Platform when scanning periodically will
import only the new entries which have appeared since the last scan.

The history of status changes is used in Report Center reports. For example, Tester Dashboard
presents a graph that charts the trends of statuses of your project defects over time.

Changes made to _gresolution_h property can also be saved in this file. This can be used to specify if
a particular defect is made inactive.

CSV_activities.csv columns:

The activities file should contain the following info:

• ID: The defect ID.

• User: user who performed the change.

• Activity Date: Date on which change occurred.

• Changed Field: The defect attribute which has changed. In practice, the status attribute is
used on Development Testing Platform reports, however changes to additional attributes, such
as owner, resolution etc., can be imported to Development Testing Platform.

• Old Value: The value of the field before the change

• New Value: The value of the field after the change

Formatting your CSV Files
Apply the following formatting constraints to your CSV files:

• Cells should be separated by commas. If cell contains comma char, it should be enclosed in
quotes.

• Quotes in cells should be doubles

• The last field of a line is not followed by a comma.

• Null/empty fields are represented by two commas in a row.

• Files should typically end with a single END-OF-LINE.

Providing a Configuration File for BTS Scanner
Development Testing Platform requires that you provide a configuration file for the BTS Scanner job.
212

Importing BTS Data from CSV
There is an example of such a configuration file in
DTP\grs\config\bts\examples\ExampleCSVScannerConfig.xml.Please make a copy of it
and adjust all the parameters described below.

After you are done, please move this file to the DTP\grs\config\bts directory. Development
Testing Platform periodically scans this folder and preforms BTS scanning for each configuration file
found in this directory.

To configure BTS Scanner for CSV integration, please provide values for the following attributes:

i) <bts>/<name>

 - The label you want to use to label this instance of your BTS; for example, "My BTS Server."

This name appears in Project Center > Search Defects/Enhancements page in "Defect Tracking
System" drop-down menu.

ii) <bts>/<bugs-file>

 the location of CSV_bugs.csv

iii) <bts>/<activities-file>

the location of CSV_activities.csv

iv) <bts>/<fields-mapping>

This section specifies the names of the columns in CSV_bugs.csv file. Columns from ID through
Created On are required to be present. Columns from Owner through Severity are strongly
recommended to be present. The rest are optional fields which can be imported to Development
Testing Platform for future use.

<fields-mapping>
<id>ID</id>
<bug-type>Type</bug-type>
<summary>Summary</summary>
<status>Status</status>

 <creation-date>Created On</creation-date>
 <assigned-to>Owner</assigned-to>
 <priority>Priority</priority>
 <severity>Severity</severity>

<resolution>Resolution</resolution>

<version>Version</version>
<milestone>Milestone</milestone>

 <hardware>Hardware</hardware>
 <os>Os</os>
 <project>Project</project>
 <component>Component</component>
</fields-mapping>

v) <bts>/<activity-fields-mapping>

This section specifies the names of the columns in CSV_activities.csv file. All the columns are
required to be present in CSV_activities.csv file.

 <activity-fields-mapping>
<id>ID</id>
<who>User</who>
<date>Activity Date</date>
<changed-field>Changed Field</changed-field>
<old-value>Old Value</old-value>
213

Importing BTS Data from CSV
<new-value>New Value</new-value>
</activity-fields-mapping>

vi) <bts>/<resolved-status>

Specify which values of your BTS defects designate that the defect is resolved, in other words define
what indicates that the defect is fixed or enhancement implemented.

This info is used by Development Testing Platform on various reports, for example Tester Dashboard
graph shows the over-time trends of defects open vs not tested/tested. Defect should be closed to be
treated tested or not tested.

For example:

<resolved-status>
<status>RESOLVED</status>
<status>CLOSED</status>

</resolved-status>

vii) <bts>/<inactive-resolution>

Specify which values of your defects designate that the defect is inactive. Such defects will not be
imported into Development Testing Platform.

For example:

<inactive-resolution>
<resolution>DUPLICATE</resolution>
<resolution>INVALID</resolution>

</inactive-resolution>

viii) <bts>/<date-formats>

A date format which is used in CSV_bugs.csv and CSV_activities.csv files should be specified here.
The most common formats have been specified:

<date-formats>
<date-format>yyyy-MM-dd hh:mm</date-format>
<date-format>yyyy-MM-dd hh:mm:ss.0</date-format>
<date-format>yy MMM-dd hh:mm</date-format>
<date-format>MM/dd/yy hh:mm aa</date-format>

</date-formats>

The format of entries should meet the one defined for SimpleDateFormat class in java. (See http://
java.sun.com/javase/6/docs/api/java/text/SimpleDateFormat.html)

ix) <bts>/<feature-request>

The values of <item> nodes specify which values of _gType_h column in CSV_bugs.csv identifies the
specific BTS item as enhancement (not a defect).

For example:

<feature-request>
<item>enhancement</item>

</feature-request>

3. How to verify the imported CSV defects/enhancements.

After you adjust parameters of your CSVScannerConfig.xml file, please copy it to DTP\grs\config\bts
directory. Development Testing Platform periodically scans this folder and preforms BTS scanning for
each configuration file found in this directory. For details on how Development Testing Platform scans
BTS configuration files, see “Running BTS Scanner”, page 223.
214

Integrating with Bug Tracking Systems and Requirement Management Systems
Integrating with Bug Tracking Systems
and Requirement Management
Systems
Development Testing Platform integrates with several bug tracking systems (BTS) and requirement
management systems (RMS) using either BTS Scanner or RMS Scanner, which are internal
components that must be configured to work with each system integration. BTS Scanner or RMS
Scanner transfer bug or requirement data from supported systems into the database.

Each scanner retrieves essential information from a BTS or RMS database and sends it to the Report
Center database. The transferred data is then used by Report Center/Project Center to create reports
related to bugs or requirements. After configuration, BTS or RMS Scanner will automatically run at a
default interval of every 15 minutes. It can also be run on-demand.

Configuring BTS or RMS Scanner with the Built-in UI
You can configure BTS or RMS Scanner from Report Center or Project Center administration. This
option is only available for the following systems:

Bug Tracking Systems

• Bugzilla

• JIRA 4.x

• JIRA 5.x/6.x (requires SSL to be running on DTP server; see “Running Development Testing
Platform Under SSL”, page 153, for more information)

Requirements Tracking Systems

• Blueprint

• DOORS

Adding BTS Configurations
1. Open the administration page and choose Settings> BTS Scanners.

2. Choose a system from the Type drop-down menu
215

Integrating with Bug Tracking Systems and Requirement Management Systems
3. Enter a name for the new configuration and click Create New.

Configuring BTS Scanners
1. Open the BTS Scanners administration page and click Modify in the Modify column.

2. Enter the server settings and login information
216

Integrating with Bug Tracking Systems and Requirement Management Systems
3. Configure how artifact statuses should be mapped to Development Testing Platform.

4. Click Save when finished.

Adding RMS Configurations
1. Open the administration page and choose Settings> RMS Scanners.

2. Choose a system from the Type drop-down menu.

3. Enter a name for the new configuration and click Create New.

Configuring RMS Scanners
1. Open the RMS Scanners administration page and click Modify in the Modify column.
217

Integrating with Bug Tracking Systems and Requirement Management Systems
2. Enter the server settings and login information

Configuring IBM Rational DOORS Through the UI
The DOORS configuration page includes parameters that unique to that system.

1. Follow the instructions for adding a new configuration above.

1. Open the RMS Scanners administration page and click Modify in the Action column.

2. Enter the server settings and login information
218

Integrating with Bug Tracking Systems and Requirement Management Systems
3. Click Add to define a DOORS module from which requirements should be imported to DTP

Server. The path you specify must point to a DOORS Formal Module or Linked Module and not

to, for example, a DOORS Folder.

4. Specify additional DOORS integration information:

• DTP project: Development Testing Platform project to which the specified DOORS
module requirements will be imported.

• DOORS DB: (Optional) Alternative DOORS database.

• Note: This field should only be used if the corresponding Module name is defined at a
DOORS db other than the one linked to the DOORS Exe, which is specified in your
General configuration.

• User: Valid DOORS username with access to DOORS database and read privileges
for all objects from Module Name.

• Password: Valid password for User.

5. Click Save.

A new DOORS BTS Scanner configuration file is created in your $DTP_HOME/grs/config/
bts directory.

Manually Configuring BTS or RMS Scanner
You can edit the corresponding XML file stored in the DTP_HOME/grs/config/bts directory to manually
configure BTS and RMS Scanner. See “BTS and RMS Scanner and Updater”, page 221., for
instructions on configuring and using BTS and RMS Scanner.

Development Testing Platforms supports simple integration with several systems. The following
sections provide instructions on manually configuring BTS/RMS Scanner for use with each system:

• Integrating with HP Quality Center

• Integrating with Bugzilla

• Integrating with IBM Rational ClearQuest

• Integrating with Atlassian JIRA
219

Integrating with Bug Tracking Systems and Requirement Management Systems
• Integrating with IBM Rational Change and Synergy
220

BTS and RMS Scanner and Updater
BTS and RMS Scanner and Updater
You can manually configure BTS Scanner to scan your BTS/RMS by providing the appropriate settings
in one of BTS Scanner’s .xml configuration files, which are stored in DTP_HOME/grs/config/bts,
on the host where your Development Testing Platform server is installed.

The following topics are discussed in this chapter:

• Preparing an Example Configuration File

• Adding a Prepared Configuration File

• Custom BTS Scanner/Updater

• Running BTS Scanner

• Verifying that BTS Scanner is Working

• Configuring BTS Updater

• Using Original IDs in Reports

Preparing an Example Configuration File
An example configuration file is provided for each supported BTS/RMS in DTP_HOME/grs/config/
bts/examples.

To prepare an example configuration file, follow these steps:

1. Navigate to the configuration examples directory: DTP_HOME/grs/config/bts/exam-

ples.

2. Choose the example file provided for your particular BTS.

For example, to configure BTS Scanner with JIRA, you would choose
ExampleJiraScannerConfig.xml.

3. Copy your chosen example file to the same directory: DTP_HOME/grs/config/bts/exam-

ples.

4. Rename the file as appropriate.

For example, ExampleJiraScannerConfig.xml could be renamed as
MyJiraScannerConfig.xml.

5. Edit the configuration file by providing all the settings for your BTS/RMS, depending on the

vendor:

BTS Scanner can currently be configured to support several BTS/RMS, each of which requires
a particular configuration.

For details on configuring BTS Scanner to work with a specific BTS/RMS, see:

• Integrating with HP Quality Center

• Integrating with Bugzilla

• Integrating with IBM Rational ClearQuest

• Integrating with Atlassian JIRA--older versions
221

BTS and RMS Scanner and Updater
BTS Scanner can also import defect records from CSV files, so any BTS/RMS that can export
its data to a CSV file can also be integrated with Development Testing Platform.

For details on using BTS Scanner with CSV files, see “Importing BTS Data from CSV”,
page 210.

Adding a Prepared Configuration File
After you have adjusted a configuration file for your specific BTS/RMS, it is ready to be read by BTS
Scanner. BTS Scanner runs periodically and processes each .xml configuration file from DTP_HOME/
grs/config/bts.

In a new Development Testing Platform installation, this directory is empty. Several configuration files
can be added to this directory so that BTS Scanner can connect to several different BTS/RMS (or
several instances of the same BTS/RMS with different parameters). Each configuration file you add to
this directory is responsible for integration with one instance of the corresponding BTS/RMS.

To add a prepared configuration file to be read by BTS Scanner:

• Copy or move the chosen file to DTP_HOME/grs/config/bts.

Custom BTS Scanner/Updater
You can implement the following Java APIs to create a custom BTS Scanner:

• com.parasoft.api.dtp.defects.scan.DefectScanner

• com.parasoft.api.dtp.defects.scan.DefectScannerFactory

• com.parasoft.api.dtp.defects.update.DefectUpdator

• com.parasoft.api.dtp.defects.update.DefectUpdatorFactory

See “Java API”, page 289, for information on accessing the Java API documentation. See “Viewing
Log Files”, page 289, for log information.

Installing Your Custom Implementation
1. Create a jar file for your custom scanner/updater.

2. Copy the jar into the $DTP_HOME/tomcat/webapps/grs/WEB-INF/lib directory.

3. Restart Development Testing Platform.

Configuring a BTS Scanner to Use Your Custom Implementation
You must create an XML configuration file in $DTP_HOME/grs/config/bts. You can use
$DTP_HOME/grs/config/bts/examples/ExampleCustomScannerConfig.xml as a template.

The two most important parts of the custom XML configuration:

• The scannerFactoryClass element value must be set to the name of the class that
implements the com.parasoft.api.dtp.defects.scan.DefectScannerFactory
interface.
222

BTS and RMS Scanner and Updater
• The updatorFactoryClass element value must be set to the name of the class that
implements the com.parasoft.api.dtp.defects.update.DefectUpdatorFactory
interface.

Existing documentation for BTS Scanner integration is in this chapter.

Custom RMS Scanner
You can implement the following Java APIs to create a custom RMS scanner:

• com.parasoft.api.dtp.requirements.scan.RequirementScanner

• com.parasoft.api.dtp.requirements.scan.RequirementScannerFactory

See “Java API”, page 289 for information on accessing the Java API documentation. See “Viewing Log
Files”, page 289, for log information.

Installing Your Custom Implementation
1. Create a jar file for your custom scanner/updater.

2. Copy the jar into the $DTP_HOME/tomcat/webapps/grs/WEB-INF/lib directory.

3. Restart Development Testing Platform.

Configuring RMS Scanner to User Your Custom Implementation
You must create an XML configuration file in $DTP_HOME/grs/config/bts. You can use

$DTP_HOME/grs/config/bts/examples/ExampleCustomRmsScannerConfig.xml as a
template.

The scannerFactoryClass element value must be set to the name of the class that implements the
com.parasoft.api.dtp.requirements.scan.RequirementScannerFactory

interface; this is the most important part of the custom XML configuration.

Running BTS Scanner
After you have finished configuring the integration with your BTS/RMS (as described in "Configuring
BTS Scanner") and placed your .xml file in the $DTP_HOME/grs/config/bts directory, BTS
Scanner processes it, connects to the defined BTS/RMS, and imports basic info about your defects/
requirements to the Development Testing Platform database.

BTS Scanner runs automatically, but it can also be run on-demand, to ensure that data in Development
Testing Platform reflects the latest changes made in your BTS/RMS. Either way, you can verify that
BTS Scanner is working as you expect it to.

Running BTS Scanner Automatically
BTS Scanner is a Development Testing Platform background job. (for general background jobs
description see chapter [reference]). BTS Scanner runs automatically every 15 minutes, for each file in
223

BTS and RMS Scanner and Updater
the $DTP_HOME/grs/config/bts directory, connects to the specific BTS/RMS, and imports data to
Development Testing Platform.

You can configure the frequency with which BTSScanner is run. To do so, perform the following steps:

1. Adjust the frequency parameter in $DTP_HOME/grs/config/CronConfig.xml:

<Job frequency="15" id="BTS Scanner" runDayOfWeek="*"
runHour="*" run-Minute="*">

<class
name="com.parasoft.grs.rserver.cronjobs.bts.BtsScannerJob
"/>

</Job>

2. Restart your Development Testing Platform server.

Running BTS Scanner On Demand
You can run the BTS Scanner on-demand from the Development Testing Platform Web site, from either
of the following locations:

• Project Center: Search Defects/Enhancements

See “Running BTS Scanner On Demand from Search Defects/Enhancements Page”,
page 224 for details.

• Report Center: Administration > Tools > Calculate> Recalculate Defect/Enhancement.

See “Automatically Run Scans and Calculations”, page 174 for details.

Running BTS Scanner On Demand from Search Defects/Enhancements Page

1. From Project Center, select Search Defects/Enhancements.

2. On the Defects/Enhancements page, click Rescan, as shown in Figure 2:

Figure 2: Defects/Enhancements - Rescan Defects/Enhancements
224

BTS and RMS Scanner and Updater
A pop-up is displayed to show scan is in progress (Figure 3):

Figure 3: Scan In-progress Message

Upon scan completion, the Status Bar displays the number of bugs and changes that were
scanned (Figure 4):

Figure 4: Scan Complete Message

Verifying that BTS Scanner is Working
Because BTS Scanner can run both automatically and on-demand, you may either want to verify that
BTS Scanner is running, or that it has imported data to Development Testing Platform as expected.

To verify BTS Scanner background work, view the bts_scanner.log file, which can be found in
DTP_HOME/logs/ (see “Viewing Log Files”, page 289).

To verify that BTS Scanner has imported your BTS/RMS data to the Development Testing Platform
database, perform one of the following:

1. Seach Defects/Enhancements

• Expand the "Bug Tracking System" drop-down menu, as shown in Figure 2.

This menu displays the names of BTS/RMS that are integrated with your installation of
Development Testing Platform. These names are defined in the <bts/name> .xml node
of each of your .xml configuration files.

• Click the Search button.

All the defects imported to the Development Testing Platform database are searched
for and displayed.

For more details on searching defects/enhancements, see Project Center User’s
Manual section "Searching Defects/Enhancements."

2. In the Report Center Reports view, choose Tests> Change-based Testing> Requirements/

Defects

3. Switch to Default Project. This view displays all defect/enhancement data from the Develop-

ment Testing Platform database.
225

BTS and RMS Scanner and Updater
4. For further details on using Report Center and Project Center with Defects/Enhancements,

please see:

• “Source Control Filter”, page 168

• “Defects and Enhancements Reports”, page 129

• “Working with Defects/Enhancements”, page 108

• “Creating Tasks for Requirements and Defects/Enhancements”, page 120

Configuring BTS Updater
Development Testing Platform modifies status and comments for issues in supported Bug Tracking and
Requirement Management Systems when the tasks associated with these issues are modified. This is
done through the BTS Updater utility, which propagates Development Testing Platform updates to
integrated/supported bug tracking systems.

Note: BTS Updater currently supports comment updates for all versions of Bugzilla; however, status
updates only work for Bugzilla 3.4 or higher:

• For supported versions of Bugzilla, see “Integrating with Bugzilla”, page 243.

• For more information about how Development Testing Platform interacts with bug tracking
systems, see “About Bug Tracking Systems Synchronization”, page 229

You can configure BTS Updater to propagate status and comment changes to your BTS/RMS by
providing the appropriate settings in one of BTS Scanner’s .xml configuration files, which are stored in
DTP_HOME/grs/config/bts, on the host where your Development Testing Platform server is
installed.

To enable BTS Updater, add a new user and password to the <connection-settings> node of
your existing Bugzilla .xml configuration file.

For example:

<bts>
<connection-settings>

<user>root</user>
<pass encrypted="false">root</pass>

</connection-settings>
</bts>

Important! This user must have an account for the Web interface to the integrated BTS, and that
account should have read/write privileges for all projects in the BTS.

Using Original IDs in Reports
If you want to see a task or requirement’s Original ID instead of Development Testing Platform IDs in
the Requirements Code Review and Requirements Code Review Details reports, then:

1. Go to the $DTP_HOME/grs/xreports/planning/req/RequirementsCodeRe-

view.xml file.

2. And add the entry
<parameter name="useOriginalId">true</parameter>
under the <private-parameters> tag.
226

BTS and RMS Scanner and Updater
3. Add the same entry in the DTP_HOME/grs/xreports/codereview/CodeReviewDe-

tails.xml file.

You can configure BTS Scanner to work with HP Quality Center (formerly known as Test Director). Test
Director and Quality Center are synonymous, so both will be referred to as "QC" for the remainder of
this section. Integration has been tested with the following Quality Center versions: 9, 10 and 11.

BTS Scanner for QC allows you to import requirements and defects from the QC database to Report
Center.

Development Testing Platform provides two ways of integration with HP QC:

• Direct HP QC database access. In this mode, Development Testing Platform reads QC data
directly and imports:

• QC requirements as defects (of type Enhancement) to Development Testing Platform

• QC defects as defects in Development Testing Platform

• Using Open Test Architecture (OTA). In this mode, Development Testing Platform reads QC
data directly and imports:

• QC requirements as requirements to Development Testing Platform

• QC defects as defects in Development Testing Platform

Using Direct HP QC Database Access
Note: Most users can use the default settings for all steps below except for step 2. QC database-
connection settings need to be customized to suit your specific connection.

To configure integration through direct HP QC database access.

1. Provide the following general settings:

For example:

 <bts type="TestDirector">
 <name>Test Director</name>

2. Provide QC database-connection settings.

Since data for each QC project is stored in a separate database, you are required to provide at
least one database name to be scanned.

The name of databases for each project can be accessed from Quality Center Site
Administration, or from any MS SQL client.

Setting Description

<bts>/<type> Should be set to "TestDirector".

<bts>/<name> The name you want to use to label this instance
of your HP QC server (for example, "Test Direc-
tor"). Each HP QC server instance must have a
unique name. This name will be shown in
Project Center’s Search Defects/Enhancements
page (in the Defect Tracking System drop-down
menu).
227

BTS and RMS Scanner and Updater
Note: It is recommended that you write down the names of the defined QC databases. You will
need this information for database connection settings.

The following QC database connection settings are required for QC integration:

For example:

<db-connection>
 <db-type>MSSQL</db-type>

<!-- currently only MS SQL server supported. -->
 <user>sa</user>

<!-- valid MS SQL server user -->
 <password encrypted="true">abc123</password>

<!-- valid MS SQL server user passwd -->
 <url>jdbc:sqlserver://localhost;</url>
<!-- sample MSSQL connection url: <url>jdbc:sqlserver://HOST;</url> -->

Note: Do NOT include database name in connection URL.

 <!-- At least one db name is required -->
 <database>default_test_db</database>
 <database>QualityCenter_Demo_db</database>

</db-connection>

3. Provide a fields-mapping configuration.

Fields-mapping for both defects and requirements is based on the database column names:
BUG and REQ table. For a detailed explanation of each field, see the Quality Center manual:
quality_center_db.chm

Section field-mapping for both defects and requirements is commented out. It describes
default mapping configuration. You can remove any comments from this section and change
settings. However, this typically is not necessary.

Note: N/A indicates that a field is not available.

For example:

<defects>
 <fields-mapping>
 <summary>BG_SUMMARY</summary>
 <status>BG_STATUS</status>
 <resolution>BG_STATUS</resolution>

Setting Description

<bts>/<db-connection>/<db-type> MSSQL only.

<bts>/<db-connection>/<user> Database user.

<bts>/<db-connection>/<pass> Database password.

<bts>/<db-connection>/<url> QC database connection URL.

Note: Do NOT include database name in con-
nection url.

<bts>/<db-connection>/<database> QC database name. At least one database
name is required.
228

BTS and RMS Scanner and Updater
 <priority>BG_PRIORITY</priority>
 <severity>BG_SEVERITY</severity>
 <project>BG_PROJECT</project>
 <reporter>BG_DETECTED_BY</reporter>
 <assigned-to>BG_RESPONSIBLE</assigned-to>
 <creation-date>BG_DETECTION_DATE</creation-date>
 <version>BG_DETECTION_VERSION</version>
 <milestone>BG_PLANNED_CLOSING_VER</milestone>
 <hardware>N/A</hardware>
 <os>N/A</os>
 <component>BG_PROJECT</component>
 <modification-date>BG_VTS</modification-date>
 </fields-mapping>

</defects>

<requirements>
 <fields-mapping>
 <summary>RQ_REQ_NAME</summary>
 <status>RQ_REQ_STATUS</status>
 <resolution>RQ_REQ_STATUS</resolution>
 <priority>RQ_REQ_PRIORITY</priority>
 <severity>N/A</severity>
 <project>RQ_REQ_PRODUCT</project>
 <reporter>RQ_REQ_AUTHOR</reporter>
 <assigned-to>RQ_REQ_AUTHOR</assigned-to>
 <creation-date>RQ_REQ_DATE</creation-date>
 <version>N/A</version>
 <milestone>N/A</milestone>
 <hardware>N/A</hardware>
 <os>N/A</os>
 <component>RQ_REQ_TYPE</component>
 <modification-date>RQ_VTS</modification-date>
 </fields-mapping>

</requirements>

4. Provide values for resolved statuses and inactive resolutions.

Configuration of resolved status and inactive status mapping might depend on the fields-
mapping.status notation. However, reconfiguration of this section is typically not necessary.

For example:

<resolved-status>
<!-- Requirement -->

 <status>Passed</status>
 <status>Failed</status>
 <status>Reviewed</status>
 <status>Not Completed</status>

 <!-- Defects -->
 <status>Closed</status>
 <status>Fixed</status>

</resolved-status>

<inactive-resolution>
 <!-- Requirement -->
229

BTS and RMS Scanner and Updater
 <resolution>N/A</resolution>

 <!-- Defects -->
 <resolution>Rejected</resolution>

</inactive-resolution>

Notes:

• After importing to Report Center, identifiers of scanned QC items have the following formats:

• For PR: BUG_(real QC ID)

• For FR: REQ_(real QC ID)

• Currently, functionality to link from Report Center reports to open PR/FR details in QC is not
available.

• The Task Activity report requires the addition of QC users to the Report Center database in
order to display any data.

• This is an incremental scan, which means that only requirements/defects which were modified
in QC since the last scan are updated to Development Testing Platform. To ensure that
Development Testing Platform can see what items changed in QC, you need to have the
proper settings in QC’s Project Customization/Project Entities forms. All fields which are listed
in the “Provide a fields-mapping configuration” section should have an active History property
in QC.

Connecting to Quality Center's Database using Windows Authentication
The Development Testing Platform services must be installed and running on a Windows environment
in order to connect to the MSSQL Server via Windows Authentication (because the official MSSQL
Server JDBC driver only uses the credentials from the user account that's currently running the
services for Windows Authentication).

To prepare for the Development Testing Platform setup:

1. Download the official MSSQL Server JDBC driver package, then follow the provided instruc-

tions to unload the package.

2. Open the Start menu, then right-click My Computer to open the menu. Click Manage to open

the Computer Management window. (Alternatively, open the Control Panel from the Start

menu, then go to Administrative Tools> Computer Management.)

3. In the right pane, expand Services and Applications, then double-click Services to open the

list of Windows Services.

4. Right-click the Parasoft Development Testing Platform, then choose Properties to open the

Parasoft Development Testing Platform Properties window.

5. Open the Log On tab. Select the This account option, then provide a Windows user account

in the format LOCATION\username. This user account must be allowed access to the

MSSQL Server database.

6. Provide the password and the user account in the next two fields, then click OK.

7. With the Parasoft Development Testing Platform service still selected in the Services list, click

the Stop the service link to stop the Development Testing Platform service.

8. Open the ${DTP_HOME}/tomcat/lib/thirdparty directory in a new window.

9. Create a copy of the sqljdbc4.jar file for backup purposes.
230

BTS and RMS Scanner and Updater
10. Copy the sqljdbc4.jar file from <MSSQL_JDBC_DRIVER>\sqljdbc_<VERSION>\<LANG>

sqljdbc4.jar and into the current directory.

11. Access the ${DTP_HOME}/jre/bin directory and add in the sqljdbc_auth.dll file from

the <MSSQL_JDBC_DRIVER>\sqljdbc_<VERSION>\<LANG>\auth\<ARCHITECTURE>

directory .

To set up Development Testing Platform:

1. Access the ${DTP_HOME}/grs/config/bts directory and open the QC BTS Scanner con-

figuration file.

2. Open the BTS Scanner configuration file, then find the <db-connection> element. If the

configuration file is not already configured, follow the instructions from “Using Direct HP QC

Database Access”, page 235 to properly modify the configuration file.

3. For the URL value in the <url> element within in the <db-connection> element, append

the property integratedSecurity=true.

4. Make sure the settings resemble the example provided below, then save the changes.

<db-connection>

<db-type>MSSQL</db-type>
<user>sa</user>
<password encrypted="true">abc123</password>
<url>jdbc:sqlserver://localhost;integratedSecurity=true;</url>

</db-connection>

5. Start the Parasoft Development Testing Platform service from the Services list by clicking the

Start the service link.

6. Follow the instructions from “Verifying that BTS Scanner is Working”, page 225 to validate that

QC Scanner has been configured properly.

Using Open Test Architecture
BTS Scanner for QC using OTA API allows you to import requirements and defects from the QC
database to Development Testing Platform. QC requirements are shown as Project Center
Requirements and QC defects are shown as Project Center Bugs. Imported requirements and defects
are in read-only mode: you cannot modify most attributes.

If the QC client is installed on the same machine where Development Testing Platform is installed, you
can also update QC Requirements with data retrieved from Parasoft Development Testing Platform.

To configure integration using Open Test Architecture (OTA):

1. Provide the following general settings:

Setting Description

<bts>/<type> Should be set to "TestDirectorOTA".
231

BTS and RMS Scanner and Updater
For example:

<bts type="TestDirectorOTA">
<name>QC OTA</name>

2. Provide Quality Center database-connection settings.

Since data for each QC project is stored in a separate database, you are required to provide at

least one database name to be scanned.

The name of databases for each project can be accessed from Quality Center Site
Administration, or from any MS SQL client.

Note: It is recommended that you write down the names of the defined QC databases. You will
need this information for database connection settings.
The following QC database connection settings are required for QC integration:

For example:

<bts>/<name> The name you want to use to label this instance of your HP QC server (for
example, "Test Director"). Each HP QC server instance must have a unique
name. This name will be shown in Project Center’s Search Defects/Enhance-
ments page (in the Defect Tracking System drop-down menu).

Setting Description

<bts>/<db-connection>/<db-
type>

Database vendor: MS SQL only.

<bts>/<db-connection>/
<user>

Database user.

<bts>/<db-connection>/
<pass>

Database password.

<bts>/<db-connection>/<url> Quality Center database connection URL.

Note: Do NOT include database name in the connection URL.

<bts>/<db-connection>/<data-
base>

The QC database name. At least one database name is required.

Additionally, it is required to specify the following attributes for the
<database> tag:

• qc-domain - specify QC Domain for qc-project

• qc-project - specify QC project name

• dtp-project - specify Development Testing Platform project
name under which the scanned requirements will be
stored.

Note: If the specified project is not found in the Development Test-
ing Platform database during the scanning process, it will be cre-
ated automatically. qc-domain, qc-project, dtp-project attributes are
used to create the Requirement properly.

Setting Description
232

BTS and RMS Scanner and Updater
<db-connection>
<db-type>MSSQL</db-type>
<user>sa</user>
<password encrypted="true">abc123</password>
<url>jdbc:sqlserver://localhost;</url>
<database qc-domain="DEFAULT" qc-project="QualityCenter_Demo"
dtp-project="MyProject">QualityCenter_Demo_db
</database>
</db-connection>

3. Configure the ota-connection.

To enable QC defects to be automatically updated with Parasoft Development Testing Platform

data, you need to specify credentials that make communication possible using OTA API. To do

this, provide the following general settings:

For example:

<ota-connection>
<user>sa</user>
<password>sa</password>
<url>http://localhost:8080/qcbin</url>
</ota-connection>

Setting Description

<bts>/<ota-connec-
tion>/<user>

Name of a user that can communicate using OTA API.

<bts>/<ota-connec-
tion>/<password>

Valid password for the specified user.

<bts>/<ota-connec-
tion>/<url>

Valid HTTP URL to QC.
233

BTS and RMS Scanner and Updater
234

Integrating with HP Quality Center
Integrating with HP Quality Center
You can configure BTS Scanner to work with HP Quality Center (formerly known as Test Director). Test
Director and Quality Center are synonymous, so both will be referred to as "QC" for the remainder of
this section. Integration has been tested with the following Quality Center versions: 9, 10 and 11.

BTS Scanner for QC allows you to import requirements and defects from the QC database to Report
Center.

Development Testing Platform provides two ways of integration with HP QC:

• Direct HP QC database access. In this mode, Development Testing Platform reads QC data
directly and imports:

• QC requirements as defects (of type Enhancement) to Development Testing Platform

• QC defects as defects in Development Testing Platform

• Using Open Test Architecture (OTA). In this mode, Development Testing Platform reads QC
data directly and imports:

• QC requirements as requirements to Development Testing Platform

• QC defects as defects in Development Testing Platform

Using Direct HP QC Database Access
Note: Most users can use the default settings for all steps below except for step 2. QC database-
connection settings need to be customized to suit your specific connection.

To configure integration through direct HP QC database access.

1. Provide the following general settings:

For example:

 <bts type="TestDirector">
 <name>Test Director</name>

2. Provide QC database-connection settings.

Since data for each QC project is stored in a separate database, you are required to provide at
least one database name to be scanned.

The name of databases for each project can be accessed from Quality Center Site
Administration, or from any MS SQL client.

Setting Description

<bts>/<type> Should be set to "TestDirector".

<bts>/<name> The name you want to use to label this instance
of your HP QC server (for example, "Test Direc-
tor"). Each HP QC server instance must have a
unique name. This name will be shown in
Project Center’s Search Defects/Enhancements
page (in the Defect Tracking System drop-down
menu).
235

Integrating with HP Quality Center
Note: It is recommended that you write down the names of the defined QC databases. You will
need this information for database connection settings.

The following QC database connection settings are required for QC integration:

For example:

<db-connection>
 <db-type>MSSQL</db-type>

<!-- currently only MS SQL server supported. -->
 <user>sa</user>

<!-- valid MS SQL server user -->
 <password encrypted="true">abc123</password>

<!-- valid MS SQL server user passwd -->
 <url>jdbc:sqlserver://localhost;</url>
<!-- sample MSSQL connection url: <url>jdbc:sqlserver://HOST;</url> -->

Note: Do NOT include database name in connection URL.

 <!-- At least one db name is required -->
 <database>default_test_db</database>
 <database>QualityCenter_Demo_db</database>

</db-connection>

3. Provide a fields-mapping configuration.

Fields-mapping for both defects and requirements is based on the database column names:
BUG and REQ table. For a detailed explanation of each field, see the Quality Center manual:
quality_center_db.chm

Section field-mapping for both defects and requirements is commented out. It describes
default mapping configuration. You can remove any comments from this section and change
settings. However, this typically is not necessary.

Note: N/A indicates that a field is not available.

For example:

<defects>
 <fields-mapping>
 <summary>BG_SUMMARY</summary>
 <status>BG_STATUS</status>
 <resolution>BG_STATUS</resolution>

Setting Description

<bts>/<db-connection>/<db-type> MSSQL only.

<bts>/<db-connection>/<user> Database user.

<bts>/<db-connection>/<pass> Database password.

<bts>/<db-connection>/<url> QC database connection URL.

Note: Do NOT include database name in con-
nection url.

<bts>/<db-connection>/<database> QC database name. At least one database
name is required.
236

Integrating with HP Quality Center
 <priority>BG_PRIORITY</priority>
 <severity>BG_SEVERITY</severity>
 <project>BG_PROJECT</project>
 <reporter>BG_DETECTED_BY</reporter>
 <assigned-to>BG_RESPONSIBLE</assigned-to>
 <creation-date>BG_DETECTION_DATE</creation-date>
 <version>BG_DETECTION_VERSION</version>
 <milestone>BG_PLANNED_CLOSING_VER</milestone>
 <hardware>N/A</hardware>
 <os>N/A</os>
 <component>BG_PROJECT</component>
 <modification-date>BG_VTS</modification-date>
 </fields-mapping>

</defects>

<requirements>
 <fields-mapping>
 <summary>RQ_REQ_NAME</summary>
 <status>RQ_REQ_STATUS</status>
 <resolution>RQ_REQ_STATUS</resolution>
 <priority>RQ_REQ_PRIORITY</priority>
 <severity>N/A</severity>
 <project>RQ_REQ_PRODUCT</project>
 <reporter>RQ_REQ_AUTHOR</reporter>
 <assigned-to>RQ_REQ_AUTHOR</assigned-to>
 <creation-date>RQ_REQ_DATE</creation-date>
 <version>N/A</version>
 <milestone>N/A</milestone>
 <hardware>N/A</hardware>
 <os>N/A</os>
 <component>RQ_REQ_TYPE</component>
 <modification-date>RQ_VTS</modification-date>
 </fields-mapping>

</requirements>

4. Provide values for resolved statuses and inactive resolutions.

Configuration of resolved status and inactive status mapping might depend on the fields-
mapping.status notation. However, reconfiguration of this section is typically not necessary.

For example:

<resolved-status>
<!-- Requirement -->

 <status>Passed</status>
 <status>Failed</status>
 <status>Reviewed</status>
 <status>Not Completed</status>

 <!-- Defects -->
 <status>Closed</status>
 <status>Fixed</status>

</resolved-status>

<inactive-resolution>
 <!-- Requirement -->
237

Integrating with HP Quality Center
 <resolution>N/A</resolution>

 <!-- Defects -->
 <resolution>Rejected</resolution>

</inactive-resolution>

Notes:

• After importing to Report Center, identifiers of scanned QC items have the following formats:

• For PR: BUG_(real QC ID)

• For FR: REQ_(real QC ID)

• Currently, functionality to link from Report Center reports to open PR/FR details in QC is not
available.

• The Task Activity report requires the addition of QC users to the Report Center database in
order to display any data.

• This is an incremental scan, which means that only requirements/defects which were modified
in QC since the last scan are updated to Development Testing Platform. To ensure that
Development Testing Platform can see what items changed in QC, you need to have the
proper settings in QC’s Project Customization/Project Entities forms. All fields which are listed
in the “Provide a fields-mapping configuration” section should have an active History property
in QC.

Connecting to Quality Center's Database using Windows Authentication
The Development Testing Platform services must be installed and running on a Windows environment
in order to connect to the MSSQL Server via Windows Authentication (because the official MSSQL
Server JDBC driver only uses the credentials from the user account that's currently running the
services for Windows Authentication).

To prepare for the Development Testing Platform setup:

1. Download the official MSSQL Server JDBC driver package, then follow the provided instruc-

tions to unload the package.

2. Open the Start menu, then right-click My Computer to open the menu. Click Manage to open

the Computer Management window. (Alternatively, open the Control Panel from the Start

menu, then go to Administrative Tools> Computer Management.)

3. In the right pane, expand Services and Applications, then double-click Services to open the

list of Windows Services.

4. Right-click the Parasoft Development Testing Platform, then choose Properties to open the

Parasoft Development Testing Platform Properties window.

5. Open the Log On tab. Select the This account option, then provide a Windows user account

in the format LOCATION\username. This user account must be allowed access to the

MSSQL Server database.

6. Provide the password and the user account in the next two fields, then click OK.

7. With the Parasoft Development Testing Platform service still selected in the Services list, click

the Stop the service link to stop the Development Testing Platform service.

8. Open the ${DTP_HOME}/tomcat/lib directory in a new window.

9. Create a copy of the sqljdbc4.jar file for backup purposes.
238

Integrating with HP Quality Center
10. Copy the sqljdbc4.jar file from <MSSQL_JDBC_DRIVER>\sqljdbc_<VERSION>\<LANG>

sqljdbc4.jar and into the current directory.

11. Access the ${DTP_HOME}/jre/bin directory and add in the sqljdbc_auth.dll file from

the <MSSQL_JDBC_DRIVER>\sqljdbc_<VERSION>\<LANG>\auth\<ARCHITECTURE>

directory .

To set up Development Testing Platform:

1. Access the ${DTP_HOME}/grs/config/bts directory and open the QC BTS Scanner con-

figuration file.

2. Open the BTS Scanner configuration file, then find the <db-connection> element. If the

configuration file is not already configured, follow the instructions from “Using Direct HP QC

Database Access”, page 235 to properly modify the configuration file.

3. For the URL value in the <url> element within in the <db-connection> element, append

the property integratedSecurity=true.

4. Make sure the settings resemble the example provided below, then save the changes.

<db-connection>

<db-type>MSSQL</db-type>
<user>sa</user>
<password encrypted="true">abc123</password>
<url>jdbc:sqlserver://localhost;integratedSecurity=true;</url>

</db-connection>

5. Start the Parasoft Development Testing Platform service from the Services list by clicking the

Start the service link.

6. Follow the instructions from “Verifying that BTS Scanner is Working”, page 225 to validate that

QC Scanner has been configured properly.

Using Open Test Architecture
BTS Scanner for QC using OTA API allows you to import requirements and defects from the QC
database to Development Testing Platform. QC requirements are shown as Project Center
Requirements and QC defects are shown as Project Center Bugs. Imported requirements and defects
are in read-only mode: you cannot modify most attributes.

If the QC client is installed on the same machine where Development Testing Platform is installed, you
can also update QC Requirements with data retrieved from Parasoft Development Testing Platform.

To configure integration using Open Test Architecture (OTA):

1. Provide the following general settings:

Setting Description

<bts>/<type> Should be set to "TestDirectorOTA".
239

Integrating with HP Quality Center
For example:

<bts type="TestDirectorOTA">
<name>QC OTA</name>

2. Provide Quality Center database-connection settings.

Since data for each QC project is stored in a separate database, you are required to provide at

least one database name to be scanned.

The name of databases for each project can be accessed from Quality Center Site
Administration, or from any MS SQL client.

Note: It is recommended that you write down the names of the defined QC databases. You will
need this information for database connection settings.
The following QC database connection settings are required for QC integration:

For example:

<bts>/<name> The name you want to use to label this instance of your HP QC server (for
example, "Test Director"). Each HP QC server instance must have a unique
name. This name will be shown in Project Center’s Search Defects/Enhance-
ments page (in the Defect Tracking System drop-down menu).

Setting Description

<bts>/<db-connection>/<db-
type>

Database vendor: MS SQL only.

<bts>/<db-connection>/
<user>

Database user.

<bts>/<db-connection>/
<pass>

Database password.

<bts>/<db-connection>/<url> Quality Center database connection URL.

Note: Do NOT include database name in the connection URL.

<bts>/<db-connection>/<data-
base>

The QC database name. At least one database name is required.

Additionally, it is required to specify the following attributes for the
<database> tag:

• qc-domain - specify QC Domain for qc-project

• qc-project - specify QC project name

• dtpDevelopment Testing Platform-project - specify
Development Testing Platform project name under which
the scanned requirements will be stored.

Note: If the specified project is not found in the Development Test-
ing Platform database during the scanning process, it will be cre-
ated automatically. qc-domain, qc-project, dtp-project attributes are
used to create the Requirement properly.

Setting Description
240

Integrating with HP Quality Center
<db-connection>
<db-type>MSSQL</db-type>
<user>sa</user>
<password encrypted="true">abc123</password>
<url>jdbc:sqlserver://localhost;</url>
<database qc-domain="DEFAULT" qc-project="QualityCenter_Demo"
dtp-project="MyProject">QualityCenter_Demo_db
</database>
</db-connection>

3. Configure the ota-connection.

To enable QC defects to be automatically updated with Parasoft Development Testing Platform

data, you need to specify credentials that make communication possible using OTA API. To do

this, provide the following general settings:

For example:

<ota-connection>
<user>sa</user>
<password>sa</password>
<url>http://localhost:8080/qcbin</url>
</ota-connection>

Setting Description

<bts>/<ota-connec-
tion>/<user>

Name of a user that can communicate using OTA API.

<bts>/<ota-connec-
tion>/<password>

Valid password for the specified user.

<bts>/<ota-connec-
tion>/<url>

Valid HTTP URL to QC.
241

Integrating with HP Quality Center
242

Integrating with Bugzilla
Integrating with Bugzilla
Integration has been tested with the following Bugzilla versions:

• 2.16

• 2.18

• 2.20

• 2.22

• 3.0

• 3.4

• 3.6

• 4.0

• 4.2

The BTS Updater works with Bugzilla 3.4 and later.

The following settings should be customized in the DTP\grs\config\bts\bugzila.xml file in order to
configure Bugzilla scanning:

1. Provide the following general settings:

2. Provide Bugzilla database-connection settings:

See “Configuring BTS Updater”, page 226 for instructions on using the built-in UI to integrate
Bugzilla.

Setting Description

<bts>/<name> The name you want to use to label this instance of your Bugzilla server (for
example, "My Bugzilla Server."). Each Bugzilla server instance must have a
unique name. This name will be shown in Project Center’s Search Defects/
Enhancements page (in the Defect Tracking System drop-down menu).

<bts>/<url-prefix> Prefix needed to create bug details links from your Report Center server to
your Bugzilla server.

<bts>/<version> Specifies the version of Bugzilla with which Development Testing Platform is
integrating.

Setting Description

<bts>/<db-connection>/<db-
type>

Database vendor: either MySQL or Oracle.

<bts>/<db-connection>/
<user>

Database user.
243

Integrating with Bugzilla
For example:

<bts type="Bugzilla">
<name>My Bugzilla Server</name>
<url-prefix>http://mybugzillaserver/bugzilla/

show_bug.cgi?id=</url-prefix>
 <version>3.4</version>
 <db-connection>
 <db-type>MySQL</db-type>
 <user>bugs</user>
 <password encrypted="true">abc123</password>
 <url>jdbc:mysql://bugzilla.host.com:3306/bugs</url>
<!-- sample Oracle connection url: <url>jdbc:oracle:thin:@HOST:PORT:SID</
url> -->
 <!-- sample MySQL connection url: <url>jdbc:mysql://HOST:PORT/DATABASE</
url> -->
 </db-connection>

</bts>

3. Provide values for resolved statuses and inactive resolutions.

In other words, mark which status value indicates that the bug is resolved and which
resolutions describe an inactive bug state. Without this key information, Report Center is
unable to create bug history reports.

For Example:

<resolved-status>
<status>VERIFIED</status>
<status>RESOLVED</status>
<status>CLOSED</status>

</resolved-status>

<inactive-resolution>
<resolution>INVALID</resolution>
<resolution>WONTFIX</resolution>
<resolution>DUPLICATE</resolution>
<resolution>MOVED</resolution>
<resolution>REMIND</resolution>
<resolution>LATER</resolution>
<resolution>WORKSFORME</resolution>

</inactive-resolution>

4. Specify which value for Bugzilla’s severity field indicates that a bug is an enhancement, using

the <feature-request> setting. The severity value that indicates an enhancement to

Development Testing Platform varies according to your version of Bugzilla:

For Bugzilla versions 3.0 and earlier, the severity value that indicates an enhancement is
"Feature_Req", so the configuration should be:

<bts>/<db-connection>/
<pass>

Database password.

<bts>/<db-connection>/<url> Bugzilla database connection URL.

Setting Description
244

Integrating with Bugzilla
<feature-request>
<item>Feature_Req</item>

</feature-request>

For Bugzilla version 3.4, the severity value that indicates an enhancement is "enhancement",
so the configuration should be:

<feature-request>
<item>enhancement</item>

</feature-request>
245

Integrating with Bugzilla
246

Integrating with IBM Rational ClearQuest
Integrating with IBM Rational
ClearQuest
Integration has been tested with the following ClearQuest versions:

• 2003.06.15.734.000

• 2007

• 7.0.1.1

Before integrating ClearQuest with Development Testing Platform, ensure that the ClearQuest client
program (the cqperl command) is installed on the same machine as DTP. BTS Scanner uses the
cqperl command to read items from ClearQuest.

Make a copy of the ExampleClearQuestScannerConfig.xml file located in the following directory:

${DTP_HOME}\grs\config\bts\examples\

To configure ClearQuest scanning, make the following adjustments to the copied file:

1. Provide the following general settings:

2. Define the ClearQuest entity name that you would like BTS Scanner to read, using the <run-

options> setting:

Note: You must provide a separate BTS Scanner configuration file for each <entity-type> you
would like to import from ClearQuest.

3. Specify if you would like Development Testing Platform to treat some or all ClearQuest entities

as enhancements. (Optional)

Setting Description

<bts>/<name> The name you want to use to label this instance of your
ClearQuest server (for example, "My ClearQuest
Defects Server"). Each ClearQuest server instance must
have a unique name. This name will be shown in Project
Center’s Search Defects/Enhancements page (in the
Defect Tracking System drop-down menu).

<bts>/<connection-settings>/<dbset> ClearQuest database set.

<bts>/<connection-settings>/<dbname> ClearQuest database name.

<bts>/<connection-settings>/<user> User name.

<bts>/<connection-settings>/<pass> User password.

Setting Description

<run-options>/<entity-type> The name of the entity in your ClearQuest database which stores
info about items (defects, change requests, etc.) you plan to import.
BTS Scanner will scan items of this entity.
247

Integrating with IBM Rational ClearQuest
BTS Scanner can be configured to import some or all entities from ClearQeust as either
defects or enhancements. However, entities read from ClearQuest are treated as defects by
default.

BTS Scanner uses an imported entitiy’s "severity" field value to decide whether to treat it as an
enhancement.

To treat some or all ClearQuest entities as enhancements, perform the following steps:

• Prepare a BTS Scanner configuration file, as explained in “Preparing an Example
Configuration File”, page 221 and “Adding a Prepared Configuration File”, page 222.

• Define the <entity-type> you would like to import as enhancements, using whatever
name the entity has in Clear Quest

For example, assuming ClearQuest stores change requests as "cr" entities, you would
define <entitiy-type> in the following way:

<run-options>
<entity-type>cr</entity-type>

</run-options>

• Perform one of the following:

To treat some ClearQuest entities as enhancements:

• Use the <feature-request> tag to specify what items read from ClearQuest
should be treated as enhancements.

For example:

<feature-request>/<item> 6-Enhancement </feature-
request>

Using the above configuration, all items which have a severity field-value of
"6-Enhancement" would be imported to Development Testing Platform as
enhancements, while the rest would be imported as defects.

To treat all ClearQuest entities as enhancements:

• Use the <feature-request> tag to specify all possibilities of Severity field
values.

For example:

<feature-request>
<item>1-Critical</item>
<item>2-High Attention</item>
<item>3 -Major</item>
<item>4-Average</item>
<item>5-Minor</item>
<item>6-Enhancement</item>

</feature-request>

4. Provide ClearQuest database fields-mapping.

BTS Scanner can only import information from ClearQuest bug fields that have been mapped
to the proper Report Center fields. Unmapped fields are treated as unknown and will be
skipped during the translation process.

Note: If you are not aware what table fields are present in your ClearQuest database,
you can run the following script to print the db table fields of one sample item from the
ClearQuest db: read_single_bug.pl This script is located in
DTP\grs\extras\ClearQuest.
248

Integrating with IBM Rational ClearQuest
Before running the script, you should open it and edit the login credentials and sample
defect ID.

For example, the "Headline" field in ClearQuest corresponds to the "Summary" field in Report
Center, while the "Submitter" field in ClearQuest corresponds to "Reporter" in Development
Testing Platform.

Some fields are required for ClearQuest integration, while others are optional.

The following fields-mapping settings are required:

The following fields-mapping settings are optional:

For example:

<fields-mapping>
<summary>Headline</summary> *
<status>State</status> *
<resolution>Resolution</resolution> *

Field Description

<bts>/<fields-mapping>/<summary> Bug summary description.

<bts>/<fields-mapping>/<status> Current status, such as open or closed.

<bts>/<fields-mapping>/<resolu-
tion>

Bug resolution, such as fixed or won’t fix.

<bts>/<fields-mapping>/<priority> Bug priority, such as low or medium.

<bts>/<fields-mapping>/<severity> Bug severity, such as minor or critical.

<bts>/<fields-mapping>/<reporter> User who reported the bug.

<bts>/<fields-mapping>/<creation-
date>

Bug creation date.

Field Description

<bts>/<fields-mapping>/<project> A project to which the bug belongs.

<bts>/<fields-mapping>/<version> Project version.

<bts>/<fields-mapping>/<mile-
stone>

Project milestone name.

<bts>/<fields-mapping>/<hardware> Hardware affected by this bug.

<bts>/<fields-mapping>/<os> OS affected by this bug.

<bts>/<fields-mapping>/<compo-
nent>

Project component.

<bts>/<fields-mapping>/<modifica-
tion-date>

Last bug modification date.

<bts>/<fields-mapping>/<assigned-
to>

User to whom the bug is currently assigned.
249

Integrating with IBM Rational ClearQuest
 <priority>Priority</priority> *
 <severity>Severity</severity> *

<reporter>Submitter</reporter> *
 <creation-date>Submit_Date</creation-date> *

<project>Project</project>
<version>Version</version>
<milestone>Milestone</milestone>
<hardware>Hardware</hardware>
<os>OS</os>
<component>Component</component>
<modification-date>Mofification_Date</modification-date>
<assigned-to>Owner</assigned-to>

</fields-mapping>

Note: Required columns are marked with an asterisk. If you provide fields that are not
required, you gain the ability to add filters to Report Center projects based on values of these
fields.

5. Provide values for resolved statuses and inactive resolutions.

In other words, mark which status value indicates that the bug is resolved, and which
resolutions describe an inactive bug state. Without this key information, Report Center is
unable to create bug history reports.

For example:

<resolved-status>
<status>Resolved</status>
<status>Closed</status>

</resolved-status>

<inactive-resolution>
<resolution>Duplicate</resolution>
<resolution>Functions as Designed</resolution>

</inactive-resolution>

6. The following settings should also be configured:

• <date-formats>

Ensure that the date formats which are used in your ClearQuest are on the below list.
If not please add the appropriate format. This information is required for Development
Testing Platform to properly parse date data when reading items from ClearQuest.

The default configuration appears as follows:

 <date-formats>
 <date-format>MMM-dd-yyyy HH:mm</date-format>
 <date-format>MM/dd/yyyy h:mm a</date-format>
 <date-format>yyyy-MM-dd HH:mm:ss</date-format>
 </date-formats>

Note: The format of entries should meet the one defined for SimpleDateFormat class
in java (see http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html).

• <bugs-to-read>

This setting is used for testing-purposes only. When testing your settings, you can
specify how many items BTS Scanner should import before stopping. For example,
specifying 10 would cause BTS Scanner to stop after importing 10 items.
250

http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html

Integrating with IBM Rational ClearQuest
Note: When 0 is set, all items are read from ClearQuest.

• <retries-on-error>

There might be rare occasions when one call of cqperl (which is used by BTS
Scanner) fails to connect to ClearQuest. This setting lets BTS Scanner repeat cqperl
invocation in case of a connection problem.

• <scan-changed-from>, <scan-changed-to>

This setting tells BTS Scanner to only scan items modified between the specified
dates.
251

Integrating with IBM Rational ClearQuest
252

Integrating with Atlassian JIRA
Integrating with Atlassian JIRA
Development Testing Platform integration with JIRA has been tested with the following versions:

• 3.6.2

• 3.7.3

• 3.10.1

• 3.10.2

• 3.12

• 3.13

• 4.1.1

• 4.1.2

• 4.3

• 4.4

• 5.x

• 6.x.

Minor adjustments to JIRA and Development Testing Platform are required to configure BTS Scanner
to work with JIRA. These adjustments are detailed in the following sections:

• Configuring JIRA Server Side

• Configuring JIRA in Development Testing Platform

BTS Scanner can also be configured to work with JIRA over HTTPS/SSL. To do so, see the following
section:

• Configuring BTS Scanner for JIRA over HTTPS/SSL

Integrating 5.x and 6.x
Use the built-in UI (see “Configuring BTS or RMS Scanner with the Built-in UI”, page 215 for
instructions) for integration with JIRA 5.x and 6.x. SSL must be enabled on the DTP server to integrate
with JIRA 5.x/6.x. See “Running Development Testing Platform Under SSL”, page 153, for more
information.

Integrating with JIRA 4.4 and Older
The following instructions describe how to configure JIRA 4.4 or earlier. You can use the built-in UI to
configure Development Testing Platform for JIRA 4.x, but you will still need to configure JIRA server
side. See instructions below.

If you already have a JIRA 4.x scanner configured, e.g. a JIRA 4.x scanner configured in a version of
Development Testing Platform (formerly called Concerto) prior to 4.9.3, Development Testing Platform
will not allow you to configure an additional JIRA 5.x scanner through the UI. This is not a limitation, but
a restriction designed to prevent duplicate JIRA issues in Development Testing Platform.
253

Integrating with Atlassian JIRA
If you are interested in migrating your existing JIRA 4.x scanner to JIRA 5.x scanner, please contact
Parasoft Support. There is a manual process that involves making a small update to the database that
will enable the migration.

Configuring JIRA Server Side
Before configuring JIRA, you must first verify that the SOA interface is enabled in your JIRA server. For
information about enabling JIRA remote interface, see the topic on enabling the RPC plug-in in JIRA’s
documentation: https://confluence.atlassian.com/display/ALLDOC/Atlassian+Documentation.

1. Make a a backup the existing plug-in by renaming atlassian-jira-rpc-plugin.jar to

atlassian-jira-rpc-plugin.jar.orig.bak in the JIRA_INSTALL_DIR/atlas-

sian-jira/WEB-INF/lib directory.

2. Copy the new extended jar (shipped with Development Testing Platform) onto the original. Jar

files for supported versions are in the [DTP_HOME]\grs\extras\jira directory:

See “BTS and RMS Scanner Configuration”, page 184 for information about integration with
JIRA 5.x.

3. Restart JIRA server.

Development Testing Platform Ships with an Extended JIRA SOA
The JIRA SOA interface shipped with Development Testing Platform is extended to include an
additional method in the [DTP_HOME]\grs\extras\jira directory, which retrieves defects history.

The implementation details are documented in JIRA’s Agile Board: http://jira.atlassian.com/
browse/JRA-10333)

JIRA_INSTALL_DIR/atlassian-jira/WEB-INF/lib/atlassian-jira-rpc-plugin.jar
contains an implementation of SOA access to JIRA. We recommend notifying your JIRA administrator
about the additional SOA method.

Development Testing Platform uses other JIRA SOA methods and none of the original JIRA SOA
methods are changed. As a result, replacing the jar only extend the SOA interface and will not cause a
regression in JIRA.

Though not included in a normal JIRA distribution, this extension has received initial approval from
Atlassian.

Version Jar

3.6.* [DTP_HOME]\grs\extras\jira\rpc-plugin.jar

3.7.3 [DTP_HOME]\grs\extras\jira\atlassian-jira-rpc-plugin-3.12.1-1.jar

3.10 [DTP_HOME]\grs\extras\jira\atlassian-jira-rpc-plugin-3.10.2-1.jar

3.12 [DTP_HOME]\grs\extras\jira\atlassian-jira-rpc-plugin-3.12.1-1.jar

3.13 [DTP_HOME]\grs\extras\jira\atlassian-jira-rpc-plugin-3.13.1-1.jar

4.1.2 [DTP_HOME]\grs\extras\jira\atlassian-jira-rpc-plugin-4.1.2.jar

4.3 [DTP_HOME]\grs\extras\jira\atlassian-jira-rpc-plugin-4.3.jar

4.4 [DTP_HOME]\grs\extras\jira\atlassian-jira-rpc-plugin-4.4.jar
254

https://confluence.atlassian.com/display/ALLDOC/Atlassian+Documentation

Integrating with Atlassian JIRA
Configuring JIRA in Development Testing Platform
1. Enter the following settings in the [DTP_HOME]\grs\config\bts\Jira.xml file in order to

configure Jira scanning:

For example:

<connection-settings>

<soap-service>http://localhost:8080/rpc/soap/jirasoapservice-v2

</soap-service>

<user>root</user>

<pass>root</pass>

<timeout>720000</timeout>

</connection-settings>

2. Define values for resolved statuses and inactive resolutions. Without this key information,

Report Center is unable to create bug history reports.

For example:

<resolved-status>

<status>Resolved</status>

<status>Closed</status>

</resolved-status>

<inactive-resolution>

<resolution>Duplicate</resolution>

<resolution>Won't Fix</resolution>

</inactive-resolution>

3. (Optional) Specify the scope for scanning JIRA issues.You can read all issues from JIRA,

issues restricted by projects (specified by JIRA project keys), or issues defined by user-defined

JIRA filters (specified by JIRA filter IDs). Pagination can be used when reading issues for a fil-

ter (e.g., you could set up the scanner to read 1000 issues for each request to JIRA [SOAP

Setting Description

<bts>/<name> The name you want to use to label this instance of your JIRA server
(for example, "My JIRA Server."). Each JIRA server instance must
have a unique name. This name will be shown in Project Center’s
Search Defects/Enhancements page.

<bts>/<url-prefix> Prefix needed to create bug details links from Report Center server
to your JIRA server.

<bts>/<connection-settings>/
<soap-service>

JIRA SOAP service address, usually in the following form:
http://<YOUR_JIRA_SERVER_ADDRESS>:<SERVER_PORT>/rpc/
soap/jirasoapservice-v2</soap-service

<bts>/<connection-settings>/
<pass>

JIRA user password.

<bts>/<connection-settings>/
<timeout>

Specifies the BTS Scanner/JIRA connection timeout, in milliseconds.
If not specified, default axis timeout will be used.
255

Integrating with Atlassian JIRA
call]). Pagination can be used to avoid out of memory issues when there are very many items

in JIRA to be scanned (e.g., 10000+) in a single JIRA request.
For example:

<scanner-scope>

 <!--
 Scan Jira items which belong to the following Jira filters
 -->
 <jira-filters enable-paging="true" items-per-page="1000">
 <filter-id>10035</filter-id>
 <filter-id>10036</filter-id>
 </jira-filters>

 <!--
 Scan the following Jira projects (project keys)
 If <jira-filters> is specified, this <jira-projects> section is skipped
 -->
 <jira-projects>
 <project-key>PROJECTONE</project-key>
 <project-key>PROJECTTWO</project-key>
 </jira-projects>

</scanner-scope>

• enable-paging indicates whether reading pagination is enabled (true) or disabled
(false).

• items-per-page specifies how many issues should be read at once (1000 specifies to read
1000 issues for each JIRA request).

• <filter-id> specifies the id of the filter created in JIRA. The filter definition created on JIRA
should be visible to the user which who will be connecting the BTS Scanner configuration to
JIRA. After this filter is created in JIRA, you can obtain this id from JIRA. First, go to your JIRA
web page and choose Issues> Manage Filters. On the Manage Filters page, click the edit link
for the filter. Next, look this page URL and find the filterId parameter in this URL. For
example, if you see http://xen3.parasoft.com.pl:8080/secure/
EditFilter!default.jspa?atl_token=aO8P-
8w_fk&filterId=10032&returnUrl=ManageFilters.jspa, then the filterId is
10032.

If it is not please share filter to other users in JIRA

4. (Optional) Specify JIRA custom types mapping.

By default, when importing JIRA items, Development Testing Platform treats JIRA "New
Feature" and "Improvement" types as feature requests in Development Testing Platform, and
JIRA "bug" type as a bug in Development Testing Platform. This is predefined in the following portion
of XML:

 <imported-issue-type>
<issue-type translate-to="BUG">Bug</issue-type>
<issue-type translate-to="FEATURE_REQUEST">New Feature</issue-type>

 </imported-issue-type>

• When you have custom types defined in JIRA, you can use this node to import them
and map them into Development Testing Platform bugs or feature requests. For
example, if you have your JIRA custom type as "My Defect" it could be mapped to
Development Testing Platform bugs with the following configuration:
 <imported-issue-type>
256

Integrating with Atlassian JIRA
<issue-type translate-to="BUG">My Defect</issue-type>
<issue-type translate-to="BUG">Bug</issue-type>
<issue-type translate-to="FEATURE_REQUEST">New Feature</issue-type>
<issue-type translate-to="FEATURE_REQUEST">Improvement</issue-type>
 </imported-issue-type>

• If there is no <imported-issue-type> node in config xml, the default configuration will
be used for backwards compatibility.

• If the <imported-issue-type> node is empty, no JIRA items will be imported.

Configuring BTS Scanner for JIRA over HTTPS/SSL
To set up BTS Scanner to work with JIRA over HTTPS/SSL, configure BTS Scanner for JIRA as you
normally would, then perform the steps listed in the following sections:

• Adjusting BTS Scanner Configuration

• Running DTP Service with the Keystore Parameter

Adjusting BTS Scanner Configuration
In SOAP service address, make the following adjustments:

1. Replace http with https

2. Set the proper SSL port (usually 443 or 8443)

For example:

<connection-settings>

<soap-service>https://jira.somecompany.com:8443/rpc/

soap/jirasoapservice-v2</soap-service>

<user>root</user>

<pass>root</pass>

</connection-settings>

Running DTP Service with the Keystore Parameter
1. Obtain the SSL key file which is used by JIRA tomcat.

If needed, you can learn more about this process at:

http://confluence.atlassian.com/display/JIRA/

Running+JIRA+over+SSL+or+HTTPS (JIRA documentation)

and:

http://java.sun.com/javase/6/docs/technotes/guides/security/
jsse/JSSERefGuide.html#CreateKeystore

2. Store the key file on the Development Testing Platform host in any directory.

3. Provide a Java -Djavax.net.ssl.trustStore=<TRUSTED KEYSTORE PATH> parameter for

Development Testing Platform server pointing to the SSL key file.

For the following examples, let's assume that the key filename is .keystore:
257

Integrating with Atlassian JIRA
For Linux, assuming you have placed your key file in /home/ser/.keystore:

1. Edit DTP_HOME/bin/reportserver.sh.

2. Replace:

export CATALINA_OPTS="-D$PCC_RECOGNITION \

with:

export CATALINA_OPTS="-D$PCC_RECOGNITION -Djavax.net.ssl.trustStore=/
home/ser/.keystore \

For Windows, assuming you have the key file in D:\home\user\dtp\.keystore:

1. Open Windows Registry Editor by running regedit command

2. Find Parasoft Development Testing Platform service invocation parameter.

This can typically be found at
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Parasoft
Concerto\Parameters

3. Add new JVM Option Number parameter.

For example, if your installation has 15 such parameters (numbered from 0 to 14) add the 16th
parameter as:

JVM Option Number 15

value:

-Djavax.net.ssl.trustStore=D:\home\user\concerto\.keystore
258

Integrating with Atlassian JIRA
4. Increase the parameters counter "JVM Option Count" by one. For example, if the value of

"JVM Option Count" is 15, set it to 16:

Figure 5: Editing JVM Option Count with Regedit

Configuring BTS Scanner for JIRA with Basic HTTP
Authentication
To set up BTS Scanner to work with JIRA with basic HTTP authentication, configure BTS Scanner for
JIRA as you normally would, then perform the adjustment listed below:

Add basic-http-authentication to connection-settings in the
${DTP_HOME}\grs\config\bts\Jira.xml file:

<basic-http-authentication>
<user>admin</user>
<pass encrypted="false">admin</pass>

</basic-http-authentication>

For example:

<connection-settings>
<soap-service>https://jira.somecompany.com:8443/rpc/soap/

jirasoapservice-v2</soap-service>
<user>root</user>
<pass>root</pass>
<basic-http-authentication>

<user>admin</user>
<pass encrypted="false">admin</pass>

</basic-http-authentication>
259

Integrating with Atlassian JIRA
</connection-settings>

Note: User and pass inside <basic-http-authentication> tags are sent to your JIRA server as
an HTTP header parameter.
260

Integrating with IBM Rational Change and Synergy
Integrating with IBM Rational Change
and Synergy
This section explains how to import Rational Change artifacts into Development Testing Platform and
how to configure Task Assistant to work with Rational Change artifacts imported into Development
Testing Platform (in “Configuring Parasoft Test Task Assistant to work with Development Testing
Platform and Rational Change Synergy”, page 262).

Rational Change Integration
BTS Scanner for Rational Change and Synergy allows you to import change requests (and the
associated tasks) from the Rational Change to Development Testing Platform. The Rational Change
change requests are presented as requirements in Development Testing Platform. As is standard with
BTS integration, Rational Change and Synergy synchronization is performed by the BTS/RMS
Scanner, which is run automatically or can be run on demand.:

1. Make a copy of the DTP_HOME/grs/config/bts/examples/ExampleSynergyScannerConfig.xml

file (which presents sample settings for Synergy) and adjust the copy’s settings to suit your

Synergy server and Development Testing Platform server. Each setting element is described in

the XML file.

2. Copy this file to DTP_HOME/grs/config/bts. After this is completed, your specified Rational

Change server will be connected and the “ccm” queries specified in the .xml file will be exe-

cuted every 15 minutes—or when you click the RESCAN button in Project Center Require-

ments page.

Change requests found by the queries (as well as the change requests’ associated children

and tasks) are synchronized with the requirements and tasks in the Development Testing Plat-

form target project.

Any changes made in Rational Change are updated in Development Testing Platform as fol-

lows:

• If a specific requirement (or task) does not exist in Development Testing Platform, it is
added.

• If a specific change request (or task) has been modified in Ration Change, it is
updated in Development Testing Platform. The Rational Change change request ID
and task ID are stored in the Development Testing Platform requirement Original ID
and task Original ID fields (respectively).
261

Integrating with IBM Rational Change and Synergy
3. For each change request being retrieved by query, the associated children requirements and

tasks are also synchronized. For instance, if a new task is added to a change request in Ratio-

nal Change, it will also be added to Development Testing Platform upon synchronization.

At this point, you should be able to see requirements and their tasks in the Development Testing
Platform target project. Note that the imported requirements and tasks in Development Testing
Platform’s Original ID fields contain IDs from Rational Change.

Configuring Parasoft Test Task Assistant to work with Development
Testing Platform and Rational Change Synergy

1. Configure the Development Testing Platform project into which you have imported data from

Synergy as follows:

a. In Parasoft Test, get the text properties pointing to your Synergy source repository. To
do this, define your Synergy source control in Parasoft Test

Note

• Synergy "ccm" queries configured in .xml settings file are tightly integrated with the
Development Testing Platform target project. For example, when you modify or delete a
query (so that a specific configuration returns fewer change requests), the outstanding
requirements in the Development Testing Platform target project are deleted. All tasks
associated with the deleted requirements change their type to 'Standalone.' Tasks are never
deleted.

• The Development Testing Platform requirement’s Original ID and target Development
Testing Platform project are taken into consideration to find counterparts in Development
Testing Platform/Rational Change. For example, if an imported requirement with a specific
Original ID does not exist in a specific Development Testing Platform target project, it will be
created in Development Testing Platform. If such a requirement exists in the Development
Testing Platform target project, it will be updated.

• In some cases, you might have “ccm” queries defined to be synchronized with a
Development Testing Platform project, then change the configuration Development Testing
Platform target project name...but leave the queries so that they import the same change
request into another Development Testing Platform project. When a new (not yet imported
into Development Testing Platform) or modified (since the previous Development Testing
Platform import) Rational Change change request is going to be imported into Development
Testing Platform (i.e. it is retrieved by the “ccm” query)—if a requirement with the same
Original ID already exists in Development Testing Platform, but is in another project, then:

• It will be deleted from that original project.

• All tasks associated with the deleted requirement will change their type to
'Standalone.' No tasks will be deleted.

• It will be imported to the new project.

• If this imported requirement has associated tasks, they will be either created as new
or will be moved to this requirement based on the Original ID.
262

Integrating with IBM Rational Change and Synergy

then export these settings to a file. Here is an example of the exported properties to be
pasted into the Development Testing Platform project Parasoft Test Settings tab:

scontrol.rep1.synergy.dbpath=/usr/local/ccmdb/testdb
scontrol.rep1.synergy.host=synergy
scontrol.rep1.synergy.local_dbpath=C\:\\tmp\\local_synergy_db
scontrol.rep1.synergy.login=modtest
scontrol.rep1.synergy.password=6e6b703e6952746f
scontrol.rep1.synergy.remote_client=true
scontrol.rep1.type=synergy
scontrol.synergy.exec=ccm

Such settings are used by Parasoft Test when it connects to the named Development
Testing Platform project; they are project specific.

b. From the Development Testing Platform administration pages, open and edit the
project you are working with, open the Parasoft Test Settings tab, then copy the
above properties. If you want to specify these settings globally (for all Development
Testing Platform projects), you can paste this information in the Administration> Set-
tings > Parasoft Test page rather than the project’s Parasoft Test Settings page.

c. Go to the Administration> Settings> Parasoft Test page, and paste the following
line into the Global Parasoft Test Settings field:

tasksImportedMode=true

This setting switches Task Assistant (which will connect to this Development Testing
Platform server) to work in Synergy mode (i.e. operate on Task Original IDs [values of
task ID from Synergy are presented in Development Testing Platform as task Original
IDs] as if they were task IDs).
263

Integrating with IBM Rational Change and Synergy
2. On the Development Testing Platform server host, install the Synergy client. Since Develop-

ment Testing Platform uses the ccm command to read files that are associated with tasks in

Synergy (Development Testing Platform reads those files when it is queried by Task Assistant).

3. Ensure that:

• the “ccm” command is on the system path visible to the Development Testing Platform
server service.

• the path defined is not wrapped in quotes (“”), even if it contains spaces.

4. In Parasoft Test, open the Development Testing Platform preferences, specify your Develop-

ment Testing Platform server, and set General Project to the project that you configured and

that has Synergy requirements and tasks imported.

Task Assistant is now ready to work with Synergy. This means that you can define a query to retrieve
tasks from Development Testing Platform (which in turn retrieves them from Synergy). If specific task
has some files associated with it in Synergy, activating that task in Task Assistant will prompt
Development Testing Platform to read the associated file list from Synergy and present it in Task
Assistant.

Troubleshooting

Cannot run program ""ccm""
In Parasoft Test’s Task Assistant I get the "Fail reason: Cannot run program ""ccm"": CreateProcess
error=2," error when I activate a Synergy task.

Possible cause: This could be caused by any of the following:

• The Synergy client (including ccm command) is not installed on the Development Testing
Platform server machine.

• The ccm command is not on the system path visible to the Development Testing Platform
service.

• The path to the ccm.exe command on Windows is defined, but it is defined in quotes “”.
264

Integrating with IBM Rational Change and Synergy
Solution: Ensure that the Synergy client (including the ccm command) is available on the
Development Testing Platform server machine, the ccm command is on the system path visible to the
Development Testing Platform service, and the path to the ccm command on Windows is not in quotes
(even if the path contains spaces).

Cannot start new Synergy/CM session
I get the "Cannot start new Synergy/CM session. Warning: IBM Rational Synergy startup failed " error
when I activate a Synergy task and go to Development Testing Platform Task Assistant view to see the
associated files.

Possible cause: “ccm” command is visible to the Development Testing Platform server, but the system
user who is running the Development Testing Platform service does not have permission to start a
Synergy session.

Solution: Start the Development Testing Platform service as Windows system user who has
permission to start Synergy sessions. For general instructions on how to change user who runs the
Development Testing Platform service on Windows, see Solution 2 in “Show Source Functionality”,
page 307.

Enabling Debug Mode
If a) you see the files associated with specific task in Synergy, but you cannot see them in Task
Assistant, b) you get an error in Task Assistant when you queries for these files, and c) the above hints
did not help, then switch Development Testing Platform server logging into debug mode. See
“Switching to Debug Logging Mode”, page 309, for instructions.
265

Integrating with IBM Rational Change and Synergy
266

Integrating with Code Review
Integrating with Code Review
Parasoft Development Testing Platform integrates with the code review process you set up through
Parasoft Test (SOAtest, Jtest, etc.). In such a process, Parasoft Test serves as the code review engine
and team members interact with code review tasks via Parasoft Test.

Development Testing Platform is used to store code review results and provide insight into code review
results.

For details about how to set up and perform code reviews with Parasoft Test, see the Parasoft Test
User’s Guide.

Configuring Code Review Reporting for a Project
Code Review reports (described in “Code Review”, page 61) show statistics for the selected project.

When generating Code Review reports, Development Testing Platform considers:

• Which results are associated with team members who are part of the selected project.

• Which results are marked with the identifier/session tag from the code review session.

To configure reporting:

1. Ensure that your project’s Team Membership list contains the users who are involved in your

code review process.

• For more details on configuring team members, see “Project Creation and
Configuration”, page 164.

2. Ensure that project’s Code Review Filter has the session tag set to match the Session Tag

from your Parasoft Test Code Review Test Configuration.

• For more details on configuring this filter, see “Code Review Filter”, page 169

For example, assume that:

• You want to see code review results for John, David, and Mary

• Your team’s Code Review Test Configuration uses the Nightly MyProject Scan Session Tag.

You would configure the following two things in Development Testing Platform:

• You would set the Team Membership list to include John, David, and Mary as follows:
267

Integrating with Code Review
• You would set the Code Review Filter to use the Nightly MyProject Scan session tag.

Configuring Code Review Data Storage
There are two ways to store code review data in Development Testing Platform:

• Using the Report Center database (recommended; provides more efficient storage)

• Using Team Server (supported for backwards compatibility)

The Development Testing Platform integration procedure varies depending on which code review
storage option you are using.

For Report Center Storage
If you choose this (recommended) option, the code review configuration performed on Parasoft Test is
sufficient. No additional configuration is needed on Development Testing Platform side.

Report Center reports are configured to draw data from the Report Center database by default.

For Team Server Storage
Report Center reports are configured to draw data from the Report Center database by default. To
switch to Team Server-based code review storage:
268

Integrating with Code Review
1. Go to Report Center> Administration> Settings> Report Center> Server and enable Use

deprecated Team Server based Code Review.

2. Configure a nightly job to read data from Team Server and put them into Report Center data-

base by editing DTP_HOME/grs/config/CRHistoryScanners.xml to provide information on

every Team Server server that should be queried for code review data. The following is an

example:

<configuration>
 <cr-history-scanner>
 <teamserver>
 <host>teamserver1.company.com</host>
 <port>1111</port>
 <login>login</login>
 <password>pass</password>
 <timeout>7200000</timeout>
 </teamserver>
 </cr-history-scanner-->
 <cr-history-scanner>
 <teamserver>
 <host>teamserver2.company.com</host>
 <port>1111</port>
 <login>login2</login>
 <password>pass2</password>
 <timeout>7200000</timeout>
 </teamserver>
 </teamserver>
 </cr-history-scanner>
 ...
</configuration>

3. Restart the Development Testing Platform server so that changes take effect.

When a Report Center Code Review History Scanner job is launched, Team Servers from all <cr-
history-scanner/> sections are sequentially scanned. Their data is then stored into the Report
Center database.

This job is pre-configured and should be run as an independent group because the scanning operation
can be time-consuming. The time-out parameter tells the scanner how many milliseconds are left until
the scanning process is finished. A default value of 7,200,000 milliseconds should be set.

Warning: The first scan of the Team Server repository can take an extreme amount of time because
the Report Center Code Review plugin for Team Server needs to create its indexes from scratch.
Sometimes it takes a few scanning sessions to fully retrieve full CR operations history. Sequential
scans (on the following days) should be noticeably shorter and work on a day-to-day basis.
269

Integrating with Code Review
270

Integrating Report Center with Emma
Integrating Report Center with Emma
Report Center can integrate with the Emma Java code coverage tool. Emma’s functional test coverage
results are shown in Report Center reports. See “Viewing Emma Results”, page 272.

1. In Report Center, click the administration link in the top navigation bar.

2. Choose Settings > Integration> Emma.

3. Enter the URL to your Emma .xml file containing the coverage results for all of your tested

classes.

This URL location is scanned periodically by Report Center. When new results appear, they
are loaded into the Report Center database.

Note: The .xml file for which you provide the URL should be served by an http server. You can
see an example of .xml output at the official Emma Web site: http://
emma.sourceforge.net/coverage_sample_c/coverage.xml

4. (Optional) Enter the URL to your Emma .html coverage results file for all your tested classes.

The HTML file should contain the results from your last Emma run.

This URL location is not periodically scanned. Development Testing Platform links to Emma
coverage reports from the Emma Coverage column of the Report Center Coverage report. See
“Viewing Emma Results”, page 272

The .html file for which you provide the URL should be served by an http server. You can see
an example Emma html report at the official Emma Web site: http://
emma.sourceforge.net/coverage_sample_a/index.html

5. Specify a Test Group Property attribute filter in the User Attribute: Project field. The filter speci-

fies which Development Testing Platform project the Emma results are associated with. The

value of the filter is set in the Edit Project page. See “Test Group Properties Filter”, page 167,

for more information.

6. You can add additional configurations or click Save to continue.

7. Edit DTP_HOME\grs\config\CronConfig.xml file and go to the following xml node:
271

Integrating Report Center with Emma
<Job allowFromHour="0" allowToHour="23" frequency="1440"
id="Emma Scanner"runDayOfWeek="*" runHour="2" runMinute="0">

<class allowInSlave="false"

name="com.parasoft.grs.rserver.cronjobs.EmmaScannerJob"
priority="1"/>

 </Job>

This xml node contains the configuration for a periodic Report Center background job, which
scans the location defined in Step 1. It is predefined to be run each night at 2:oo a.m.

If necessary, you can modify the run hour in this xml node. Upon making the change, restart
the Development Testing Platform server for the change to take effect.

8. Switch Report Center coverage reports to Emma mode.

d. Edit the following files:

• DTP_HOME/grs/xreports/architect_dashboard/CoverageDetails.xml

• DTP_HOME/grs/xreports/architect_dashboard/CoverageOverview.xml

• DTP_HOME/grs/xreports/architect_dashboard/CoverageOverviewDetails.xml

• DTP_HOME/grs/xreports/architect_dashboard/composite_desc.xml

• DTP_HOME/grs/xreports/lite_dashboard/composite_desc.xml

e. Go to the following xml element:

• <parameter name="show_emma_results">false</parameter>

f. Set its value to true:

• <parameter name="show_emma_results">true</parameter>

The Report Center-Emma integration is complete.

Viewing Emma Results
1. Open Development Testing Platform Reports view

2. Choose Tests> Tests Overview

3. Click the Coverage report
272

Integrating Report Center with Emma
In Emma mode, the Coverage report and its drill-down reports should display and additional Emma
Coverage column that shows the coverage reported by Emma.

Click on the column header to access the Emma HTML file.
273

Integrating Report Center with Emma
274

Integrating Report Center with Source Control Management Systems
Integrating Report Center with Source
Control Management Systems
Integrating with your your organization’s source control management system (SCM) enables Report
Center to show comprehensive statistics based on data pulled from committed source files.

When DTP is integrated with your SCM, SourceScanner (shipped with SDLC Extensions) scans files
stored in the source repository and stores revision information in the Report Center database. The data
that Report Center collects is used to generate accurate reports. Report Center can show the source
code from the appropriate repository in its source-related reports.

If DTP is not integrated with your organization’s SCM, you can still view source file content sent to DTP
Server from DTP Engines. See “Displaying Source Code published by DTP Engines”, page 68, for
additional information

Configuring SourceScanner
SourceScanner should be configured in order to feed data into Report Center.

SourceScanner is available with other SDLC integration extensions. For information about how to
configure SourceScanner, see the Parasoft SDLC Integration Extensions User’s Guide.

Defining Source Control Filter for a Report Center
Project
After SourceScanner is configured to feed data into Report Center, you should define the repository
files that you want to include in reports for the selected project. For information about how to do this, go
to “Source Control Filter”, page 168.

Important! It is strongly recommended that any one specific source repository location be scanned by
only ONE SourceScanner project. For instance, if you intend to scan the sources for two branches and
trunk of the same files, then you should define it in only one SourceScanner project. Do not define and
run three separate projects.

Viewing Statistics for Source Control and Files’
Source Code in Report Center Reports
After configuring SourceScanner and setting source control filters for various Report Center projects,
Report Center can include SCM statistics into reports and source code views based on source code
data. For additional information, see the following sections:

• “Violations Explorer”, page 110

About Parasoft SDLC Extensions

SourceScanner does not ship with Development Testing Platform. It is part of the Parasoft SDLC
Extensions module. Contact your Parasoft representative if you would liike to use Parasoft SDLC
Extensions.
275

Integrating Report Center with Source Control Management Systems
• “Coverage Explorer”, page 125

• “Test Explorer”, page 129

• “Reports”, page 149

Viewing Source Code (Show Source Functionality)
You can configure DTP to include SCM data in Report Center. Your repository client must be installed
on the same machine as Report Center to allow DTP to show sources from repositories. The following
table lists SCMs that can be integrated with DTP to show source code in Report Center.

SCM Notes

Accurev Verify that Accurev client is installed and that the accurev command is on the
system path.

For troubleshooting issues, see “Show Source Functionality”, page 307.

Supported for reports view (see “Reports”, page 149) and Violations Explorer
(see “Violations Explorer”, page 110).

ClearCase Verify that ClearCase client is installed and that the cleartool command is on
the system path.

For troubleshooting issues, see “Show Source Functionality for ClearCase”,
page 308.

Supported for reports view (see “Reports”, page 149) and Violations Explorer
(see “Violations Explorer”, page 110).

CVS No CVS client is required to be installed.

Supported for reports view (see “Reports”, page 149) and Violations Explorer
(see “Violations Explorer”, page 110).

Jazz (Rational
Team Concert)

Jazz version 2.0.0.2 is supported.

Jazz Plain Java Native Libraries must be located in the Development Testing
Platform machine. Development Testing Platform will be able to locate these
native libraries through SourceScanner.

Jazz Eclipse Client must be located in the Development Testing Platform
machine as it contains the Jazz command line client. The path to the Jazz com-
mand line client, which is typically located under [Jazz Directory]/scmtools/
eclipse/, must be added to the PATH environment variable.

SourceScanner version 5.4.2 is required; SourceScanner and Development Test-
ing Platform must be located in the same machine.

Supported for reports view (see “Reports”, page 149) only.

GIT Verify that GIT client is installed.

The git command should be on the system path.

Local repository (set as ROOT in Source Scanner) and Development Testing
Platform must be located in the same machine.

Supported for reports view (see “Reports”, page 149) and Violations Explorer
(see “Violations Explorer”, page 110).
276

Integrating Report Center with Source Control Management Systems
See “Show Source Functionality”, page 307, if you experience problems showing sources.

Microsoft Team
Foundation
Server

Supported for Violations Explorer only. See “Violations Explorer”, page 110.

Microsoft Visual
SourceSafe

Supported for Violations Explorer only. See “Violations Explorer”, page 110.

Perforce SCM Verify that Perforce client is installed.

The p4 command should be on the system path.

Supported for reports view (see “Reports”, page 149) and Violations Explorer
(see “Violations Explorer”, page 110).

Serena Dimen-
sions

Verify that the DM_ROOT environment variable is set and it is correct (e.g.
export DM_ROOT=/opt/serena/dimensions/12.2/cm)

Verify that the LD_LIBRARY_PATH environment variable contains the path to
Serena Dimensions libs (e.g. export
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/serena/dimensions/
12.2/cm/lib)

Supported for reports view (see “Reports”, page 149) and Violations Explorer
(see “Violations Explorer”, page 110).

StarTeam Verify that you have the Borland StarTeam SDK installed in the [DTP_HOME]/
lib/thirdparty directory. You must restart Development Testing Platform ser-
vices after installing the SDK.

You can download the Borland StarTeam SDK for free from the Borland Web site.

Supported for reports view (see “Reports”, page 149) and Violations Explorer
(see “Violations Explorer”, page 110).

Subversion Verify that Subversion client is installed.

The svn command should be on the system path.

Supported for reports view (see “Reports”, page 149) and Violations Explorer
(see “Violations Explorer”, page 110).

For troubleshooting issues, see “Show Source Functionality”, page 307.

Synergy CM Verify that Synergy client is installed and that the ccm command is on the system
path.

Supported for reports view (see “Reports”, page 149) and Violations Explorer
(see “Violations Explorer”, page 110).

For troubleshooting issues, see “Show Source Functionality”, page 307.

SCM Notes
277

Integrating with PTC Integrity Source Control Extension
Integrating with PTC Integrity Source
Control Extension
Parasoft DTP integrates with PTC Integrity (MKS) 10.x, which enables the following functionality:

• Native support for scoping and identifying authors of Parasoft Test tasks

• Allows users to perform Parasoft Code Review

• View source code from Parasoft test tasks

• Facilitate the Code Review automation process

Following integration support has been tested successfully using PTC Integrity 10.4. However, it has
been implemented to support MKS API 4.10 (which support PTC Integrity 10.0 ~ 10.4).

Packages for Integration
Parasoft provides the following packages or MKS integration:

• xtestMKS.jar: Parasoft Source Control implementation to support for PTC Integrity 10.x

• mksapi.jar: PTC Integrity Java API

Requirements
• The PTC Integrity 10.x client must be installed. Parasoft will use both the Source Integrity (SI)

command line from PTC Integrity client and Java API to retrieve information.

• A sandbox for the projects that tools are going to use first must be created. All files must be
located under the sandbox.

• Parasoft Test 9.5.10 (Jtest, C++test, SOAtest) make sure to have or newer must be installed.

• Parasoft DTP installation on Linux. This integration is not currently supported for DTP installed
on a Windows server.

Installation and Configuration
The packages are installed and configured in Parasoft Test and DTP.

Installation on Parasoft Test
1. Open the installation directory

• Windows 32-bit standalone: C:\Program Files\Parasoft\Test\9.5

• Windows 64-bit standalone: C:\Program Files (x86)\Parasoft\Test\9.5

• Windows 32-bit plug-in: C:\Program Files\Parasoft\Test for Eclipse\9.5

• Windows 64-bit plug-in: C:\Program Files (x86)\Parasoft\Test for Eclipse\9.5

• Linux standalone: $HOME/parasoft/test/9.5
278

Integrating with PTC Integrity Source Control Extension
• Linux plug-in: $HOME/parasoft/test for eclipse/9.5

2. Create a directory called ext in the [INSTALL_DIR]/plugins/com.para-

soft.xtest.sourcecontrol.eclipse.core_<version> directory.

3. Copy the integration packages to the ext directory

4. Start the tool and choose Parasoft> Preferences> Source Control to validate that the PTC

Integrity option is available.
279

Integrating with PTC Integrity Source Control Extension
Installation on Parasoft DTP
1. Extract the contents of the MKSjars.zip file into a temporary location the system where DTP is

installed.

2. Create a directory called scontrol in the $DTP_HOME/plugins directory.

3. Open the $DTP_HOME/bin/reportserver.sh script with your favorite editor.

4. Locate the line that reads CATALINA_OPTS and add the following line:

-Dscontrol.ext.dir=$PST_HOME/plugins/scontrol \

5. Save the file and exit the editor

6. Restart DTP using the $PST_HOME/bin/concertoconsole.sh script.

Configration and Setup on Parasoft Test
For Linux/Solaris installations, perform the following steps before proceeding the rest of the
configuration:

• Make sure to add $INSTALLDIR/bin directory to the top of the PATH.

• Make sure to set LD_LIBRARY_PATH to point $INSTALLDIR/lib/linux ($INSTALLDIR/
lib/solaris for Solaris).

The $INSTALLDIR/lib/<linux/solaris> directory provides both 32-bit and 64bit libraries; MKS
API will load proper libraries based on JVM.

1. Start your Parasoft Test application

2. Choose Parasoft > Preferences > Scope and Authorship

3. Enable the Use source control (modification author) to compute scope option
280

Integrating with PTC Integrity Source Control Extension
4. Disable all other options and click Apply.

5. Choose Parasoft> Preferences> Parasoft> Source Control and verify that the PTC Integrity

option is enabled and that si command is set to the path. If si is not under PATH, make sure to

point to it with an absolute path.

6. Click New in the Custom repositories section and enter the following options in the Proper-

ties window:

serverport: PTC Integrity port (by default 7001)

server: PTC Integrity Server Name

user: username to authenticate for PTC Integrity

password: password to authenticate for PTC Integrity

sandbox: Sandbox location where local resources are synchronized (ends with project.pj in the
path)

project: PTC Integrity Project location on the server (example: /Project XZY/project.pj)
281

Integrating with PTC Integrity Source Control Extension
7. Click Check Connection to validate your option settings. If there is an error, a PTC Integrity

error message will be returned in the dialog box.

8. Click OK to save and exit.

Validating the Settings in Parasoft Test
1. Import a project under the sandbox to Parasoft Test solution.

2. Open a file and right click on a line.

3. Choose Parasoft> Show Author at Line.

4. A dialog box should open and show the author information and revision number.
282

Integrating with PTC Integrity Source Control Extension
Configuring PTC Integrity under Development Testing Platform
(DTP) with SourceScanner
Before proceeding the configuration, make sure that the PTC Integrity (MKS) Client is installed and
working correctly on the machine where you will run SourceScanner and DTP.

For Linux/Solaris installations, perform the following steps before proceeding the rest of the
configuration:

• Make sure to add $INSTALLDIR/bin directory to the top of the PATH.

• Make sure to set LD_LIBRARY_PATH to point $INSTALLDIR/lib/linux ($INSTALLDIR/
lib/solaris for Solaris).

The $INSTALLDIR/lib/<linux/solaris> directory provides both 32-bit and 64bit libraries; MKS
API will load proper libraries based on JVM.

For Windows, make sure to add %INSTALLDIR%/bin to PATH in the SYSTEM environment.

For Bash:

PATH==/home/Integrity/IntegrityClient10/bin:$PATH

LD_LIBRARY_PATH=/home/Integrity/IntegrityClient10/lib/
linux:$LD_LIBRARY_PATH

export LD_LIBRARY_PATH PATH

1. Start the si gui command to open Integrity Client GUI.

2. Identify project path from Projects tab as follow:

This value will be used as Project Root under SourceScanner.

3. Create a sandbox for this system and record the value for the sanbox:
283

Integrating with PTC Integrity Source Control Extension
This will be used as a Sandbox Location value under SourceScanner.

4. Follow the DTP installation guide to install Development Testing Platform. Make sure PATH

and LD_LIBRARY_PATH is loaded to the SHELL before starting DTP under Linux.

5. Extract the SDLCEXtensions-5.7.3.zip zip file to install SourceScanner.

For Windows:

1. Extract the zip file into C:\Parasoft, which will create the C:\Parasoft\SDLCEx-
tensions directory.

2. Set PROSERVE_HOME environment variable to C:\Parasoft\SDLCExtensions

For Linux/Solaris:

1. Extract the zip file into $HOME/parasoft (it will create $HOME/parasoft/SDLCExten-
sions directory)

2. Change the to bin directory and run chmod a+x *.sh to all scripts executables.

3. Edit $HOME/.proserve.rc and add the following lines:

export JAVA_HOME=<JAVA_RUNTIME_INSTALL_DIR>

export PROSERVE_HOME=<where SDLCExtensions are installed>

($HOME/parasoft/SDLCExtensions)

4. In $HOME/.bashrc, make sure PATH and LD_LIBRARY_PATH are saved and loaded
before starting DTP or SourceScanner.

6. Start SSGUI.sh (for Linux/Solaris) or SSGUI.cmd (for Windows) to start SourceScanner GUI.

7. Follow SDLCExtensions documentation to setup SourceScanner. In this document, it will only

discuss PTC Integrity related information.

Creating a PTC (MKS) Integrity Project
1. Under Project, choose MKS as the Source Control type

2. Enter the project name; the value will be used in DTP as the Repository ID

3. Root should represent the server Project Path as captured in Step 2.

4. Sandbox location should have the value from Step 3.

5. Refer to "SDLCExtensions User’s Guide" for additional settings and information. (Note: MKS

reference under SDLCExtensions documentation is outdated and will be updated in 6.0

release)

6. Run SourceScanner to populate data to DTP.
284

Integrating with PTC Integrity Source Control Extension
285

Sending Test Results from Third-party Tools to Development Testing Platform

286

Sending Test Results from Third-party
Tools to Development Testing Platform
Development Testing Platform provides an open API that can be used to send custom and third-party
automated test results to Development Testing Platform. Once results are sent to Development Testing
Platform, they can be used in your development process, e.g. visualize the results in Report Center
dashboards.

The API is shiped as open source bundle. For details please visit:

http://sourceforge.net/projects/psfconcertoapi/?source=directory

http://sourceforge.net/projects/psfconcertoapi/?source=directory

Importing Reports to Microsoft Excel
Importing Reports to Microsoft Excel
The XML Data option enables you to export data displayed in Report Center reports, and import it into
a spreadsheet application, such as Microsoft Excel. This enables you to create custom tables, reports,
and graphs.:

1. Open a report and click the XML Data link

Some top-level reports do not have an XML Data link. In these cases, you must drill down to a
specific graph to export the data.

2. Depending on your browser and file handling extensions, you may be prompted to save the

report file .

3. Start your spreadsheet application and import the downloaded XML file. In this example, we’ll

use MS Excel .

4. Choose File> New > Blank workbook
287

Importing Reports to Microsoft Excel
5. Click the Data tab and in the Get External Data ribbon, choose From Other Sources> From

XML Data Import.

6. Specify the region in the spreadsheet where you want to place the data and click OK to finish

importing your report
288

Java API

289

Java API
Development Testing Platform's Java API provides a way for users to extend the functionality of
Development Testing Platform. The platform provides out-of-the-box integration with Bugzilla and JIRA
bug tracking systems, but organizations that use a different bug tracking system can write their own
custom bug scanner by extending the bug scanner Java API. Organizations can also write their own
custom requirements scanner by extending the requirement scanner Java API.

To access the Java API documentation, enter https://host:port/grs/java-api into the
browser address bar. Typically, the URL is https://host/grs/java-api if Development Testing
Platform is deployed on port 80. The platform is typically deployed on port 8443 if port 80 isn’t used.
For more information about using the Java API, see “Manually Configuring BTS or RMS Scanner”,
page 219, and “Custom RMS Scanner”, page 223.

The Java API for DTP custom processors is available at http://build.parasoft.com/maven. The available
build artifacts include both the compiled jar and the packaged javadoc jar file. These artifacts share the
following properties:

• groupId: com.parasoft.dtp

• artifactId: com.parasoft.api.dtp.processors

• version: 5.1.0

http://build.parasoft.com/maven

Managing Report Center Installation in Windows
Managing Report Center Installation
In this section:

• Managing Report Center Installation in Windows

• Managing Report Center in Linux

Managing Report Center Installation in
Windows
When you have an outdated Development Testing Platform or Report Center installation, you might
want to uninstall MySQL or Report Center, clear your old Report Center database, or upgrade to a new
version of Report Center.

Uninstalling Development Testing Platform or MySQL
Report Center cannot be uninstalled without uninstalling Development Testing Platform as well. You
must remove Development Testing Platform/Report Center before you remove MySQL.

To uninstall Development Testing Platform/Report Center:

1. Choose Start > Settings > Control Panel. The Control Panel window is displayed.

2. Double-click Add/Remove Programs. The Add/Remove Programs window is displayed.

3. Select Report Center and click Remove. Follow the onscreen instructions.

To uninstall MySQL:

1. Choose Start > Settings > Control Panel. The Control Panel window is displayed.

2. Double-click Add/Remove Programs. The Add/Remove Programs window is displayed.

3. Select MySQL and click Remove. Follow the onscreen instructions.

Clearing the Report Center/Project Center Database
If you do not want to uninstall MySQL but you want to have a fresh database, you can clear the Report
Center database, then create a fresh database structure.

Note: The MySQL service must be running before you clear the Report Center database.

To clear the database:

1. Stop Data Collector.

2. Stop the Development Testing Platform Server.

3. Run the mysql utility.

4. Execute the following command at the prompt:
drop database GRS

5. Restart the system.
290

Managing Report Center in Linux
6. Create a new database by following the procedure described in the Development Testing Plat-

from Quick-install Guide..

Managing Report Center in Linux
After properly installing Report Center, you can run the dtpconsole.sh file to open the main menu.
This file is in the DTP_HOME/bin directory. If you installed the standard DTP distribution, the following
options are available:

• Choose (1) to open the Development Testing Platform Server menu; see “Development
Testing Platform Server Menu”, page 292.

• Choose (2) to open the Data Collector menu; see “Data Collector Menu”, page 292.

• Choose (3) to check for errors, see Parasoft services are running, and check disk space
usage.

• Choose (4) to open the Database configuration menu

• Choose (5) to open the System administration menu

• Choose (6) to show your machine ID.

• Choose (q) to exit the main menu.

DTP with Embedded Database Server Console
In the embedded database server edition of DTP (Linux only), the (4) Database configuration
option is replaced with the (4) Database (Embedded) option. Choose this option to access the
embedded database menu, which you can use to start and stop the database server. All other options
are the same as the standard DTP distribution.
291

Managing Report Center in Linux
Development Testing Platform Server Menu
You can configure the various parameters of the Development Testing Platform Server.

WARNING: It is recommended to leave the values for each option at the default setting.

Data Collector Menu

Option Result

(1) [Run /Stop] Service Starts or stops Data Collector service.

(q) Exit to previous menu Entering q at the prompt exits the Server Menu and opens
the Main Menu.

Option Result

(1) [Run /Stop] Service Starts or stops Development Testing Platform services.

(q) Exit to previous menu Entering q at the prompt exits the Server Menu and opens
the Main Menu.
292

Managing Report Center in Linux
System Administration Menu

Changing MySQL Root Password
By default a root user for MySQL database has an empty password. In other words, it is enough to
press Enter when prompted for a password to be granted access to MySQL database as a root user.
The Database Menu in dtpconsole.sh uses this fact when trying to connect to MySQL database to
create an initial database, for example. However a good practice is to set some password for MySQL
root user, especially when connecting through the network. If so, dtpconsole.sh must know what
password to use when trying to connect. Otherwise, an empty password will be used and the
connection will fail. You can enter an appropriate password using the Database Menu:

1. Enter 3 at the Main Menu prompt to open the Database Menu. The available options are

defined in the following table:

2. Select the Set mysql root password option from the Database Menu.

Option Result

(1) Enable/Disable adminis-
tration mailing

Enables or disables the feature that alerts the Report Cen-
ter administrator when disk space is running low. A local
SMTP server must be running and properly configured in
order to use this function. Default is disabled.

(2) Change administrator
address

Prompts you to specify the email address for the person
who should be notified about low disk space.

(3) Change risky disk space
usage [90%]

Prompts you to set an upper threshhold for disk usage. If
disk usage reaches this level, the Report Center adminis-
trator will receive an email that alerts him or her to this
problem.

(q) Exit to previous menu Exits the Server Menu and opens the Main Menu.

Option Result

(1) Create initial database Entering 1 at the prompt creates an initial database.

(2) Set MySQL root password Entering 2 at the prompt allows you to enter MySQL root
password, which then will be used by dtpconsole.sh when
connecting to MySQL database (default is no password).

(q) Exit to previous menu Entering q at the prompt exits the Database Menu and
opens the Main Menu.
293

Verifying Development Testing Platform Product Availability

294

Verifying Development Testing Platform
Product Availability

1. Click the Parasoft Development Testing Platform logo link

2. Click License configuration t

The Development Testing Platform products enabled and licensed for your installation are displayed:

Migrating Data
Migrating Data
You should back up the data from older versions of Development Testing Platform (version 5.x) or
Concerto (version 4.x) and migrate it to the new version. You can accomplish this by performing the
following tasks:

• Migrating Data from License Server. Do one of the following:

• Migrating Data from License Server 1.0 or 2.0, or

• Migrating Data from License Server 2.x to a New Version

• Migrating Team Server Configuration

• Migrating Team Server Data

Migrating Data from License Server 1.0 or 2.0
License data defined for License Server is stored in the /LicenseServer/.psrc directory. To
import data from License Server 1.0 or 2.0 to Concerto 1.x, follow these steps:

1. Back up your .psrc file.

2. Uninstall the previous License Server and Concerto versions.

3. Install Concerto 1.x.

4. Verify that /LicenseServer/conf/.psrc.xml exists, and then rename it to ensure that

License Server will not use this configuration upon startup. An example is to rename it to

.prsc.xml.bak.

5. Copy the backup of your .psrc file (from Step 1.), and then paste it in the /LicenseServer/

conf/ directory to force License Server to use the previous license configuration.

6. Run Concerto 1.x.

Upon startup, License Server will import license configurations from the .psrc file and create a new
.psrc.xml file based on data from the previous .psrc.

Migrating Data from License Server 2.x to a New
Version
To import data from License Server 2.x to a new version of Development Testing Platform, follow these
steps:

1. Back up the DTP_HOME/LicenseServer/conf/ file.

2. Uninstall the previous version.

3. Install Development Testing Platform.

See the "Development Testing Platfrom Quick-install Guide" for more information.

4. Copy and paste the backup to the new DTP_HOME/LicenseServer/conf location.
295

Migrating Data
If you upgrade through the Repair option (recommended), there is no need to use backups because
your previous data/configuration is preserved for use by the new version automatically. Keeping
backups is recommended in the even that your new installation fails and you need to reinstall the
previous version and restore your data.

Migrating Team Server Configuration
To restore the previous Team Server configuration follow the steps below:

1. Back up the DTP_HOME/tcm/conf/ file.

2. Uninstall the previous Team Server/Concerto version.

3. Install Concerto 1.x.

See the "Development Testing Platfrom Quick-install Guide" for more information.

4. Copy and paste the backup to the new DTP_HOME/tcm/conf location.

If you upgrade through the Repair option (recommended), there is no need to use backups because
your previous data/configuration is preserved for use by the new version automatically. Keeping
backups is recommended in the even that your new installation fails and you need to reinstall the
previous version and restore your data.

Migrating Team Server Data
To restore the previous Team Server data follow the steps below:

1. Back up the DTP_HOME/tcm/storage/ file.

2. Uninstall the previous Team Server/Concerto version.

3. Install Concerto 1.x.

See the "Development Testing Platfrom Quick-install Guide" for more information.

4. Copy and paste the backup to the new DTP_HOME/tcm/storage location.

If you upgrade through the Repair option (recommended), there is no need to use backups because
your previous data/configuration is preserved for use by the new version automatically. Keeping
backups is recommended in the even that your new installation fails and you need to reinstall the
previous version and restore your data.
296

Upgrading MySQL Server

297

Upgrading MySQL Server
You can upgrade MySQL server when you have an existing Report Center database and want to
preserve it. Make sure to back up the Report Center database file before upgrading. See the
"Development Testing Platfrom Quick-install Guide" for more information on backing up the Report
Center database. For instructions on upgrading MySQL, visit the MySQL documentation library:

http://dev.mysql.com/doc/

http://dev.mysql.com/doc/

Configuration Manager Internal Details (Linux/Solaris)
Configuration Manager Internal Details
(Linux/Solaris)
This topic provides a brief description of the internal Development Testing Platform scripts that are
executed when you work on the Development Testing Platform Configuration Manager command line
program (DTP_HOME/bin/dtpconsole.sh).

Subtopics include:

• Running Web Server

• Running Data Collector

Running Web Server
When you select (1) to run Development Testing Platform Web Server, the dtpconsole.sh script
executes another script:

• DTP_HOME/bin/reportserver.sh.

The configuration file, "$DTP_HOME/.server_params", is also updated with the following line:

• service=ENABLED

All of the logs from Development Testing Platform that contain information—including error
messages—are saved in various files in DTP_HOME\logs\. The main log file is rs.log. A process ID of
the Development Testing Platform server is stored in DTP_HOME/grs/log/rs.pid.

For details about other log files, see (“Verification Step 3: Verify that there are no unknown exceptions
or messages in log files”, page 66).

If any problems occur during the Development Testing Platform server process, the cron job that was
installed during the Development Testing Platform installation will monitor the process and will restart
the Development Testing Platform Server whenever the entry "service=ENABLED" is present in the
configuration file.

Running Data Collector
When user selects (1) to run Data Collector the dtpconsole.sh script executes another script:

• DTP_HOME/bin/datacollector.sh.

The configuration file DTP_HOME/.collector_params is also updated with the line:

• service=ENABLED

The script "datacollector.sh" runs Data Collector. All of the logs from Data Collector that contain
information—including error messages—are saved in DTP_HOME\logs\dc* files. dc.log contains
most of the messages.

A process ID of Data Collector is stored in DTP_HOME/grs/log/dc.pid. If any problems occur
during the data collection process, the cron job that was installed during the Development Testing
Platform installation monitors the process and restarts Data Collector whenever the entry
"service=ENABLED" is present in the configuration file.
298

Configuration Manager Internal Details (Linux/Solaris)
Data Collector is now running and data collected from Parasoft and third party tools can be stored in
the database.
299

Creating an Initial Database and Upgrading the Database for Linux (Command-line Menu-driven Method)
Creating an Initial Database and
Upgrading the Database for Linux
(Command-line Menu-driven Method)

1. Enter the following command:

dtpconsole.sh

This script should be on your path. It is located in the $DTP_HOME/bin directory.

After entering this command, the Development Testing Platform Configuration Manager Main
Menu displays as follows:

MAIN MENU
=========

Options:

(1) Development Testing Platform Server (Report Center, Project
Center, Team Server, License Server)

(2) Data Collector

(3) Database (MySQL only)

(4) Status

(5 System Administration

(q) Exit to system

Choose one:

2. Select the Database option from the Main Menu by entering 3 at the prompt. For more infor-

mation on the additional options in the Main Menu, see “Managing Report Center in Linux”,

page 291.

After entering 3, the Database Menu displays as follows:

DATABASE MENU
============

Options:

(1) Create initial database

(2) Set mysql root password

(q) Exit to previous menu

Choose one:

3. Select the Create initial database option from the Database Menu by entering 1 at the

prompt. For more information on the additional options in the Database Menu, see “Changing

MySQL Root Password”, page 293.
300

Creating an Initial Database and Upgrading the Database for Linux (Command-line Menu-driven Method)
Note: By default, a MySQL database installs itself with an empty MySQL root password. If
using the empty root password does not allow connection to the database server, the
administration script will ask you for a correct MySQL root password.

4. For new installations, you will be prompted to create a database on the local machine. Choose

Yes.

A prompt is displayed requesting a password for root.

5. Enter the password used for MySQL configuration.

The script will connect to the MySQL server using the root account and will run a script that
creates the initial database.

Note: If you encounter any problems, one of two possibilities are likely: 1) MySQL
configuration was overlooked; 2) a permission problem on the database exists.

6. (optional) As a precaution, you can request verification that the reports are all up to date. This

can be done inside the Report Center Web interface. It is most likely that you will not see any-

thing that needs to be changed.

7. (optional) If you plan to move the data directory in MySQL to increase space in your Report

Center directory, or for other reasons, then this is a good time to do it.

Note: In case of any problems accessing MySQL, you can create an initial database using an
SQL script located in the DTP_HOME/grs/db directory. The script file name is
"create_db_mysql.sql".

At this point, Report Center should successfully be installed. (It installed during Development Testing
Platform installation.)

For upgrades: You will be prompted whether to perform an upgrade. Choose Yes.

The more data your previous installation contained, the longer it will take to load the data.

For upgrades: As a precaution, you might want to perform a second verification of
database integrity: mysqlcheck -u grs -pgrs GRS
301

Registering Automated Startup Manually (Linux)
Registering Automated Startup
Manually (Linux)
During a typical Development Testing Platform installation on Linux, crontab is modified so that it at
each system reboot, it calls the cronguard.sh script that automatically starts Development Testing
Platform server.

Automated Development Testing Platform startup on server startup is implemented with crontab
because root access is not required with crontab. If this was implemented with Unix /etc/init.d services,
root access would be required.

If you skipped the crontab configuration step during Development Testing Platform installation,
configure it manually as follows:

1. Log in as the user who installed Development Testing Platform.

2. Enter the crontab -e command.

3. Type the following in the editor (after replacing $DTP_HOME with full path where Development

Testing Platform is installed)

@reboot $DTP_HOME/bin/cronguard.sh > $DTP_HOME/logs/cronguard.log 2>&1
302

Registering Automated Startup Manually (Linux)
303

304

Troubleshooting
In this section:

• Viewing Log Files

• Report Center

• Cache Report Executor

• Team Server

• Show Source Functionality

Cache Report Executor

305

Cache Report Executor
By default, the reports specified in staticLinksConfig.xml should start being cached at 5 a.m. If some of
the reports are not cached by 8 a.m., for example, the following should be checked:

• Is report caching ON? See “Changing the Database Connections”, page 276 and “Enabling/
Disabling Report Center Data Cache”, page 179.

• What is the allowFromHour set to in the CacheReportExecutor job? See your CronConfig.xml
file.

• Has CacheReportExecutor started this morning? See your DTP_HOME\logs\recalculators.log.
This is the file where logs from all Report Center background jobs are written.

Go to the end of this file, and search backwards for the following phrase:
"CacheReportExecutor". When CacheReportExecutor runs a specific report from
staticLinksConfig.xml, it logs a text line beginning with "Generating cache for", which is another
phrase for which you can search.

• CacheReportExecutor might have started, but was paused by users browsing Report Center
reports, and might continue after idle time has elapsed following the last user action.

If the report that you need to cache nightly is not in staticLinksConfig.xml, add it to this file. For details,
see “Adding a New Report to Cache”, page 191.

Team Server

306

Team Server
Issue: Team Server starts, but cannot handle any requests.

Solution: The deployment was not performed correctly. Repeat the deployment procedure described
in “General Team Server Configuration”, page 90.

Issue: Team Server starts, but generates an error message for every request (other than connection
verification requests); the password is incorrect or missing.

Solution: Repeat the licensing procedure.

Issue: How do I ensure that the latest Jtest plugin is being used?

Solution: Go to the install dir\tomcat\webapps\ directory to verify the date of the jtest dir. If the date is
older than the date of jtest.war, remove it and then restart the services. The latest Jtest plugin will be
automatically applied.

Show Source Functionality
Show Source Functionality
Check the detailed error message in DTP_HOME/logs/rs.log if Report Center is unable to show the
file source.

Issue: The message states that the client command (Cleartool, CCM, and so on) is not accessible.
The cause could be that the client is not installed.

Solution: Install the client and verify that the command is accessible by issuing it from the command
line.

Issue: The client command line works, but Report Center still does not have access to the command.
The cause could be that the user who runs the Development Testing Platform server does not have
access to the client command.

Solution 1: Provide the user who runs the Development Testing Platform server with access to the
client command.

Solution 2: Change the user who runs the Development Testing Platform server to one who already
has access to the client command. You can do this in Windows by following these steps:

1. Open Computer Management to access the list of services on your machine:

a. Right-click the My Computer desktop icon.

b. Choose Manage.

c. From left pane, choose Services and Applications> Services.

2. Select the Parasoft Development Testing Platform service, right-click, and choose Properties.

The Parasoft Development Testing Platform Properties window is displayed.

3. Select the Log On tab.

4. Select This account, and then type or browse for the appropriate user
307

Show Source Functionality
5. Click Apply, and then OK.

6. Restart the service.

Show Source Functionality for ClearCase
Issue 1:

Source Scanner runs on a different server. As a result, it has a different ClearCase view path than
Report Center. When Source Scanner scans the source repository, it sends the following information to
Report Center:

• Source file information (paths, revisions, and so on)

• Connection parameters to the source repository, which are used by Report Center in Show
Source Functionality

Solution: For ClearCase one of the source repository parameters is the path to the view. Source
Scanner sends it as an internal CLEAR_CASE_PATH parameter.

Important! When Source Scanner runs on a different machine than Development Testing Platform and
has a different path to the ClearCase view, it is required to specify the ClearCase view path for the
Development Testing Platform server.

To specify the ClearCase view location, edit the following line in the RSConfig.xml file:

<clearcase-view-path>PUT_CLEARCASE_VIEW_LOCATION_HERE</clearcase-view-path>

Issue 2:

Support for ClearCase dynamic and static (snapshot) views.

Solution: Report Center SourceCode Viewer supports both ClearCase dynamic and static (snapshot)
views. Additionally, SourceScanner and Report Center can work on different types of views, for
instance, it is possible that SourceScanner scans a snapshot view, and then Report Center has a
dynamic view defined on its machine. Example:

Dynamic view: M:\my_dynamic_view\myvob\src\com\parasoft\MyFile.java

Snapshot view: C:\ClearCase\views\my_snapshot_view\myvob\src\com\parasoft\MyFile.java

The only requirement for Report Center is to have the path to the view properly defined, as described
in “Issue 1:”.
308

Switching to Debug Logging Mode

309

Switching to Debug Logging Mode
You can switch the Development Testing Platform server logging into debug mode as a means of
troubleshooting integration issues and other unexpected behavior.

1. Set the Development Testing Platform log level to DEBUG by editing DTP_HOME/bin/

log_config.xml and changing

<root>

<priority value="WARN"/>

<appender-ref ref="FILE"/>

</root>

to

<root>

<priority value="DEBUG"/>

<appender-ref ref="FILE"/>

</root>

For details see “Changing .log File Properties”, page 158.

2. This step enables an additional debug model Development Testing Platform source-control-

association module. Make the following changes only if you encounter issues in source con-

trol-related functionality.

Add the following parameters to Development Testing Platform’s Java VM startup parameters:

-Dscontrol.log=true

-Dcom.parasoft.xtest.logging.config.jar.file=/com/parasoft/xtest/
logging/log4j/config/eclipse.on.xml

3. Send the data into Development Testing Platform again and try to reproduce the behavior to

obtain the appropriate logging information.

4. Check rs.log, which may exceed the 50 MB of data reached during normal startup.

Index
Index

A
adding

new reports to cache 191
assigning branch/tag to project 186
Atlassian JIRA 253

B
baselines

deactivating 128
deleting 128
managing 120
setting 127

branches
assigning to project 186
scan configuration 186

BTS scanner
running 223

bug tracking systems
integrating 215, 243

bugs
calculating 174
verifying decrease 33

builds
monitoring 56
viewing results 56

C
cache

adding new reports 191
configuring

report executor 190
report lists 190

customizing reports 192
reports 191
scheduling 190

calculating
bugs 174
features/requirements 174

calculating defects/enhancements 174
Change 261
chk.sh and chk.cmd, running 194
ClearCase

integrating with Report Center 276
clearing database 290
ClearQuest, configuring 247
CM Synergy. See Synergy CM. 277
code

verifying tests 32
code metrics 96
code review history scanner

integrating with 267
Concerto

Linux menu options 293
uninstalling 162, 290

configuring
cache

report executor 190
report lists 190

ClearQuest 247
Report Center projects 186
Report Center source code files

186
SourceScanner 186, 275

creating
initial database for Linux 300, 302
sandboxes 196

customizing scripts 193
CVS

integrating with Report Center 276

D
data collector

activity 182
data, exporting/importing 287
database

clearing 290
statistics 182

deactivate baselines 128
defects
i

Index
calculating enhancements
calculating 174

defining
repository files 275

deleting baselines 128
developer reports, generating 179
duplicate logs eradicator 181

E
Emma, integrating with Report Center 271
eradicator 181
errors

by category 76
by severity 84

exporting data 287
extracting scripts 193

F
features/requirements

calculating 174
files, static analysis 36
finding weak requirements 34

G
generating developer reports 179

H
HP Quality Center 235, 247

I
IBM Change 261
IBM Synergy 261
identifying weak requirements 34
importing data 287
integrating

bug tracking systems 215, 243
code review history scanner 267
Report Center with

ClearCase 276
CVS 276
Emma 271
StarTeam 277
SubVersion 277
Synergy CM 277

source control management 275

J
JIRA 253

L
License Server

activity 181
licenses

requests 68
server activity 66
verifying usage 70
viewing number granted 69

Linux
creating initial database 300, 302
managing Report Center 162, 291
options

Concerto 293
system administration 293

upgrading database 300, 302
locking down, sandboxes 196
logs 87

duplicate eradicator 181

M
managing

baselines 120
menu options (Linux)

Concerto 293
system administration 293

monitoring builds 56
multicast DNS 205
MySQL

changing root password 293
uninstalling 162, 290

P
password root (MySQL), changing 293
projects

assigning branch/tag 186
verifying schedules 29
with weak requirements 34

Q
Quality Center 235, 247

R
Rational Change 261
Rational Synergy 261
recalculating
ii

Index
views 174
refreshing reports 179
Report Center

configuring
projects 186
source code files 186

managing in Linux 162, 291
reports

caching 191
customizing cache 192
data collector 182
metric top results 96
refreshing 179
single metrics overview 97

reports (developer), generating 179
repository files, defining 275
requirements

weak 34
running BTS scanner 223

S
sandboxes, creating and locking down

196
scanning branches/tags 186
scheduling

cache 190
scripts

extracting and customizing 193
UNIX 193
Windows 193

send.sh and send.cmd, running 194
servers

settings 180
setting baselines 127
settings

server 180
size.sh and size.cmd, running 195
SOAtest Server settings 184
sorting tables 27
source code

statistics 96
verifying modifications 30

source code files, configuring for Re-
port Center 186

source control management, integrat-
ing 275

source statistics, viewing 188
SourceScanner

configuring (general) 275
configuring to scan branches/tags

186
StarTeam

integrating with Report Center 277
static analysis

violations and files 36
statistics

database 182
statistics, source code 96
SubVersion

integrating with Report Center 277
Synergy 261
Synergy CM

integrating with Report Center 277
system administration, Linux menu op-

tions 293

T
tables, sorting 27
tags

assigning to project 186
scan configuration 186

test trio 120
token 114
tools, running 194
trio 120
troubleshooting

team server 306

U
uninstalling

Concerto 162, 290
MySQL 162, 290

unit testing
coverage 51

upgrading
database, for Linux 300, 302
iii

Index
V
verifying

bugs decreasing 33
code tested 32
project schedules 29
source code modifications 30

violations
by developers 40
by file 39
by types 38
static analysis 36

W
weak requirements 34
iv

	Introduction
	About Parasoft DTP
	Viewing DTP Tasks in an IDE

	Widgets
	Build Results Widgets
	Build Results
	Actions
	Custom Dashboard Properties
	Settings

	Jenkins Job Results
	Custom Dashboard Properties
	Settings

	Code Widgets
	Check-ins
	Actions
	Custom Dashboard Properties
	Settings

	Code Base Size
	Actions
	Custom Dashboard Properties
	Settings

	Code Review
	Actions
	Custom Dashboard Properties
	Settings

	Defects Widgets
	Defect Trend
	Actions
	Custom Dashboard Properties
	Settings

	Enhancement Trend
	Actions
	Custom Dashboard Properties
	Settings

	New Defects by Week
	Actions
	Custom Dashboard Properties
	Settings

	Project Center Widgets
	Iteration Burndown
	Actions
	Custom Dashboard Properties
	Settings

	Requirements Burndown
	Actions
	Custom Dashboard Properties
	Settings

	Tasks
	Actions
	Custom Dashboard Properties
	Settings

	Static Analysis (9.x) Widgets
	Errors by Category
	Actions
	Custom Dashboard Properties
	Settings

	Errors by Severity
	Actions
	Custom Dashboard Properties
	Settings

	Most Recent Errors by Category
	Actions
	Custom Dashboard Properties
	Settings

	Most Recent Errors by Severity
	Actions
	Custom Dashboard Properties
	Settings

	Static Analysis - Files
	Actions
	Custom Dashboard Properties
	Settings

	Static Analysis - Violations
	Actions
	Custom Dashboard Properties
	Settings

	Tests (9.x) Widgets
	Coverage
	Actions
	Custom Dashboard Properties
	Settings

	Functional Tests - Statistics
	Actions
	Custom Dashboard Properties
	Settings

	Functional Tests - Summary
	Actions
	Custom Dashboard Properties
	Settings

	Manual Tests Sessions
	Actions
	Custom Dashboard Properties
	Settings

	Tests (Files)
	Actions
	Custom Dashboard Properties
	Settings

	Unit Tests
	Actions
	Custom Dashboard Properties
	Settings

	Unit Tests - Statistics
	Actions
	Custom Dashboard Properties
	Settings

	Unit Tests - Summary
	Actions
	Custom Dashboard Properties
	Settings

	Parasoft Test Tool Reports (9.x and older)
	Navigating Reports
	Bookmarking Reports
	Refreshing Reports
	Filtering Reports
	Filter by Project
	Filter by Project and Team Member
	Filter by Period
	Filter by Most Recent Drops
	Filter by Custom Date Range

	Sorting Tables
	User Startup Report

	Controlling Schedule, Cost, and Quality
	Verifying Projects Are On-schedule
	Verifying the Amount of Source Code Modified Daily
	File Details

	Verifying Code was Tested Thoroughly
	Verifying Bugs Are Decreasing and Under Control
	Identifying Weak Requirements and Determining Whether Projects Should Remain in a Release
	Determining Cost of Violations

	Static Analysis
	Static Analysis Violations
	Static Analysis Violations
	Suppressions for Static Analysis

	Static Analysis Files
	Files without Violations

	Unit Tests
	Unit Testing Test Cases
	Unit Tests - Detailed Report - All Files
	Unit Tests - File Detailed Report
	Unit Tests - Detailed Report - Files Failed
	Unit Tests - File Detailed Report [Failed]

	Unit Testing Coverage
	Unit Tests - Detailed Report - All Files

	Source Code Check-ins
	Source Control Summary

	Builds
	Build Results
	Builds by Platform

	Code Review
	Code Review Activity
	Adjusting Report Filters/Parameters

	Code Review Status
	Code Review Details
	Related Topics

	Tools Usage
	Product Unique Users Report
	License Requests Details

	Maximum Hourly Usage by Product
	Maximum Hourly Usage by Product Details
	Cumulative Number of Unique Users

	Maximum Hourly Usage History
	Unique Users by Architecture

	Tests Overview
	Tests By Date
	Errors by Category
	Errors by Category Detailed Report
	Errors by File Detailed Report
	Errors by Developer Detailed Report

	Errors by Severity
	Errors by Severity Detailed Report

	Recent Test Logs
	Log Details
	Test Group Details

	Change-Based Testing
	How are Tests Recommended?
	How is Source Code Tracked?
	Change-Based Testing: Test Scenarios
	Change-Based Testing: Requirements/Defects

	Code Metrics Reports
	Metric Top Results
	Single Metrics Overview (9.x)
	Metrics Overview Report
	Single Metric Overview Report

	Working with the Security Menu
	Security Violations
	Security Tests
	Security Tests by Type

	Policy Report
	Project Portfolio Report
	Projects Overview Table
	Efficiency Chart
	Project Details

	Code Base Size
	Source Code Statistics
	Source Control Summary
	File Details
	Project Source Code

	Build Results
	Tests (Files)
	Tests (Files) Drill-down Reports
	Tests (Files) By Type
	Tests By Type Details
	Test Group Details
	Test Details
	Setting a Baseline

	Defects and Enhancements Reports
	Understanding the Defects and Enhancements Reports
	Drilling Down into Details

	Manual Test Sessions
	Coverage Report
	Coverage Details Report

	Policy Center (Legacy)
	Policy Center Overview
	Connecting to Policy Center (Standard Edition)
	Configuring Policy Checking and Reporting
	Setting Up Email Report Recipients
	Setting Up Project Policy Checking and Reporting
	Running a Policy Check on the Fly

	Reviewing Policy Check Results
	Reviewing the Email Report
	Responding to Results
	Step 1: Review the Report of Overall Project Health
	Step 2: For "Unhealthy" Projects, Review the Project’s Overall Deadline, Budget, and Functionality Risk
	Step 3: For Each Reported Risk, Explore Iteration Level Details
	Step 4: For Projects with Quality Risks, Review the Project-Level Health Details
	Step 5: Determine the Appropriate Response

	Exploring Policy Check Reports
	Overall Status
	Deadline Analysis
	Functionality Completion Analysis
	Budget Analysis

	Policy Settings
	Configuring Policy Center Settings
	Project Settings
	Budget Analysis
	Schedule Analysis
	Functionality Analysis
	Application Security
	Functionality Verification
	Defect Trend/Remediation
	Code Analysis
	Build Results
	Regression Testing
	Test Coverage
	Defect Trending
	Source Code Trending
	Peer Review
	Unit Tests Executed
	Redeploying a BPEL Process Over the File System

	Administration
	Project Creation and Configuration
	Project Definitions
	Defect/Enhancement Filter
	Log Filters
	Log Properties Filter
	Test Group Properties Filter
	Source Control Filter
	Code Review Filter

	Parasoft Test Settings

	Report Center Administration Pages
	Pruning the GRS Database
	Uploading Reports to Data Collector
	Checking Status of Reports Directly Uploaded to DTP

	Recalculating Project Data in GRS Database
	Recalculating Artifacts in GRS Database
	Recalculating Run Jobs
	Automatically Run Scans and Calculations
	Clearing Report Center Data Cache
	Invalidating File Restrictions
	Deleting Logs
	Automatically Overwriting Logs
	About Eradicator Parameters
	About Eradicator Keys
	About the Duplicate Logs Eradicator

	Scanning Code Review Results
	Configuring Emails Notifications
	Enabling/Disabling Report Center Data Cache
	Data Cache Details

	Setting Data Collector Time Restrictions
	Automatically Pruning the Database
	Using Deprecated Team Server-based Code Review
	Configuring Manager Policy Center Email Settings
	Integrating with Development Components
	Connecting Parasoft Test
	About File Encoding

	Viewing Report Center Administration Reports
	Data Collector Activity Report
	Database Stats Report

	Project Center Administration Pages
	Accessing Project Center Administration Page
	BTS and RMS Scanner Configuration
	Entering SOAtest Server Settings

	Optional Report Center Configurations
	Configuring Report Center to Work with Source Code Branches/Tags
	Configuring SourceScanner to Scan Specific Branches/Tags
	Configuring Report Center Projects: Assigning Specific Branch/Tag to a Project
	Viewing Source Statistics on Report Center Reports

	Configuring Cache Report Executor
	Configuring Scheduled Cache Times
	Configuring List of Reports to Cache
	Adding a New Report to Cache
	Working with the Reports Caching Mechanism in Report Center
	Customizing Reports Caching

	Report Center Tools
	Extracting and Customizing the Scripts
	UNIX Script Customizations
	Windows Script Customizations

	Running the Tools
	Running chk.sh | chk.cmd (v2.1)
	Running send.sh | send.cmd (v1.2)
	Running size.sh | size.cmd (v2.1.1)

	Creating and Locking Down Sandboxes
	Administering Team Server
	Lock Down Team Server and Create Admin Account
	Creating New Sandboxes
	Loading the Default Configurations into a Team’s Sandbox

	Forwarding DTP Engines 10.x Reports From Data Collector to Team Server
	Changing Multicast DNS Usage
	Customizing Exports to Microsoft Word
	Disabling and Enabling Applications from the Toolbar
	Integrations
	Connecting Report Center and Project Center to Parasoft Test
	Importing BTS Data from CSV
	Preparing CSV Files
	Formatting your CSV Files
	Providing a Configuration File for BTS Scanner

	Integrating with Bug Tracking Systems and Requirement Management Systems
	Configuring BTS or RMS Scanner with the Built-in UI
	Adding BTS Configurations
	Configuring BTS Scanners
	Adding RMS Configurations
	Configuring RMS Scanners

	Manually Configuring BTS or RMS Scanner

	BTS and RMS Scanner and Updater
	Preparing an Example Configuration File
	Adding a Prepared Configuration File
	Custom BTS Scanner/Updater
	Installing Your Custom Implementation
	Configuring a BTS Scanner to Use Your Custom Implementation

	Custom RMS Scanner
	Installing Your Custom Implementation
	Configuring RMS Scanner to User Your Custom Implementation

	Running BTS Scanner
	Running BTS Scanner Automatically
	Running BTS Scanner On Demand
	Verifying that BTS Scanner is Working

	Configuring BTS Updater
	Using Original IDs in Reports
	Using Direct HP QC Database Access
	Using Open Test Architecture

	Integrating with HP Quality Center
	Using Direct HP QC Database Access
	Using Open Test Architecture

	Integrating with Bugzilla
	Integrating with IBM Rational ClearQuest
	Integrating with Atlassian JIRA
	Integrating 5.x and 6.x
	Integrating with JIRA 4.4 and Older
	Configuring JIRA Server Side
	Configuring JIRA in Development Testing Platform

	Configuring BTS Scanner for JIRA over HTTPS/SSL
	Adjusting BTS Scanner Configuration
	Running DTP Service with the Keystore Parameter

	Configuring BTS Scanner for JIRA with Basic HTTP Authentication

	Integrating with IBM Rational Change and Synergy
	Rational Change Integration
	Configuring Parasoft Test Task Assistant to work with Development Testing Platform and Rational Change Synergy
	Troubleshooting

	Integrating with Code Review
	Configuring Code Review Reporting for a Project
	Configuring Code Review Data Storage
	For Report Center Storage
	For Team Server Storage

	Integrating Report Center with Emma
	Viewing Emma Results

	Integrating Report Center with Source Control Management Systems
	Configuring SourceScanner
	Defining Source Control Filter for a Report Center Project
	Viewing Statistics for Source Control and Files’ Source Code in Report Center Reports
	Viewing Source Code (Show Source Functionality)

	Integrating with PTC Integrity Source Control Extension
	Packages for Integration
	Requirements
	Installation and Configuration
	Installation on Parasoft Test
	Installation on Parasoft DTP
	Configration and Setup on Parasoft Test
	Validating the Settings in Parasoft Test
	Configuring PTC Integrity under Development Testing Platform (DTP) with SourceScanner
	Creating a PTC (MKS) Integrity Project

	Sending Test Results from Third-party Tools to Development Testing Platform
	Importing Reports to Microsoft Excel
	Java API

	Managing Report Center Installation
	Managing Report Center Installation in Windows
	Uninstalling Development Testing Platform or MySQL
	Clearing the Report Center/Project Center Database

	Managing Report Center in Linux
	DTP with Embedded Database Server Console
	Development Testing Platform Server Menu
	Data Collector Menu
	System Administration Menu
	Changing MySQL Root Password

	Verifying Development Testing Platform Product Availability
	Migrating Data
	Migrating Data from License Server 1.0 or 2.0
	Migrating Data from License Server 2.x to a New Version
	Migrating Team Server Configuration
	Migrating Team Server Data

	Upgrading MySQL Server
	Configuration Manager Internal Details (Linux/Solaris)
	Running Web Server
	Running Data Collector

	Creating an Initial Database and Upgrading the Database for Linux (Command-line Menu-driven Method)
	Registering Automated Startup Manually (Linux)

	Troubleshooting
	Cache Report Executor
	Team Server
	Show Source Functionality
	Show Source Functionality for ClearCase

	Switching to Debug Logging Mode
	Index

