
Development Testing Platform Engines
for Java User’s Guide

Version 10.3

Parasoft Corporation
101 E. Huntington Drive, 2nd Floor
Monrovia, CA 91016
Phone: (888) 305-0041
Fax: (626) 305-9048
E-mail: info@parasoft.com
URL: www.parasoft.com

PARASOFT END USER LICENSE
AGREEMENT
PLEASE READ THIS END USER LICENSE AGREEMENT ("AGREEMENT") CAREFULLY BEFORE
USING THE SOFTWARE. PARASOFT CORPORATION ("PARASOFT") IS WILLING TO LICENSE
THE SOFTWARE TO YOU, AS AN INDIVIDUAL OR COMPANY THAT WILL BE USING THE SOFT-
WARE ("YOU" OR "YOUR") ONLY ON THE CONDITION THAT YOU ACCEPT ALL OF THE TERMS
OF THIS AGREEMENT. THIS IS A LEGALLY ENFORCEABLE CONTRACT BETWEEN YOU AND
PARASOFT. BY CLICKING THE "ACCEPT" OR "YES" BUTTON, OR OTHERWISE INDICATING
ASSENT ELECTRONICALLY, OR BY INSTALLING THE SOFTWARE, YOU AGREE TO THE TERMS
AND CONDITIONS OF THIS AGREEMENT AND ALSO AGREE THAT IS IT ENFORCEABLE LIKE
ANY WRITTEN AND NEGOTIATED AGREEMENT SIGNED BY YOU. IF YOU DO NOT AGREE TO
THESE TERMS AND CONDITIONS, CLICK THE "I DO NOT ACCEPT" OR "NO" BUTTON AND
MAKE NO FURTHER USE OF THE SOFTWARE.

1. DEFINITIONS

1.1.“Concurrent User" means a person that has accessed the Software at any given point in
time, either directly or through an application.

1.2."Instance" means a single occurrence of initialization or execution of software on one
machine.

1.3."Licensed Capacity" means the capacity-based license pricing metrics identified in the Order
Instrument, including, without limitation, Concurrent Users, Node Locked machines, and
Instances.

1.4."Maintenance" means the maintenance and technical support services for the Software iden-
tified in the Order Instrument and provided by Parasoft pursuant to this Agreement.

1.5."Node Locked" means a license for a single machine that has been authorized to run a single
Instance of the licensed Software. A Node Locked license requires that users are physically
present and not accessing the machine and using the Software from a remote location.

1.6."Software" means Parasoft's software products, in object code form, that are commercially
available at the time of Your order and identified on the Order Instrument, and any modifica-
tions, corrections and updates provided by Parasoft in connection with Maintenance.

1.7."Territory" means the country or countries in which You have a license to use the Software, as
specified in Your order for the Software; or, if no Territory is specified, the country from which
Your order has been issued.

1.8."User Documentation" means the user's guide, installation guides, and/or on-line documen-
tation applicable to the Software. User Documentation does not include marketing materials
or responses to requests for proposals.

2. GRANT OF LICENSE AND USE OF SOFTWARE

2.1.License Grant. Subject to the terms and conditions of this Agreement, Parasoft grants to You
a perpetual, non-exclusive license to use the Software within the Territory, in accordance with
the User Documentation and in compliance with the authorized Licensed Capacity. You
acknowledge and agree that this Agreement only grants a license to the Software as set forth
herein and does not constitute a sale of the Software by Parasoft. You have no right to resell
the Software, whether by contract or by operation of applicable copyright law.

2.2.Usage Rights. You may only use the Software and/or the User Documentation for Your inter-
nal business operations and to process Your data. You shall not (a) permit any third parties or
non-licensed entities to use the Software or the User Documentation; (b) process or permit to

be processed any data that is not Your data; (c) use the Software in the operation of a service
bureau; (d) sublicense, rent, or lease the Software or the User Documentation to a third party;
or (e) perform, publish, or release to any third parties any benchmarks or other comparisons
regarding the Software or User Documentation. You shall not make simultaneous use of the
Software on multiple, partitioned, or virtual computers without first procuring an appropriate
number of licenses from Parasoft. You shall not permit a third party outsourcer to use the Soft-
ware to process data on Your behalf without Parasoft's prior written consent.

2.3.License Keys. You acknowledge that the Software contains one or more license keys that will
enable the functionality of the Software and third party software embedded in or distributed
with the Software. You may only access and use the Software with license keys issued by
Parasoft, and shall not attempt to modify, tamper with, reverse engineer, reverse compile, or
disassemble any license key. If Parasoft issues a new license key for the Software, You shall
not use the previous license key to enable the Software.

2.4.Archival Copies. You may make one copy of the Software for back-up and archival purposes
only. You may make a reasonable number of copies of the User Documentation for Your inter-
nal use. All copies of Software and User Documentation must include all copyright and similar
proprietary notices appearing on or in the originals. Copies of the Software may be stored off-
site provided that all persons having access to the Software are subject to Your obligations
under this Agreement and You take reasonable precautions to ensure compliance with these
obligations. Parasoft reserves the right to revoke permission to reproduce copyrighted and
proprietary material if Parasoft reasonably believes that You have failed to comply with its obli-
gations hereunder.

2.5.Licensed Capacity. Parasoft licenses Software based on Licensed Capacity for different
types of usage, including, without limitation, Concurrent Users and Node Locked machines. A
Concurrent User license allows multiple Concurrent Users to share access to and use the Soft-
ware, provided that the number of Concurrent Users accessing the Software at any time does
not exceed the total number of licensed Concurrent Users. A Node Locked license allows a
single specified machine to run a single Instance of the Software. If an application accessing
the Software is a multiplexing, database, or web portal application that permits users of such
application to access the Software or data processed by the Software, a separate Concurrent
User license will be required for each Concurrent User of such application. Regardless of
usage type, You shall immediately notify Parasoft in writing of any increase in use beyond the
Licensed Capacity. You must obtain a license for any increase in Licensed Capacity, and You
agree to pay to Parasoft additional Software license fees, which will be based on Parasoft's
then-current list price.

2.6.Third Party Terms. You acknowledge that software provided by third party vendors ("Third
Party Software") may be embedded in or delivered with the Software. The terms of this Agree-
ment and any other terms that Parasoft may specify will apply to such Third Party Software,
and the Third Party Software vendors will be deemed third party beneficiaries under this
Agreement. You may only use the Third Party Software with the Software. You may not use
the Third Party Software on a stand-alone basis or use or integrate it with any other software or
device.

2.7.Evaluation License. This Section 2.7 applies if Parasoft has provided the Software to You for
evaluation purposes. Parasoft grants to You a thirty (30) day, limited license solely for the pur-
pose of internal evaluation. You are strictly prohibited from using the Software for any produc-
tion purpose or any purpose other than the sole purpose of determining whether to purchase a
commercial license for the Software that You are evaluating. Parasoft is not obligated to pro-
vide maintenance or support for the evaluation Software. YOU ACKNOWLEDGE THAT
SOFTWARE PROVIDED FOR EVALUATION MAY (A) HAVE LIMITED FEATURES; (B)
FUNCTION FOR A LIMITED PERIOD OF TIME; OR (C) HAVE OTHER LIMITATIONS NOT
CONTAINED IN A COMMERCIAL VERSION OF THE SOFTWARE. NOTWITHSTANDING
ANYTHING TO THE CONTRARY IN THIS AGREEMENT, PARASOFT IS PROVIDING THE

EVALUATION SOFTWARE TO YOU "AS IS", AND PARASOFT DISCLAIMS ANY AND ALL
WARRANTIES (INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE, AND STATUTORY WARRANTIES OF
NON-INFRINGEMENT), LIABILITIES, AND INDEMNIFICATION OBLIGATIONS OF ANY
KIND. In the event of any conflict between this Section 2.7 and any other provision of this
Agreement, this Section 2.7 will prevail and supersede such other provision with respect to
Software licensed to You for evaluation purposes.

2.8.Education License. If You are an educational or academic institution and are receiving a dis-
count from Parasoft, You may use the Software solely for education or academic purposes and
You may not use the Software for any commercial purpose. Parasoft may require that You pro-
vide proof of your status as an educational or academic institution.

2.9.Audit. You shall maintain accurate business records relating to its use and deployment of the
Software. Parasoft shall have the right, not more than once every twelve (12) months and
upon ten (10) business days prior written notice, to verify Your compliance with its obligations
under this Agreement by auditing Your business records and Your use and deployment of the
Software within Your information technology systems. Parasoft and/or a public accounting firm
selected by Parasoft shall perform the audit during Your regular business hours and comply
with Your reasonable safety and security policies and procedures. Any agreement You may
require the public accounting firm to execute shall not prevent disclosure of the audit results to
Parasoft. You shall reasonably cooperate and assist with such audit. You shall, upon demand,
pay to Parasoft all license and Maintenance fees for any unauthorized deployments and/or
excess usage of Software products disclosed by the audit. License fees for such unautho-
rized deployments and/or excess usage shall be invoiced to and paid by You at Parasoft's
then-current list price, and applicable Maintenance fees shall be applied retroactively to the
entire period of the unauthorized and/or excess usage. Parasoft shall be responsible for its
own costs and expenses in conducting the audit, unless the audit indicates that You have
exceeded its Licensed Capacity or otherwise exceeds its license restrictions, such that the
then-current list price of non-compliant Software deployment exceeds five percent (5%) of the
total then-current list price of the Software actually licensed by You, in which event You shall,
upon demand, reimburse Parasoft for all reasonable costs and expenses of the audit.

3. TITLE. Parasoft retains all right, title and interest in and to the Software and User Documenta-
tion and all copies, improvements, enhancements, modifications and derivative works of the
Software and User Documentation, including, without limitation, all patent, copyright, trade
secret, trademarks and other intellectual property rights. You agrees that it shall not, and shall
not authorize others to, copy (except as expressly permitted herein), make modifications to,
translate, disassemble, decompile, reverse engineer, otherwise decode or alter, or create
derivative works based on the Software or User Documentation. Except as otherwise pro-
vided, Parasoft grants no express or implied rights under this license to any of Parasoft's pat-
ents, copyrights, trade secrets, trademarks, or other intellectual property rights.

4. TERMINATION

4.1.Default; Bankruptcy. Parasoft may terminate this Agreement if (a) You fail to pay any amount
when due under any order You have placed with Parasoft and do not cure such non-payment
within ten (10) days of receipt of written notice of non-payment; (b) You materially breach this
Agreement and do not cure such breach within thirty (30) days of receipt of written notice of
such breach; (c) subject to provisions of applicable bankruptcy and insolvency laws, You
become the subject of any involuntary proceeding relating to insolvency and such petition or
proceeding is not dismissed within sixty (60) days of filing; or (d) You become the subject of
any voluntary or involuntary petition pursuant to applicable bankruptcy or insolvency laws, or
request for receivership, liquidation, or composition for the benefit of creditors and such peti-
tion, request or proceeding is not dismissed within sixty (60) days of filing.

4.2.Effect of Termination. Upon termination of this Agreement, You shall immediately discon-
tinue use of, and uninstall and destroy all copies of, all Software. Within ten (10) days follow-

ing termination, You shall certify to Parasoft in a writing signed by an officer of Yours that all
Software has been uninstalled from Your computer systems and destroyed.

5. LIMITED WARRANTY

5.1.Performance Warranty. Parasoft warrants that the Software, as delivered by Parasoft and
when used in accordance with the User Documentation and the terms of this Agreement, will
substantially perform in accordance with the User Documentation for a period of ninety (90)
days from the date of initial delivery of the Software. If the Software does not operate as war-
ranted and You have provided written notice of the non-conformity to Parasoft within the ninety
(90) day warranty period, Parasoft shall at its option (a) repair the Software; (b) replace the
Software with software of substantially the same functionality; or (c) terminate the license for
the nonconforming Software and refund the applicable license fees received by Parasoft for
the nonconforming Software. The foregoing warranty specifically excludes defects in or
non-conformance of the Software resulting from (a) use of the Software in a manner not in
accordance with the User Documentation; (b) modifications or enhancements to the Software
made by or on behalf of You; (c) combining the Software with products, software, or devices
not provided by Parasoft; or (d) computer hardware malfunctions, unauthorized repair, acci-
dent, or abuse.

5.2.Disclaimers. THE WARRANTIES SET FORTH IN THIS SECTION 5 ARE EXCLUSIVE AND
IN LIEU OF ALL OTHER WARRANTIES, WHETHER EXPRESS OR IMPLIED, AND PARA-
SOFT EXPRESSLY DISCLAIMS ALL OTHER WARRANTIES, INCLUDING ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
STATUTORY WARRANTIES OF NON-INFRINGEMENT. PARASOFT DOES NOT WARRANT
THAT THE SOFTWARE WILL MEET YOUR REQUIREMENTS OR THAT USE OF THE
SOFTWARE WILL BE UNINTERRUPTED OR ERROR FREE. THE REMEDIES SET FORTH
IN THIS SECTION 5 ARE YOUR SOLE AND EXCLUSIVE REMEDIES AND PARASOFT'S
SOLE AND EXCLUSIVE LIABILITY REGARDING FAILURE OF ANY SOFTWARE TO FUNC-
TION OR PERFORM AS WARRANTED IN THIS SECTION 5.

6. INDEMNIFICATION

6.1. Infringement. Parasoft shall defend any claim against You that the Software infringes any
intellectual property right of a third party, provided that the third party is located in a country
that is a signatory to the Berne Convention, and shall indemnify You against any and all dam-
ages finally awarded against You by a court of final appeal, or agreed to in settlement by Para-
soft and attributable to such claim, so long as You (a) provide Parasoft prompt written notice of
the claim; (b) provide Parasoft all reasonable assistance and information to enable Parasoft to
perform its duties under this Section 6; (c) allow Parasoft sole control of the defense and all
related settlement negotiations; and (d) have not compromised or settled such claim. If the
Software is found to infringe, or if Parasoft determines in its sole opinion that it is likely to be
found to infringe, then Parasoft may, at its option (a) obtain for You the right to continue to use
the Software; (b) modify the Software to be non-infringing or replace it with a non-infringing
functional equivalent, in which case You shall stop using any infringing version of the Software;
or (c) terminate Your rights and Parasoft's obligations under this Agreement with respect to
such Software and refund to You the unamortized portion of the Software license fee paid for
the Software based on a five year straight-line depreciation schedule commencing on the date
of delivery of the Software. The foregoing indemnity will not apply to any infringement resulting
from (a) use of the Software in a manner not in accordance with the User Documentation; (b)
modifications or enhancements to the Software made by or on behalf of You; (c) combination,
use, or operation of the Software with products not provided by Parasoft; or (d) use of an alleg-
edly infringing version of the Software if the alleged infringement could be avoided by the use
of a different version of the Software made available to You.

6.2.Disclaimers. THIS SECTION 6 STATES YOUR SOLE AND EXCLUSIVE REMEDY AND
PARASOFT'S SOLE AND EXCLUSIVE LIABILITY REGARDING INFRINGEMENT OR MIS-
APPROPRIATION OF ANY INTELLECTUAL PROPERTY RIGHTS OF A THIRD PARTY.

7. LIMITATION OF LIABILITY. IN NO EVENT SHALL PARASOFT OR ITS THIRD PARTY VEN-
DORS BE LIABLE TO YOU OR ANY OTHER PARTY FOR (A) ANY SPECIAL, INCIDENTAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OR (B) LOSS OF DATA, LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR SIMILAR DAMAGES OR LOSS, EVEN IF PARASOFT AND
ITS THIRD PARTY VENDORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. EXCEPT AS LIMITED BY APPLICABLE LAW AND EXCLUDING PARASOFT'S
LIABILITY TO YOU UNDER SECTION 6 (INDEMNIFICATION), AND REGARDLESS OF THE
BASIS FOR YOUR CLAIM, PARASOFT'S MAXIMUM LIABILITY UNDER THIS AGREEMENT
WILL BE LIMITED TO THE LICENSE OR MAINTENANCE FEES PAID FOR THE SOFT-
WARE OR MAINTENANCE GIVING RISE TO THE CLAIM. THE FOREGOING LIMITATIONS
WILL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY
LIMITED REMEDY

8. CONFIDENTIAL INFORMATION. For purposes of this Agreement, "Confidential Information"
will include trade secrets contained within the Software and User Documentation, the terms
and pricing of the Software and Maintenance (including any pricing proposals), and such other
information (a) identified by either party as confidential at the time of disclosure or (b) that a
reasonable person would consider confidential due to its nature and circumstances of disclo-
sure ("Confidential Information"). Confidential Information will not include information that (a)
is or becomes a part of the public domain through no act or omission of the receiving party; (b)
was in the receiving party's lawful possession prior to receiving it from the disclosing party; (c)
is lawfully disclosed to the receiving party by a third party without restriction on disclosure; or
(d) is independently developed by the receiving party without breaching this Agreement. Each
party agrees to maintain all Confidential Information in confidence and not disclose any Confi-
dential Information to a third party or use the Confidential Information except as permitted
under this Agreement. Each party shall take all reasonable precautions necessary to ensure
that the Confidential Information is not disclosed by such party or its employees, agents or
authorized users to any third party. Each party agrees to immediately notify the other party of
any unauthorized access to or disclosure of the Confidential Information. The receiving party
agrees that any breach of this Section 8 may cause irreparable harm to the disclosing party,
and such disclosing party shall be entitled to seek equitable relief in addition to all other reme-
dies provided by this Agreement or available at law.

9. MAINTENANCE

9.1.Maintenance Period. You are required to purchase first year Maintenance with the Software,
and the Maintenance period will commence upon the initial delivery of the Software and con-
tinue for a period of one year. The Maintenance period, at Your option, may be renewed pur-
suant to subsequent orders. Prior to such renewal, Parasoft may, upon ten (10) business days
written notice, require You to provide a report on Your use and deployment of the Software.
Such report will be certified by an officer of Yours and will specify, with respect to Your Soft-
ware: (a) the type and amount of Licensed Capacity; (b) the version; and (c) the Parasoft
license serial number. Parasoft shall issue an annual renewal notice to You at least ninety (90)
days prior to the expiration of the then-current Maintenance period. Maintenance fees will be
based on the then-current list price and are subject to change without notice.

9.2.Support Coordinators. Maintenance will consist of support services provided by Parasoft to
one designated support coordinator of Yours (and one backup coordinator) per Your location,
by telephone, email, and website. Support is available during normal business hours in the
applicable location within the Territory, Monday through Friday, excluding nationally observed
holidays.

9.3.Additional Licensed Capacity. In the event that You purchases additional Licensed Capacity
for the Software prior to the annual anniversary date of the Maintenance period, You agree to

pay applicable Maintenance fees based on Parasoft's then-current Maintenance rates. Main-
tenance fees will apply from the effective date of such additional Licensed Capacity and con-
tinue for a period of one year thereafter, unless otherwise agreed to in writing by the parties, so
that Maintenance for Your previously acquired Software and added Licensed Capacity is cote-
rminous.

9.4.New Releases. During any period in which You are current on Maintenance, Parasoft shall
provide You with any new release of the Software, which may include generally available error
corrections, modifications, maintenance patch releases, enhancements (unless priced sepa-
rately by Parasoft and generally not included with new licenses for the Software at that time),
and the revised User Documentation, if applicable. Notwithstanding the foregoing, stand-alone
error corrections that are not part of a new release will not be independently supported but will
be incorporated into the next release of the Software. If You install a new release of the Soft-
ware, You may continue to use the previous version of the Software for up to ninety (90) days
in order to assist You in the transition to the new release. Once You complete its transition to
the new release of the Software, You must discontinue use of the previous version of the Soft-
ware.

9.5.Supported Releases. Parasoft shall continue to support the immediately preceding release of
the Software for a period of twelve (12) months following the discontinuance of such Software
or the date on which the new release becomes generally available, provided that You have
paid applicable Maintenance fees and incorporated all Maintenance patch releases issued by
Parasoft for the release of the Software.

9.6.Reinstatement of Maintenance. If You allow Maintenance to expire, You may, at a later date,
renew Maintenance by paying the following: (a) if You have installed the current release of the
Software but have failed to pay the applicable renewal fee on or before the ninetieth (90th) day
following expiration of the Maintenance period, annual Maintenance fees at Parasoft's
then-current rates, plus Parasoft's then-current reinstatement fee; or (b) if You have not
installed the current release of the Software or have failed to pay the applicable renewal fee by
the ninetieth (90th) day following expiration of the Maintenance period, annual Maintenance
fees at Parasoft's then-current rates, plus Parasoft's then-current license update fee for the
current release of the Software.

10. GENERAL

10.1.Independent Contractors. The parties acknowledge and agree that each is an independent
contractor. This Agreement will not be construed to create a partnership, joint venture or
agency relationship between the parties.

10.2.Entire Agreement. The terms and conditions of this Agreement apply to all Software
licensed, all User Documentation provided, and all Maintenance purchased hereunder. This
Agreement will supersede any different, inconsistent or preprinted terms and conditions in any
order form of Yours, purchase order or other ordering document.

10.3.Assignment. You have no right to assign, sublicense, pledge, or otherwise transfer any of
Your rights in and to the Software, User Documentation or this Agreement, in whole or in part
(collectively, an "Assignment"), without Parasoft's prior written consent, and any Assignment
without such consent shall be null and void. Any change in control of Your organization or
entity, whether by merger, share purchase, asset sale, or otherwise, will be deemed an Assign-
ment subject to the terms of this Section 13.3.

10.4.Force Majeure. No failure, delay or default in performance of any obligation of a party to this
Agreement, except payment of license fees due hereunder, will constitute an event of default
or breach of the Agreement to the extent that such failure to perform, delay or default arises
out of a cause, existing or future, that is beyond the reasonable control of such party, including,
without limitation, action or inaction of a governmental agency, civil or military authority, fire,
strike, lockout or other labor dispute, inability to obtain labor or materials on time, flood, war,

riot, theft, earthquake or other natural disaster ("Force Majeure Event"). The party affected by
such Force Majeure Event shall take all reasonable actions to minimize the consequences of
any Force Majeure Event.

10.5.Severability. If any provision of this Agreement is held to be illegal or otherwise unenforce-
able by a court of competent jurisdiction, that provision will be severed and the remainder of
the Agreement will remain in full force and effect.

10.6.Waiver. The waiver of any right or election of any remedy in one instance will not affect any
rights or remedies in another instance. A waiver will be effective only if made in writing and
signed by an authorized representative of the applicable party.

10.7.Notices. All notices required by this Agreement will be in writing, addressed to the party to be
notified and deemed to have been effectively given and received (a) on the fifth business day
following deposit in the mail, if sent by first class mail, postage prepaid; (b) upon receipt, if sent
by registered or certified U.S. mail, postage prepaid, with return receipt requested; (c) upon
transmission, if sent by facsimile and confirmation of transmission is produced by the sending
machine and a copy of such facsimile is promptly sent by another means specified in this Sec-
tion 10.7; or (d) upon delivery, if delivered personally or sent by express courier service and
receipt is confirmed by the recipient. Notices will be addressed to the parties based on the
address stated in the applicable order, to the attention of the Legal Department. A change of
address for notice purposes may be made pursuant to the procedures set forth above.

10.8.Export Restrictions. You acknowledge that the Software and certain Confidential Informa-
tion (collectively "Technical Data") are subject to United States export controls under the U. S.
Export Administration Act, including the Export Administration Regulations, 15 C.F.R. Parts
730 et seq. (collectively, "Export Control Laws"). Each party agrees to comply with all require-
ments of the Export Control Laws with respect to the Technical Data. Without limiting the fore-
going, You shall not (a) export, re-export, divert or transfer any such Technical Data, or any
direct product thereof, to any destination, company, or person restricted or prohibited by Export
Control Laws; (b) disclose any such Technical Data to any national of any country when such
disclosure is restricted or prohibited by the Export Control Laws; or (c) export or re-export the
Technical Data, directly or indirectly, for nuclear, missile, or chemical/biological weaponry end
uses prohibited by the Export Control Laws.

10.9.U. S. Government Rights. The Software and User Documentation are deemed to be "com-
mercial computer software" and "commercial computer software documentation" as defined in
FAR Section 12.212 and DFARS Section 227.7202, as applicable. Any use, modification,
reproduction, release, performance, display, or disclosure of the Software and User Documen-
tation by the United States government will be solely in accordance with the terms of this
Agreement

10.10.Choice of Law; Jurisdiction. This Agreement is governed by and construed in accordance
with the laws of the State of California, U. S. A., exclusive of any provisions of the United
Nations Convention on Contracts for the International Sale of Goods, including any amend-
ments thereto, and without regard to principles of conflicts of law. Any suits concerning this
Agreement will be brought in the federal courts for the Central District of California or the state
courts in Los Angeles County, California. The parties expressly agree that the Uniform Com-
puter Information Transactions Act, as adopted or amended from time to time, shall not apply
to this Agreement or the Software and Maintenance provided hereunder.

10.11.Amendment. This Agreement may only be modified by a written document signed by an
authorized representative of Parasoft and by You.

10.12.Survival. Any terms of this Agreement which by their nature extend beyond the termination
or expiration of this Agreement will remain in effect. Such terms will include, without limitation,
all provisions herein relating to limitation of liability, title and ownership of Software, and all
general provisions.

Parasoft Corporation

101 East Huntington Drive, 2nd Floor

Monrovia, CA 91016 USA

 +1 (626) 256-3680

 +1 (888) 305-0041 (USA only)

 +1 (626) 256-9048 (Fax)

 info@parasoft.com

 http://www.parasoft.com

Printed in the U.S.A, January 17, 2017

Table of Contents

Introduction
Static Analysis Engine (SAE) ..4

Unit Test Connector (UTC) ...4

Code Coverage Engine (CCE) ...4

Getting Started
System Requirements ..5

Installing DTP Engines ...5

Setting the License ...6

Connecting to DTP Server ..7

Connecting to Source Control ...8

Static Analysis Engine
Basic Analysis ...10

Specifying Test Data Location ..10

Displaying Detailed Progress Information ...11

About Error Codes ..11

Specifying Test Configurations..13

Viewing Available Test Configurations ...14

Built-in Test Configurations ...14

Creating Custom Rules ...16

Defining Test Scope ..17

Resource Pattern Syntax ..17

Fine-tuning the Scope ...19

Creating Project Files ...20

Configuring Authorship ..22

About Authorship Configuration Priority ..22

Configuring How Authorship is Computed ..22

Creating Authorship XML Map Files ...23

Suppressing Violations ..24

Line Suppression ..24

Code Duplicate Analysis..26

Flow Analysis...27

Configuring Depth of Flow Analysis ..27

Setting Timeout Strategy ..28

Metrics Analysis...29

Setting Metrics Thresholds ...29

Using DTP Engines in an IDE ...30

Reporting
Specifying Report Output Location ...31

Specifying Report Format ...31

Viewing Reports ..31

Sending Results to Development Testing Platform (DTP) Server37

Publishing Source Code to DTP Server ...38

Unit Test Connector
Running JUnit Tests ...39

Associating Tests with Development Artifacts ..40

Collecting Coverage ...42

Code Coverage Engine
Coverage for Unit Tests...44

Merging Coverage Data ..44

Application Coverage ...45

Prerequisites ...45

Process Overview ...45

Configuring the Application Under Test for Coverage ..45

Test Configuration and Execution ...48

Uploading Test Results to DTP ..49

Generating a Dynamic Coverage Data File and Uploading it to DTP49

Reviewing Coverage in DTP ...49

Web Application Coverage Tutorial ..49

Customizing DTP Engines for Java
Viewing Current Settings ..58

Using Variables ...58

Settings Reference ...59

Integrations
Build Systems Integration..83

Additional Information for Jtest 9.5 Users ...83

External Analyzers Integration...84

Checkstyle ..84

FindBugs ..85

Integrating with Source Control Systems ..87

Integrating with CI Tools..88

Integrating with Jenkins ..88

Getting Help
Technical Support ...89

Third-Party Content

4

Introduction
Parasoft Development Testing Platform (DTP) Engines for Java are integrated solutions for automating
a broad range of best practices to improve productivity and software quality. DTP Engines are a
component of the Parasoft Development Testing Platform family of software quality solutions.Please
read the following guide for additional information about how DTP Engines integrate into Parasoft’s
Development Testing ecosystem:

The Parasoft Development Testing Solution (PDF)

This documentation provides information on how to use the following engines:

Static Analysis Engine (SAE)
SAE enforces your coding policy with proven quality practices, such as static analysis and flow
analysis, to ensure that your Java applications function as expected. See “Static Analysis Engine”,
page 9.

Unit Test Connector (UTC)
UTC allows you to run unit tests from open format tools, and report results to Development Testing
Platform (DTP) Server. See “Unit Test Connector”, page 39.

Code Coverage Engine (CCE)
CCE collects coverage information during a run of the executable and generates reports that can be
sent to DTP Server. See “Code Coverage Engine”, page 43.

Parasoft_Development_Testing.pdf

Getting Started
This chapter will help you verify that your system meets the requirements for using DTP Engines, as
well as help you configure DTP Engines so you can quickly start analyzing code.

System Requirements

Windows 32-bit
• Windows 7, Windows 8

• 4GB memory minimum*

• 2GHz or faster processor (x86-compatible), multi-CPU configuration recommended

Windows 64-bit
• Windows 7 (x64), Windows 8 (x64), Windows 10, Windows 2008 Server (x64), Windows

Server 2012

• 4GB memory minimum, 8GB recommended*

• 2GHz or faster processor (x86_64-compatible), multi-CPU configuration recommended

Linux 32-bit
• Linux kernel 2.6 (or newer) with glibc 2.9 (or newer)

• 4GB memory minimum*

• 2GHz or faster processor (x86-compatible), multi-CPU configuration recommended

Linux 64-bit
• Linux kernel 2.6 (or newer) with glibc 2.12 (or newer)

• 4GB memory minimum, 8GB recommended*

• 2GHz or faster processor (x86_64-compatible), multi-CPU configuration recommended

Mac OS X 64-bit
• OS X 10.10 Yosemite, OS X 10.11 El Capitan

• 4GB memory minimum, 8GB recommended*

• 2GHz or faster processor (x86_64-compatible), multi-CPU configuration recommended

We recommend using Java Runtime Environment provided by Oracle Corporation in your environment.
Other free and open source implementations may cause issues with the proper functioning of DTP
Engines for Java.

*DTP Engines for Java may allocate up to 1GB RAM on 32-bit machines or up to 2GB RAM on 64-bit
machines for the Java Virtual Machine process. You can change memory allocation for the JVM pro-
cess in the [INSTALL_DIR]/etc/jtestcli.jvm configuration file (-Xmx option).

Installing DTP Engines
1. Unpack the installation package in any directory.
5

2. Make sure the environment contains the JAVA_HOME variable.

3. [Optional] Add the Static Analysis Engine directory path to $PATH or symlink jtestcli.exe
(jtestcli in linux) into directory in $PATH

4. [Optional] Add the $JTEST_HOME environment variable pointing to the Static Analysis Engine
directory path.

5. [Optional] Set the following properties in your Maven settings.xml file: pluginRepository,
groupId, jtest.home. To view detailed instructions on setting these properties:

a. Open [INSTALL_DIR]manuals/plugins-manual.html

b. In the JTEST MAVEN PLUGIN menu, choose Usage> Initial Setup

6. [Optional] Deploy [INSTALL_DIR]/integration/ant/jtest-ant-plugin.jar into the
$ANT_HOME/lib directory. To view detailed instructions on deploying the Ant plug-in jar:

a. Open [INSTALL_DIR]manuals/plugins-manual.html

b. In the JTEST ANT PLUGIN menu, choose Usage> Initial Setup

JVM, Framework, and Application Setup
The following table describes additional configuration files for setting up DTP Engines.

Setting the License
DTP Engines can run on either a local or a network license. There are two types of network licenses:

• dtp: This license is stored in DTP. Your DTP license limits analysis to the number of files spec-
ified in your licensing agreement. This is the default type when license.use_network is set to
true.

• ls: This is a "floating" or "machine-locked" license that limits usage to a specified number of
machines. This type of license is stored in DTP in License Server.

Network licenses are also available in three editions that determine what functionality is available:

FIle Description Directory

jtestcli.properties Contains the default settings for the Static
Analysis Engine properties.

[INSTALL_DIR]

jtestcli.jvm Contains JVM arguments that the jtest-
cli.exe (jtestcli) executable will use
when starting Java processes.

[INSTALL_DIR]/etc

framework.properties Contains properties that are passed to the
launched Felix OSGI framework. There is
typically no need to edit this file.

[INSTALL_DIR]/etc

formatting.properties Contains formatting rules for the default
Static Analysis Engine properties.

[INSTALL_DIR]/etc

logging.xml Logger configuration file; outputs a silent
console by default and warn level on the
jtest.log file.

[INSTALL_DIR]/etc

logging.console.debug.xml Logger configuration with debug level on
console output

[INSTALL_DIR]/etc
6

• desktop_edition: Functionality is optimized for desktop usage.

• server_edition: Functionality configured for high performance usage in server command line
mode.

• custom_edition: functionality can be customized.

Local License
In the .properties configuration file:

1. Set the jtest.license.use_network property to false

2. Set the jtest.license.local.password property with your password

Obtaining the Machine ID
If you are using a local license, you will need your machine ID to request a license from Parasoft. Run
the following command from a command line window to obtain your machine ID:

Network License
In the .properties configuration file:

1. Set the jtest.license.use_network property to true

2. Set the jtest.license.network.type

3. Set the jtest.license.network.edition

Connecting to DTP Server
Connecting to DTP Server is required for licensing, as well as extending other team-working capabili-
ties, such as:

• Reporting analysis to a centralized database (see “Sending Results to Development Testing
Platform (DTP) Server”, page 37)

• Sharing test configurations

• Sharing static analysis rules

Modify the following settings in the [INSTALL_DIR]\jtestcli.properties file to configure the con-
nection to DTP Server.

Creating an Encoded Password
DTP Engines can encrypt your password, which adds a layer of security to your interactions with DTP
Server. Run the following command to print an encoded password:

jtestcli -machineID

dtp.server=[SERVER]

dtp.port=[PORT]

dtp.user=[USER]

dtp.password=[PASSWORD]

-encodepass [MYPASSWORD]
7

Copy the encoded password that is returned and paste it into the jtestcli.properties file.

Connecting to Source Control
You can integrate DTP Engines with any source control system (see the Parasoft Custom Extension
Development Guide for more information), but DTP Engines ship with out-of-the-box support for the
following SCMs:

Edit the jtestcli.properties file located in the installation directory to connect to your SCM. Param-
eters will vary depending on the brand of your SCM. The following example shows the parameters
required to connect to SVN:

See “Customizing DTP Engines for Java”, page 57, for information about configuring your SCM con-
nection.

dtp.password=[ENCODED PASSWORD]

Brand Tested Version

AccuRev 4.6, 5.4, 6.2

ClearCase 2003.06, 7.0, 8.0

CVS 1.1.2

Git 1.7

Mercurial 1.8.0 - 3.6.3

Perforce 2006, 2012, 2013, 2014, 2015

Serena Dimensions 9.1, 10.1, 10.3 (2009 R2), 12.2

Star Team 2005, 2008, 2009

Subversion (SVN) 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9

Synergy/CM 6.4, 7.0, 7.1

Microsoft Team Foundation Server 2008, 2010, 2012, 2013, 2015

Visual SourceSafe 5.0, 6.0, 2005

scontrol.rep.type=svn

scontrol.rep.svn.url=https://svn_server/

scontrol.rep.svn.login=username

scontrol.rep.svn.password=password

scontrol.svn.exec=C:\\path\to\svn.exe
8

9

Static Analysis Engine
Static Analysis Engine (SAE) enforces your coding policy with proven quality practices, such as static
analysis and flow analysis, to ensure that your applications function as expected. The following sec-
tions describe how to analyze code with SAE.

• Basic Analysis

• Specifying Test Configurations

• Defining Test Scope

• Code Duplicate Analysis

• Using DTP Engines in an IDE

Basic Analysis
Basic Analysis
Run jtestcli.exe from the command line to launch the DTP Engine for Java. You must at minimum
include a test configuration and specify the data file location to analyze code. See “Specifying Test
Configurations”, page 13, and “Specifying Test Data Location”, page 10, for more information.

You can also launch the executable from dedicated plug-ins for supported build systems (Maven, Ant,
and Gradle). See “Build Systems Integration”, page 83 for more information about build system plug-
ins.

Add the $XTEST_ITX=714 environment variable to show arguments passed to jtestcli.exe exe-
cuted by plug-ins.

Specifying Test Data Location
Use the -data switch to point directly to a *.json data file object generated by the build system plug-
in. The automatically-generated *.json data file provides the same information as the workspace in a
format specific to Static Analysis Engine.

Build system plug-ins automatically add the data argument and include the value they generate, so
there is no need to add it to the plug-in configuration.

Settings Property Pattern

Data File Format
The data file (jtest.data.json) is a stream of json objects automatically generated and formatted by
Static Analysis Engine build system plug-ins. It provides the same information about tested projects as
the workspace. Each object in the file describes one project. Static Analysis Engine currently supports
classpath_project common object type. See “Creating Project Files”, page 20, for an example.

jtestcli.exe -settings settings.properties -config "builtin://Recommended Rules"

-data demo.data.json -report report

-data file

jtest.data=[path to file]
10

Basic Analysis
Example Data File Object

Displaying Detailed Progress Information
Use the -showdetails switch to display detailed progress information.

Ant and Maven Pattern

Settings Property Pattern

About Error Codes
Static Analysis Engine returns error exit codes (other than 0) when the following occurs:

• Static Analysis Engine is executed without a license.

• A test process exits with an internal exception.

{

 "type": "classpath_project",

 "name": "project_name",

 "location" "/absolute/path/to/project",

 "compilations": [

 {

 "sourcepath": [

 "/absolute/path/to/srcdir1"

],

 "classpath": [

 "/absolute/path/to/classdir1",

 "/absolute/path/to/buildfile.jar"

],

 "bootpath": [

 "absolute/path/to/java/ajavalib.jar"

],

 "encoding": "project_encoding_name",

 "sourcelevel" "project_source_level"

 },{

 ...

 }

]

}

{

 ...

}

-showdetails

<showdetails>true</showdetails>

console.verbosity.level=high
11

Basic Analysis
• Command-line is malformed or refers to a resource that does not exist. See “Defining Test
Scope”, page 17.

You can also use the -fail option to generate an exit code when the analysis reports static violations.
12

Specifying Test Configurations
Specifying Test Configurations
Test configurations define how DTP Engines test and analyze code, including which static analysis
rules are enabled, which tests to run, and other analysis parameters. DTP Engines ship with built-in
test configurations, but users can create and store their own test configurations in the DTP server. You
can access the DTP server via the DTP plug-in. If you have administrator-level access in DTP Report
Center, you can also create test configurations directly in DTP (administration> Engines> Test Con-
figurations).

User-defined test configurations can be downloaded from the DTP server and stored in the
[INSTALL_DIR]/configs/user directory as *.properties files.

Use the -config switch to specify which test configuration to run:

Ant and Maven Pattern

Settings Property Pattern

The test configuration being executed can be specified in the following ways (by default, the buil-
tin://Recommended Rules test configuration is used):

Built-in Configurations

User-defined Configurations

DTP Server-hosted Configurations

Test configurations can also be referenced by filename and URL:

By File Name

By URL

-config "user://Configuration Name"

<config>user://Configuration Name</config>

jtest.config=user://Configuration Name

-config "builtin://Recommended Rules"

-config "user://Foo Configuration"

-config "dtp://Foo Team Configuration"

-config "dtp://FooTeamConfig.properties"

-config "C:\Devel\Configs\FooConfig.properties"

-config "http://foo.bar.com/configs/FoodConfig.properties"
13

Specifying Test Configurations
Viewing Available Test Configurations
Use the -listconfigs switch to print the available test configurations. Use arguments to filter configu-
rations; the use of "*" expresssions is supported.

Built-in Test Configurations
The following table includes the test configurations shipped with DTP Engines in the [INSTALL]/
configs/builtin directory.

-listconfigs Prints all available configurations

-listconfigs builtin Prints all built-in configurations

-listconfigs builtin*Secure* Prints all built-in configurations that contain "secure" in
the name

-listconfigs

Configuration Name Description

Recommended Rules The default configuration of recommended
rules. Covers most Severity 1 and Severity 2
rules. Includes rules in the Flow Analysis Fast
configuration.

Find Duplicated Code Applies static code analysis rules that report
duplicate code. Duplicate code may indicate
poor application design and lead to maintain-
ability issues.

Internationalize Code Applies static code analysis to expose code that
is likely to impede internationalization efforts.

Juliet 1.1 2011

Metrics Computes values for several code metrics.

New Features in JDK 1.5

New Features in JDK 7

DISA-STIG for Java Includes rules that find issues identified in the
DISA-STIG standard

Critical Rules Includes most Severity 1 rules, as well as rules
in the Flow Analysis Fast configuration.

Flow Analysis Detects complex runtime errors without requir-
ing test cases or application execution. Defects
detected include using uninitialized or invalid
memory, null pointer dereferencing, array and
buffer overflows, division by zero, memory and
resource leaks, and dead code. This requires a
special Flow Analysis license option.
14

http://spinroot.com/gerard/pdf/Power_of_Ten.pdf

Specifying Test Configurations
Flow Analysis Aggressive Includes rules for deep flow analysis of code.
Significant amount of time may be required to
run this configuration.

Flow Analysis Fast Includes rules for shallow depth of flow analysis,
which limits the number of potentially accept-
able defects from being reported.

Demo Configuration Includes rules for demonstrating various tech-
niques of code analysis. May not be suitable for
large code bases.

Find Memory Problems Includes rules for finding memory management
issues in the code.

Find Unused Code Includes rules for identifying unused/dead code.

CWE-SANS Top 25 [2009/2011] Includes rules that find issues classified as Top
25 Most Dangerous Programming Errors of the
CWE-SANS standard.

SAMATE NIST 2010 Includes rules that find issues identified in the
NIST SAMATE standard

OWASP Top 10 [2007, 2010, 2013] Includes rules that find issues identified in
OWASP’s Top 10 standard

PCI Data Security Standard Includes rules that find issues identified in PCI
Data Security Standard

Thread Safe Programming Rules that uncover code which will be danger-
ous to run in multi-threaded environments— as
well as help prevent common threading prob-
lems such as deadlocks, race conditions,
missed notification, infinite loops, and data cor-
ruption.

Unit Tests Includes the unit test execution data in the gen-
erated report file

Calculate Application Coverage Processes the application coverage data to
generate a coverage.xml file. See “Application
Coverage”, page 45, for additional information.

Unit Testing Best Practis

ces

Helps you enforce unit testing best practices
and ensure that assertions are made in your
unit tests

Code Smells Rules based on the Code Smells document
(available at http://xp.c2.com/CodeSmell.html)
by Kent Beck and Martin Fowler.

Configuration Name Description
15

Specifying Test Configurations
Creating Custom Rules
Use RuleWizard to create custom rules. To use the rule in the Static Analysis Engine, it needs to be
enabled in a test configuration and the custom rule file must be located in one of the following directo-
ries:

• [INSTALL_DIR]\rules\user\

• [DOCUMENTS DIR]\Parasoft\[engine]\rules where [DOCUMENTS DIR] refers to the "My
Documents" directory in Windows

TDD The TDD (Test Driven Development) configura-
tion includes rules based on the Code Smells
document (available at http://xp.c2.com/CodeS-
mell.html), rules that check whether the JUnit
test classes are comprehensive for the tested
class, and rules from the Critical Rules (Must
Have) Test Configuration.

Configuration Name Description
16

Defining Test Scope
Defining Test Scope
You can specify the input scope for your analysis, which includes the file or set of files to test, as well
as the test data location. Use the -resource switch to specify the file or set of files for testing (also see
“Specifying Test Data Location”, page 10, for information on pointing to the data location). You can use
multiple -resource switches to specify multiple resources.

Ant and Maven Pattern

Use the <resources> element to define multiple resources:

Settings Property Pattern

Separate multiple resources with a comma:

Resource Pattern Syntax
Resource patterns are matched to generated paths according to following convention: :

The ProjectName value is generated according to following rules:

• The Ant project name is taken from name property of project tag

• The Maven project name takes form of groupId:artifactId

• The Gradle project name is taken from gradle.settings file

• Project names configured in IDEs are fully maintained

You can customize the Maven and Gradle project names with the projectNameTemplate parameter.
For details, see the build system plug-in manuals: [INSTALL]/manuals/ plugins-manual.html.

Generated paths include the EXT string if the specified scope includes external resources. For exam-
ple, an analyzed project may include source files form another location that are linked to the project. In

-resource [pattern]

<resource>pattern</resource>

<resources>

 <resource>pattern1</resource>

 <resource>pattern2</resource>

</resources>

jtest.resource=pattern

jtest.resource=pattern1,pattern2

ProjectName/resource/inside/of/project/directory.extension

ProjectName/EXT/resource/inside/of/external/source/directories.extension
17

Defining Test Scope
the following example the Simple.java file is located within the Demo project, whereas the
Money.java file has been added by linking and its locations is outside of the project:

You can use Ant-style wildcards and other parameters to refine patterns. The following table describes
supported usage:

If the -resource argument only contains one value, the value is matched against the project name and
a wildcard (*) will be used. The following table shows examples of -resource switch usage: .

Demo/src/examples/eval/Simple.java

Demo/EXT/examples/bank/Money.java

Parameter Description

? Wildcard that matches one character (any character
except path separaters)

* Wildcard that matches zero or more characters (not includ-
ing path separators)

** Wildcard that matches zero or more path segments.

/ Separator for all operating systems

"[non-alphanumeric characters]" Use quotation marks when resource paths contain spaces
or other non-alphanumeric characters.

Expression Result

-resource ProjectName/src Analyzes every file in the
selected directory and sub-
directories (without wild-
cards, the complete name of
the folder has to be speci-
fied).

-resource ProjectName/**/*.java Analyzes every Java file
from selected project.

-resource **/src/main/java/my/company/*.java Analyzes every Java file
from the specific subdirec-
tory of every project in cur-
rent build.

-resource ProjectName/src/main/java/my/company/File.java Analyzes the single speci-
fied resource.
18

Defining Test Scope
Fine-tuning the Scope
Use the -include and -exclude switches to apply additional filters to the scope.

• -include instructs Static Analysis Engine to test only the files that match the file system path;
all other files are skipped.

• -exclude instructs Static Analysis Engine to test all files except for those that match the file
system path.

If both switches are specified, then all files that match -include, but not those that match -exclude
patterns are tested.

Ant and Maven Pattern

Settings Property Pattern

Use Ant-style wildcards and other parameters to with the -include and -exclude filters. The following
table describes their usage:

-resource c:/resource.lst Analyzes the projects listed
in the resource.lst file.
Specify one project name
per line:
ProjectName1
ProjectName2
Provide the path to the file
as a value to the -resource
argument.

-include pattern

-exclude pattern

<include>pattern</include>

<exclude>pattern</exclude>

jtest.include=pattern

jtest.exclude=pattern

Parameter Description

? Wildcard that matches one character (any character except path separaters)

* Wildcard that matches zero or more characters (not including path separators)

** Wildcard that matches zero or more path segments.

/ Separator

path: Prefix for matching absolute disk path

Expression Result
19

Defining Test Scope
You can specify a file system path to a list file (*.lst) to include or exclude files in bulk. Each item in
the *.lst file is treated as a separate entry.

Examples

Creating Project Files
You can use the -project.* switch to create a project file, which contains necessary information
about executing DTP Engines. Use the -project switch when the solution is not provided. The switch
can be used multiple times to analyze many projects. ANT-style wildcards are also supported, as well
as paths to *.lst files. The following table describes the parameters for using -project switches.

Usage Description

-include com/** Tests everything in packages that begin with "com".

-include path:**/Bank.java Tests only Bank.java files

-include path:C:/Project/src/** Tests all subfiles and subdirectories of C:/Project/src

-include path:C:/Project/src/* Tests all files in C:/Project/src, but not subdirectories

-include c:/include.lst Tests all files listed in include.lst. Each line is treated
as a single pattern.

Example:

If include.lst contans the following lines:

 **/*Account

path:**/Bank.java

It has the same effect as the following command:

-include **/*Account

-include path: **/Bank.java

-exclude **/internal/** Tests everything except classes that have "internal" as
part of the package name.

Parameter Description

-project.location Enables generation of a file and indicates where the file will be
placed after generation. All other -project.* options are ignored
if the -project.location option is not set.

-project.name Sets the project name.

-project.encoding Sets the encoding of the project.

-project.sourcepath Sets the source of project. Use this option multiple times to specify
multiple source folders.

-project.sourcelevel Specifies the Java compiler compliance level.

-project.classpath Specifies the classpath.

-project.javahome Used to find and add the library to the bootclasspath
20

Defining Test Scope
Example

-project.class-
path.jars.dir

Specifies the path to the directory with jars that should be
appended to the project classpath. View the json file to verify the
order of the jars and ensure it meets your project requirements.

-project.junit.outcomes Specifies the path to the XML file with JUnit test results that will be
used to generate a report. Use this option multiple times to specify
multiple report files.

-project.compila-
tion.classes

Specifies the path to the compiled project classes that will be used
to generate metadata information required to perform the "Calcu-
late Application Coverage" configuration.

-project.location C:/ExampleProject

-project.name ExampleProject

-project.encoding UTF-8

-project.sourcepath C:/ExampleProject/src

-project.sourcelevel C:/ExampleProject/src-test

-project.classpath C:/ExampleProject/lib/test.jar;C:/ExampleProject/lib/test2.jar

-project.javahome C:/Program Files/Java/jdk1.7

Parameter Description
21

Configuring Authorship
Configuring Authorship
You can configure DTP Engines to collect authorship data during analysis to facilitate task assignment.
The data can be sent to the DTP server where additional analysis components, such as the Process
Intelligence Engine (PIE), can be leveraged to facilitate defect remediation and development optimiza-
tion.

You can configure DTP Engines to assign authorship based on information from source control, XML
files that directly map sources to authors, and/or the current local user. You can also use the @author
Javadoc tag.

About Authorship Configuration Priority
Authorship priority is determined by reading the settings in the .properties configuration file from top to
bottom. If multiple authorship sources are used, the following order of precedence is used:

1. information from source control

2. @author tags

3. XML map file

4. current user

if one of the selected options does not determine an author (for instance, the @author tag was selected
but the file does not have an @author tag), Authorship will be determined based on the next option
selected. If an author cannot be determined, the user is set as "unknown". Likewise, if none of these
options is selected, the user is set as "unknown."

Configuring How Authorship is Computed
Edit the jtestcli.properties configuration file to specify how authorship is determined.

• Setting scope.scontrol to true calculates authorship based on check-in data in source con-
trol. This is set to false by default.

• Setting scope.local to true calculates authorship based on the local user and system files
modification time. This is set to true by default.

• Setting scope.xmlmap to true calculates authorship based on information stored in an XML
map file (see “Creating Authorship XML Map Files”, page 23, for syntax information). This is
set to false by default.

• If all properties are set to true, scope.scontrol takes precedence.

Additional Authorship Configurations
By default, author names are case-sensitive, but you can disable case sensitivity:

scope.local=[true or false]

scope.scontrol=[true or false]

scope.xmlmap=[true or false]

authors.ignore.case=true
22

Configuring Authorship
You can set the user name, email, and full name for a user with the authors.user[identifyer] set-
ting. For example:

If a user is no longer on team or must transfer authorship to another user, you can use the
authors.mapping[x,y] setting:

If you are transferring authorship between users, the author-to-author mapping information can be
stored locally or in an a shared XML map file:

If the mapping file is shared, you must specify the location of the shared XML file:

Creating Authorship XML Map Files
The <authorship> element contains indicates the beginning of the mapping information.

The <file /> element is placed inside the <authorship> element and takes two properties, author
and path to map users to files or sets of files:

You can use wildcards to map authors to sets of files. The following table contains examples:

Mapping order matters. The mapping file is read from top to bottom, so beginning with the most spe-
cific mapping ensures that authorship will map to the correct files.

authors.user1=john,john.doe@company.com,John Doe

authors.mapping1=old_user,new_user

authors.mappings.location=[local or shared]

authors.shared.path=[path to file]

<?xml version="1.0" encoding="UTF-8" ?>

 <!DOCTYPE authorship (View Source for full doctype...)>

 <authorship>

 <!-- assigns all files named: "foo/src/SomeClass.java" to "author1" -->

 <file author="author1" path="foo/src/SomeClass.java" />

Wildcard Expression Description

?oo/src/
SomeClass.java

Assigns all files that have names starting with any character (except /)
and ends with "oo/src/"

**.cs Assigns all *.cs files in any directory

/src/ Assigns every file whose path has a folder named "src"

src/** Assigns all files located in directory "src"

src/**/Test* Assigns all files in directory "src" whose name starts with "Test" (e.g.,
"src/some/other/dir/TestFile.c")
23

Suppressing Violations
Suppressing Violations
Suppressions prevent DTP Engines from reporting additional occurrences of a specific static analysis
task (multiple tasks might be reported for a single rule). Suppressions are useful when you want to fol-
low a rule, but do not want to receive repeated messages about your intentional rule violations. If you
do not want to receive error messages for any violations of a specific rule, disable the rule in the test
configuration.

If you are using DTP Engines in an IDE, you can define suppressions using the GUI (see the DTP Plu-
gin documentation for your IDE for details), otherwise suppressions are defined in the source code
using the following syntax.

Line Suppression
<suppression keyword> [<rule category> | <rule category> . <rule id> | <rule
category > - <rule severity> | ALL] <suppression comment>

Line Suppression Examples
// parasoft-suppress CODSTA "suppress all rules in category CODSTA"

// parasoft-suppress CODSTA.NEA "suppress rule CODSTA.NEA"

// parasoft-suppress CODSTA-1 "suppress all rules in category CODSTA with severity
level 1"

// parasoft-suppress ALL "suppress all rules"

// parasoft-suppress CODSTA FORMAT.MCH JAVADOC-3 "suppress all rules in category
CODSTA and rule FORMAT.MCH and all rules in category JAVADOC with severity level 3"

Block Suppression
<begin suppression keyword> [<rule category> | <rule category> . <rule id> | <rule
category > - <rule severity> | ALL] <suppression comment>

 source code block

<end suppression keyword> [<rule category> | <rule category> . <rule id> | <rule
category > - <rule severity> | ALL] <suppression comment>

Block Suppression Examples
// parasoft-begin-suppress CODSTA "begin suppress all rules in category CODSTA"

.....

// parasoft-end-suppress CODSTA "end suppress all rules in category CODSTA"

// parasoft-begin-suppress CODSTA.NEA "begin suppress rule CODSTA.NEA"

.....
24

Suppressing Violations
// parasoft-end-suppress CODSTA.NEA "end suppress rule CODSTA.NEA"

// parasoft-begin-suppress CODSTA-1 "begin suppress all rules in category CODSTA
with severity level 1"

......

// parasoft-end-suppress CODSTA-1 "end suppress all rules in category CODSTA with
severity level 1"

//parasoft-begin-suppress ALL "begin suppress all rules"

.....

// parasoft-end-suppress ALL "end suppress all rules"

// parasoft-begin-suppress CODSTA FORMAT.MCH "begin suppress all rules in category
CODSTA and rule FORMAT.MCH"

.....

// parasoft-end-suppress CODSTA FORMAT.MCH "end suppress all rules in category COD-
STA and rule FORMAT.MCH"

// parasoft-begin-suppress CODSTA "begin suppress all rules in category CODSTA"

.....

// parasoft-end-suppress CODSTA-1 "end suppress all rules in category CODSTA with
severity level 1; however rules with severity level 2-5 in category CODSTA are still
suppressed."

.....

// parasoft-end-suppress CODSTA "end suppress all rules in category CODSTA"

// parasoft-begin-suppress ALL "begin suppress all rules"

.....

// parasoft-end-suppress CODSTA FORMAT-1 "end suppress all rules in category CODSTA
and all rules in category FORMAT with severity level 1; however, others rules in COD-
STA and FORMAT-1 are still suppressed."

.....

// parasoft-end-suppress ALL "end suppress all rules"

//parasoft-begin-suppress ALL "begin suppress all rules, since no end suppression
comment, all rules will be suppressed starting from this line"
25

Code Duplicate Analysis

26

Code Duplicate Analysis
DTP Engines can check for duplicate code, which may indicate poor application design, as well as
increase maintenance costs. During code duplication analysis, the code is parsed into smaller lan-
guage elements (tokens). The tokens are analyzed according to a set of rules that specify what should
be considered duplicate code. There are two types of rules for analyzing tokens:

• Simple rules for finding single token duplicates, e.g., string literals

• Complex rules for finding mulitple token duplicates, e.g., duplicate methods or statements

Run the Find Duplicated Code test configuration during analysis to execute code duplicates detection
rules:

builtin://Find Duplicated Code

Flow Analysis
Flow Analysis
Flow Analysis is a type of static analysis technology that uses several analysis techniques, including
simulation of application execution paths, to identify paths that could trigger runtime defects. Defects
detected include use of uninitialized memory, null pointer dereferencing, division by zero, memory and
resource leaks.

Since this analysis involves identifying and tracing complex paths, it exposes bugs that typically evade
static code analysis and unit testing, and would be difficult to find through manual testing or inspection.

Flow Analysis’ ability to expose bugs without executing code is especially valuable for users with leg-
acy code bases and embedded code (where runtime detection of such errors is not effective or possi-
ble).

Run one of the Flow Analysis test configurations during analysis to execute flow analysis rules:

Configuring Depth of Flow Analysis
Flow Analysis engine builds paths through the analyzed code to detect different kinds of problems.
Since the analysis of all possible paths that span through the whole application may be infeasible, you
can set up the desired level of depth of analysis. A deeper analysis will result in more findings, but the
performance will be slower and the memory consumption will increase slightly.

You can specify the depth of analysis using the following methods:

• By using the test configuration interface in DTP. Go to Report Center> Test Configurations>
Static Analysis> Flow Analysis Advanced Settings> Performance> Depth of analysis
and choose one of the following options by selecting a radio button:

• Shallowest (fastest): Finds only the most obvious problems in the source code. It is
limited to cases where the cause of the problem is located close to the code where the
problem occurs. The execution paths of violations found by this type of analysis nor-
mally span several lines of code in a single function. Only rarely will they span more
than 3 function calls.

• Shallow (fast): Like the "Shallowest" analysis type, finds only the most obvious prob-
lems in the source code. However, it produces a greater overall number of findings
and allows for examination of somewhat longer execution paths.

• Standard: Finds many complicated problems with execution paths containing tens of
elements. Standard analysis goes beyond shallow analysis and also looks for more
complicated problems, which can occur because of bad flow in a single function or due
to improper interaction between different functions in different parts of the analyzed
project. Violations found by this type of analysis often reveal non-trivial bugs in the
analyzed source code and often span tens of lines of code.

• Deep (slow): Allows for detection of a greater number of problems of the same com-
plexity and nature as those defined for "Standard" depth. This type of analysis is
slower than the standard one.

• Thorough (slowest): Finds more complicated problems. This type of analysis will per-
form a thorough scan of the code base; this requires more time, but will uncover many
very complicated problems whose violation paths can span more than a hundred lines

builtin://Flow Analysis Fast

builtin://Flow Analysis Standard

builtin://Flow Analysis Aggressive
27

Flow Analysis
of code in different parts of the scanned application. This option is recommended for
nightly runs.

• By manually editing the test configuration file. Open the test configuration file in an editor and
set the com.parasoft.xtest.checker.flowanalysis.depthOfAnalysis property to the
value that represents the desired depth of analysis: 0 - Shallowest, 1 - Shallow, 2 - Standard,
3 - Deep, 4 - Thorough.

The depth of Flow Analysis is set to Standard by default.

Setting Timeout Strategy
Apart from the depth of analysis, Flow Analysis engine uses an additional timeout guard to ensure the
analysis completes within a reasonable time. An appropriate strategy can be set using the following
methods:

• By using the test configuration interface in DTP. Go to Report Center> Test Configurations>
Static Analysis> Flow Analysis Advanced Settings> Performance> Strategy for Time-
outs and choose one of the following options by selecting a radio button:

• time: Analysis of the given hotspot is stopped after spending the defined amount of
time on it. Note: in some cases, using this option can result in a slightly unstable num-
ber of violations being reported.

• instructions: Analysis of the given hotspot is stopped after executing the defined
number of Flow Analysis engine instructions.Note: to determine the proper number of
instructions to be set up for your environment, review information about timeouts in the
Setup Problems section of the generated report.

• off: No timeout. Note: using this option may require significantly more time to finish the
analysis.

• By manually editing the test configuration file. Open the test configuration file in an editor and
set the com.parasoft.xtest.checker.flowanalysis.hotSpotTimeoutStrategy property
to the value that represents the desired timeout strategy:

• time: Analysis of the given hotspot is stopped after spending the defined amount of
time on it. Set the com.parasoft.xtest.checker.flowanalysis.hotSpotTimeout-
Seconds property to a value representing the number of seconds.

• ticks: Analysis of the given hotspot is stopped after executing the defined number of
Flow Analysis engine instructions. Set the com.parasoft.xtest.checker.flow-
analysis.hotSpotTimeoutTicks property to a value representing the number of
instructions. Note: to determine the proper number of instructions to be set up for your
environment, review information about timeouts in the Setup Problems section of the
generated report.

• off: No timeout.

The default timeout option is time set to 60 seconds. To get information about the Flow Analysis time-
outs that occurred during the analysis, review the Setup Problems section of the report generated after
the analysis.
28

Metrics Analysis

29

Metrics Analysis
DTP Engines can compute several code metrics, such as code complexity, coupling between objects,
and lack of cohesion, which can help you understand potential weak points in the code. Run the Met-
rics test configuration during analysis to execute metrics analysis rules:

Metrics analysis is added to the HTML and XML report files generated by DTP Engines. See “Metrics
Summary”, page 35, for information about reports.

Setting Metrics Thresholds
You can set upper and lower boundaries so that a static analysis violation is reported if a metric is cal-
culated outside the specified value range. For example, if you want to restrict the number of logical
lines in a project, you could configure the Metrics test configuration so that a violation is reported if the
Number of Logical Lines metric exceeds the limit.

The Metrics test configuration shipped with DTP Engines includes default threshold values. There are
some rules, such as Number of Files (METRIC.NOF), for which thresholds cannot be set.

Metric thresholds can be set using the following methods:

• By using the test configuration interface in DTP (see "Report Center> Test Configurations>
Editing Test Configurations> Metrics Tab" in the Development Testing Platform user manual for
details).

• By editing the test configuration using the interface in an IDE (see "Working with Test Configu-
rations> Creating Custom Test Configurations" in the DTP Plugin manual for your IDE).

• By manually editing the test configuration file:

1. Duplicate the built-in Metrics test configuration ([INSTALL]/configs/builtin) to the user
configurations directory ([INSTALL]/configs/user)

2. Open the duplicate configuration in an editor and set the
[METRIC.ID].ThresholdEnabled property to true.

3. Configure the lower and upper boundaries in the [METRIC.ID].Threshold property
according to the following format:

[METRIC.ID].Threshold=l [lower boundary value] g [upper boundary value]

4. Save the test configuration and run the analysis using the custom metrics test
configuration.

builtin://Metrics

Using DTP Engines in an IDE

30

Using DTP Engines in an IDE
You can use DTP Engines within IntelliJ IDEA, NetBeans or Eclipse . Integrating with an IDE gives you
a desktop interface for executing code analysis locally, viewing results, and leveraging the data and
test configurations stored in DTP server. You can also import findings from DTP Server into your devel-
opment environment.

This integration is achieved with the DTP Plugin for IntelliJ IDEA, NetBeans or Eclipse and the DTP
Engine Plugin. See Parasoft> Online Help in your IDE menu bar (recommended) or Jtest Desktop
User Guide shipped with your product for installation, usage, and other details.

Reporting
DTP Engines print results to the output console, as well as save an HTML report to the
[WORKING_DIR]/reports directory by default. Data for the HTML report is stored in the directory as an
XML file, which can be used for importing results into a supported Parasoft DTP Plugin for the IDE and
Parasoft DTP Plugin for Java (see "Parasoft DTP Plugin for [IDE] User’s Guide" for additional informa-
tion). For an overview of the HTML report structure, see “Viewing Reports”, page 31.

If the engines are connected to DTP, reports are also sent to the server (see “Sending Results to
Development Testing Platform (DTP) Server”, page 37).

File paths that are displayed in reports follow the resource pattern syntax, see “Resource Pattern Syn-
tax”, page 17.

Specifying Report Output Location
You can use the -report switch during analysis to specify an output directory for reports.

Ant and Maven Pattern

Settings Property Pattern

You can also use the report.location property to change the location of an HTML report.

Specifying Report Format
You can also generate a PDF report or a report using a custom extension to the specified directory by
setting the report.format property. See “Report Settings”, page 66, for additional information.

Viewing Reports
Open the report.html or report.pdf file saved to the working directory or location specified with the -
report switch. Reports may contain different sections depending on the type of analysis, but the fol-
lowing sections are included in all static and flow analysis configurations.

Header

-report location

<report>location</report>

report.location=location

report.location=<HTML_REPORT_LOCATION>

report.format=pdf
31

The following information is included:

• Tool used for the analysis

• Build ID

• Test configuration

• Time stamp of the analysis

• Machine name and user name

• Session tag

• Project name

• Number of findings with the highest severity

• Number of failed tests

Static Analysis
The first part of the report covers the Static Analysis findings and is divided into two main sections.The
first section is a summary which shows an overview of findings displayed as a pie chart. The colors
indicate different severity types and their corresponding number of findings detected during static anal-
ysis.

The second section shows the details of static analysis findings. It starts with a table which includes
static analysis results.

The following information is included:

• Name of module
32

• Number of suppressed rules

• Total number of findings

• Average number of findings per 10,000 lines

• Number of analyzed files

• Total number of files in the module

• Number of code lines analyzed

• Total number of code lines in the module

All Findings
The All Findings section displays the details of findings organized by category or severity. Click the
Severity or Category link to toggle between views.

In category view, findings are reported by rule and grouped by category. A count of how many times
each rule was violated in the scope of analysis is also shown.

In severity view, findings are reported and grouped by severity. A count of findings per severity is also
included.
33

These sections are merged in PDF versions of the report.

Findings by Author
This section includes a table of authors associated with the analyzed code and a count of findings per
each author. Findings are segmented into findings associated with suppressed rules and findings rec-
ommended for remediation. Click on an author link to view their finding details.

The details view includes the following information:

• File containing the finding and its location

• Violation message and rule

• Flow analysis reports also mark the cause of the violation (C), violation points (P), thrown
exceptions (E), and important data flows (!)

Findings by File
You can navigate the analyzed code to the reported findings in the Findings by File section. Each node
begins with a value that indicates the total number of findings in the node. The value in brackets shows
34

the number of suppressed rules in the node. You can click nodes marked with a plus sign (+) to expand
them. PDF versions of the reports are already fully expanded.

Metrics Summary
If your test configuration includes metrics analysis, a metrics section will appear in the report. See
“Metrics Analysis”, page 29, for additional information.

Test Execution
The second part of the report covers the Test Execution results and is divided into two sections.The
first section is a summary which shows an overview of test failures and coverage displayed as pie
charts.
35

The second section shows the details of test execution. It starts with a table which includes test execu-
tion results and coverage information.

The following information is included:

• Module name

• Number of unit test problems which need to be fixed

• Number of exceptions which need to be reviewed

• Number of assertion failures which need to be reviewed

• Number of unit tests successfully executed

• Number of unit tests failures

• Number of incomplete unit tests

• Total number of unit tests

• Line coverage expressed as percentage

All Findings
The All Findings section displays the details of all unit test problems detected during test execution.

Findings by Author
This section includes a table of authors associated with the analyzed code and shows the total number
of findings for each author. Click on an author link to view their finding details.

The details view includes the following information:

• Finding location

• Test name

• Failure message

Executed Tests (Details)
36

You can view the findings in the Executed Tests (Details) section. The nodes where all the test passed
are marked with "P" in square brackets. The nodes with test failures begin with a set of values in
square brackets. The first value is a count of successfully passed tests and the second indicates the
total number of tests executed in the node.The letter "F" indicates the final node where the test failed.
You can click nodes marked with a plus sign (+) to expand them.

Coverage
This section shows the details of coverage collected during the test execution. Each node starts with a
set of values. The first value shows coverage expressed as percentage. The second value is a count of
the number of lines in the node which were covered during the test execution. The third value indicates
the total number of lines in the node. You can click nodes marked with a plus sign (+) to expand them.

Test Parameters
The arguments specified during analysis are shown in the Test Parameters section.

Sending Results to Development Testing Platform
(DTP) Server
See “Connecting to DTP Server”, page 7, for information about configuring your connection to DTP
Server. Use the -publish switch to report test results to DTP server.

Ant and Maven Pattern

Settings Property Pattern

-publish

<publish>true</publish>

report.dtp.publish=true
37

Publishing Source Code to DTP Server
By default, tested sources are sent to DTP when the report setting is enabled. This enables DTP to
present source code associated with findings.

You can use the report.dtp.publish.src setting to disable the publishing of source code, restrict
the depth of source code publishing, or enable source code publishing when sending reports to DTP
Server is disabled. See “Settings Reference”, page 59, for additional information on DTP Engine set-
tings.

The report.dtp.publish.src setting takes one of the following values:

• off: Code is not published to DTP server.

• min: Publishes minimal part of sources. Only source code that has no reference to source con-
trol is published.

• full: Publishes all sources associated with the specified scope. This is the default settings.

See the "Development Testing Platform User Guide" for additional information about viewing source
code in DTP.

Publishing Sources to DTP Without Running Code Analysis
DTP Engines need to execute to send data to DTP Server, but you may want to send sources without
running analysis.

1. Create an empty test configuration and save it to [INSTALL_DIR]/configs/user (see “Spec-
ifying Test Configurations”, page 13).

2. Run the configuration with appropriate report.dtp.publish.src setting.
38

Unit Test Connector
Unit Test Connector (UTC) allows you to run unit tests created in open source unit testing tools and
report results to DTP. UTC for Java currently ships with out-of-the-box support for the following unit
testing tools:

• JUnit 3 and 4

• TestNG

Visit the Parasoft Marketplace (http://marketplace.parasoft.com) for additional unit test tool integra-
tions.

Framework Support Details
The following table describes detailed support for testing frameworks:

Running JUnit Tests
JUnits are run by Maven, Ant or Gradle frameworks. Results are collected and reported using dedi-
cated plug-ins for each framework. For details on how to use the plug-ins, including how to trouble-
shoot issues with Maven, Ant, or Gradle, see manuals/plugins-manual/index.html.

Tagging Unique Test Runs
Use the session.tag property to define a tag that can be assigned to results from a specific test run.
The tag is a unique identifier for the analysis process on a specific module. Using the same session tag
overwrites data with results from the most recent run. By default, the tag is set to the name of the exe-
cuted test configuration.

Framework Supported Unsupported

JUnit 3 Test classes directly extending
junit.framework.TestCase

with test* methods.

Suite classes: classes directly extending
junit.framework.TestCase and providing static
suite() methods, regardless of test name changes.

Test classes directly extending
junit.framework.TestCase with the runTest()
method.

JUnit 4 Test methods annotated with
@org.junit.Test annotation.

Tests parameterized with
@org.junit.runners.Parameterized.Parameters

Theories with
@org.junit.experimental.theories.Theory

TestNG Test methods annotated with
@org.testng.annotations.Test
annotation.

XML reports (JUnit format
only) will be processed.

Tests parameterized with
@org.testng.annotations.DataProvider

Classes annotated with
@org.testng.annotations.Test annotation

Tests parameterized with
@org.testng.annotations.Factory

XML reports in TestNG format won't be processed.

session.tag=[name]
39

http://marketplace.parasoft.com/#query?limit=24&offset=0

Associating Tests with Development Artifacts
You can configure DTP Engines to associate tests with a broad range of development artifacts, such
as requirements, defects, tasks, and feature requests.

To successfully associate unit tests with artifacts, you need to:

1. Enable the artifact association property.

2. Specify issue tracking tags and configure their URL associations.

3. Use the tags in the Javadoc.

See the sections below for details.

Enabling Artifact Associations
Set the report.associations property to true to enable associations with artifacts. This also enables/
disables test associations in the HTML report.

Specifying Issue Tracking Tags
The following tags for artifact types are associated by default when report associations is enabled:

• pr (defects)

• fr (enhancements)

• task

• asset

• req (user stories)

You can use the issue.tracking.tags property to define any number of additional tracking tags. Sepa-
rate the tags’ names with a comma:

Configuring Issue Tracking Tags and URL Associations
You can generate a link to the association in the HTML report:

URLs can contain [%ID%] or ${id} variables, which will be replaced by issue identifiers. For example:

Enabling Test Details
You can enable or disable showing test details in the HTML report:

The report.contexts_details property must be set to true to enable showing associations.

The product’s property file is preconfigured to enable showing test details.

report.associations=true

issue.tracking.tags=tag1,tag2,tag3

report.assoc.url.tag1=[URL]

report.assoc.url.tag1=http://bugzilla.company.com/show_bug.cgi?id=[%ID%]

report.contexts_details=[true | false]
40

See “Report Settings”, page 66 for additional information.

Using Javadoc Tags
Use Javadoc tags to associate unit tests with artifacts.

Place the tag in the Javadoc to associate it with your tests. The tags used in the Javadoc should be
preceded by a @ character.

You can also associate a tag with a class. As a result, it will be associated with all the tests within this
class. In the example below, tag 9876 is associated with both tests within the Test class, whereas tag
111 is associated only with the testSomething2 test.

Multiple Associations

/**

 * @bug 12345

 * @pr 223344

 * @tag1 5533

 */

@Test

public void testSomething()

{

 ...

}

/**

 * @tag 9876

 */

public class Test {

 testSomething1()

 {

 ...

 }

 /**

 * @tag 111

 */

 testSomething2()

 {

 ...

 }

}

41

You can associate one tag with more than one artifact. Separate multiple associations with a comma
that is not followed by a space character.

If you separate the tasks with a comma and a white space, the test will be associated only with the first
listed artifact. In the example below, the test is associated only with task 1234:

Collecting Coverage
Coverage from unit tests is collected during JUnit test execution. See “Code Coverage Engine”,

page 43 for information on collecting code coverage and reporting it to DTP.

/**

 * @task 1234,2345

 */

@Test

public void testSomething()

{

 ...

}

/**

 * @task 1234, 2345

 */

@Test

public void testSomething()

{

 ...

}

42

43

Code Coverage Engine
In this section:

• Coverage for Unit Tests

• Application Coverage

Coverage for Unit Tests

44

Coverage for Unit Tests
You can collect coverage information during unit test execution by running special commands on the
following build systems:

• Maven

• Ant

• Gradle

Associating coverage information collected during unit test execution is supported for JUnit 4 only.

For details on how to configure your build system plug-in, as well as how to execute tests and collect
coverage during testing, see the build systems plug-in manual: [INSTALL]/manuals/plugins-manual/
index.html.

In order to collect coverage information and send it to DTP, run the built-in Unit Tests configuration dur-
ing test execution. Maven is used in the following example:

See “Unit Test Connector”, page 39, for information on setting up and executing unit tests.

Merging Coverage Data
In order to properly merge coverage data in DTP, you must specify one or more coverage image tags in
the command line or .properties settings file. The coverage image(s) is automatically sent to the con-
nected DTP server where it can be associated with a filter.

You can specify a set of up to three tags that can be used to create coverage images in DTP Server
with the report.coverage.images property:

Associate coverage images in DTP in the Report Center administration page (administration>
Projects> Filters> [click on a filter]).

You can also use the report.coverage.limit property to specify a lower coverage threshold:

Coverage results lower than this value are highlighted in the report. The default value is 40.

mvn clean test-compile jtest:instrument jtest:jtest -Djtest.config="builtin://Unit Tests"

report.coverage.images=[tag1; tag2; tag3]

report.coverage.limit=[value]

Application Coverage
Application Coverage
You can monitor and collect coverage data during manual or automated functional tests performed on
a running web application server. You can also send coverage data and test results to DTP, which
merges and correlates the data. The application coverage information can be displayed in the DTP
Coverage Explorer (see the "Coverage Explorer" chapter in the DTP user manual), which provides
insights about how well the application is tested, as well as the quality of your tests.

Prerequisites
The following components are required for collecting coverage:

• Java JDK 1.5

• Apache Maven, Gradle or Ant build system

Java JDK 8 line break calculations in bytecode are inconsistent with previous Java versions. This may
lead to inconsistencies in coverage results.

Process Overview
The DTP Engine for Java ships with a component called the coverage agent. The coverage agent is
attached to the application under test (AUT) and monitors the code being executed as the AUT runs.
When the coverage agent is attached to the AUT, a REST API is exposed that enables you to mark the
beginning and end of each test and test session.

Metadata about the lines of code that can be covered (static coverage data) is collected by running a
dedicated test configuration as part of the application build process. During test execution, interactions
with the coverage agent are written to a dynamic coverage map, which contains markers that specify
which lines of code were touched.

The DTP Engine processes the dynamic coverage map and static coverage data. A coverage.xml file,
which contains the coverage information, is produced and sent to DTP. When DTP receives the cover-
age data, it's loaded into a coverage image, which is a special tag that enables you to aggregate cover-
age data from runs with the same build ID. The coverage image enables you to associate coverage
information with specific tests.

Test results are also sent to DTP from the tool executing the tests (i.e., SOAtest, tests executed by the
DTP Engine, manual tests, etc.) in a report.xml file. If the build IDs for the coverage data file and the
report match, DTP is able to correlate the data and display the coverage information.

The complete process is detailed in the following sections.

Configuring the Application Under Test for Coverage
There are a few processes for preparing the AUT:

1. The static coverage file must be generated. The static coverage file contains metadata about
user classes, methods, and lines. This is described in “Generating the Static Coverage File”,
page 46.

2. The coverage agent must be attached to the AUT. See “Attaching the Coverage Agent to the
AUT”, page 46.

3. The coverage agent includes default settings for outputting files, determining scope, etc., but
you can set properties in a configuration file to meet your application coverage goals. See
“Configuring the Coverage Agent”, page 47.
45

Application Coverage
Generating the Static Coverage File
The package that contains the static coverage file is created during the build process by the Jtest
Maven, Gradle or Ant plugin. It must be generated on the build machine that contains the source code.
The static coverage file can be used until the code changes.

Execute the following command in the AUT’s main directory to generate the package that contains the
static coverage file with Maven:

or Gradle:

Ant requires all classes to be compiled before the monitor task is executed. Modify your project prior to
the build and configure the task to ensure the correct sequence. The following example shows how the
target can be configured:

Execute the following command in the AUT’s main directory to build the project and generate the pack-
age that contains the static coverage file:

The monitor.zip package will be generated and placed into the build output directory. The path to the
location will be printed on the console.

The package contains the following:

• static_coverage.xml - this file contains static coverage information

• agent.jar - Jtest Java coverage agent jar archive

• agent.properties - agent settings file that contain scope parameters generated during the build
process and other attributes

• agent.sh/agent.bat - script that generates the Jtest Java agent VM arguments necessary for
attaching the agent to the AUT process

Attaching the Coverage Agent to the AUT
Extract the contents of the monitor.zip package to the server machine and run the agent.sh/agent.bat
script to generate the Jtest Java agent VM arguments.

mvn package jtest:monitor

gradle assemble jtest-monitor -I [INSTALL]/integration/gradle/init.gradle

<target name="jtest-monitor" depends="compile">

 <jtest:monitor/>

</target>

ant -lib [INSTALL]/integration/ant/jtest-ant-plugin.jar -listener

 com.parasoft.Listener jtest-monitor
46

Application Coverage
The scripts from the monitor package output the -javaagent VM argument to the console. You will
need this argument to connect the agent to the AUT, which will result in the runtime_coverage subdi-
rectory:

Add the -javaagent flag to the application server’s startup script and restart the server. See “Step 5a:
Collecting Runtime Data from Apache Tomcat”, page 52, “Step 5b: Collecting Runtime Data from
JBoss and WildFly”, page 53, and “Step 5c: Collecting Runtime Data from Oracle WebLogic Server”,
page 55 in the Web Application Coverage Tutorial below.

Attaching the coverage agent to the AUT exposes a REST API for controlling the agent. Enter the fol-
lowing URL into the browser bar to verify that the coverage agent is set:

[application_host]:8050/status/

If the application has been properly configured, the API will return data:

Configuring the Coverage Agent
Application servers usually contain more than one application. Additionally, common server classes or
application libraries do not need to be instrumented. The Jtest DTP Engine only needs to collect cover-
age for application source code. Instrumenting all classes would be too time-consuming.

The application on the server is already built, so we cannot gather information about which classes
come from the source code. For this reason, properly setting the scope of the coverage agent is very
important.

You can configure the coverage agent with the agent.properties file or arguments to -javaagent. The
agent.properties file is generated in the monitor.zip package (see “Generating the Static Coverage
File”, page 46). It contains properties that can be modified to properly configure the coverage agent.
The following example shows how the coverage agent can be configured with the agent.properties.file:

Adding properties to -javaagent requires modifying their names by removing the "jtest.agent" prefix,
for example:

Properties provided as arguments to -javaagent override properties configured in the agent.proper-
ties file. In the above examples, the autostart=true will override jtest.agent.autostart=false.

Jtest Agent VM argument:

-javaagent:”[path to agent dir]\agent.jar”=settings=”[path to agent properties
file]\agent.properties”,runtimeData="[path to monitor dir]\monitor\
runtime_coverage”

jtest.agent.runtimeData=[path to runtime_coverage directory]

jtest.agent.includes=com/myapp/data,com/myapp/common/**

jtest.agent.excludes=com/myapp/transport/*,com/myapp/autogen/**

jtest.agent.autostart=false

-javaagent:”[path to agent dir]\agent.jar”=settings=”[path to agent properties
file]\agent.properties”,autostart=true
47

Application Coverage
The following table describes all properties that can be used to configure the coverage agent:

Test Configuration and Execution
You can use SOAtest to run functional tests (refer the Application Coverage chapter of the SOAtest
documentation to set up the test configuration), as well as execute manual tests. At the end of the test
session, coverage will be saved in runtime_coverage_[timestamp].data files in the directory speci-

Property Description

jtest.agent.runtimeData Where the runtime data will be stored. The following example will
create files in the in ‘C:/tmp/myapp/’ directory with runtime_’ as the
name prefix:

’C:/tmp/myapp/runtime’

jtest.agent.includes Coma separated list of patterns that specify classes to be instru-
mented. The following wildcards are supported:

* matches zero or more characters
** matches multiple directory levels

In the following example, all classes from the com.myapp.data
package and all classes from package and subpackages that start
with com.myapp.common will be instrumented:

com/myapp/data/*,com/myapp/common/**

jtest.agent.excludes Coma separated list of patterns that specify classes to be excluded
from instrumentation. The following wildcards are supported:

* matches zero or more characters
** matches multiple directory levels

In the following example, all classes from the
com.myapp.transport package and all classes from package and
subpackages that start with com.myapp.autogen will be excluded
from instrumentation:

com/myapp/transport/*,com/myapp/autogen/**

jtest.agent.autostart Enables/disables automatic runtime data collection; default is true

jtest.agent.port Sets up agent communication port; default is 8050

jtest.agent.debug Enables/disables verbose output to console; default is false

jtest.agent.collect-
TestCoverage

Enables/disables collecting coverage information for test cases. The
default value is false.

jtest.agent.enableMul-
tiuserCoverage

Enables/disables collecting web application coverage for multiple
users; the default value is false.
Setting this property to true allows you to collect multi-user cover-
age with Coverage Agent Manager. See the "Coverage Agent Man-
ager (CAM) section of the DTP documentation for details.
48

Application Coverage
fied in SOAtest. This information will eventually be merged with the static coverage data to create a
coverage.xml file and uploaded to DTP.

Uploading Test Results to DTP
For tests executed by SOAtest, the SOAtest XML report will need to be uploaded to DTP. See the
"Uploading Rest Results to DTP" section in the Application Coverage topic in the SOAtest documenta-
tion for details.

Generating a Dynamic Coverage Data File and
Uploading it to DTP
The following settings should be configured in the jtestcli.properties file in order to properly merge cov-
erage data.

• report.coverage.images - this setting specifies a set of tags that are used to create cover-
age images in DTP Server. A coverage image is a unique identifier for aggregating coverage
data from runs with the same build ID. DTP supports up to three coverage images per report.

• session.tag - this specifies a unique identifier for the test run and is used to distinguish differ-
ent runs on the same build.

• build.id - this setting specifies a build identifier used to label results. It may be unique for
each build, but it may also label several test sessions executed during a specified build.

These settings are in addition to the other properties that must be configured, such as scope, author-
ship, and DTP settings. See the following sections:

• “Connecting to DTP Server”, page 7

• “Sending Results to Development Testing Platform (DTP) Server”, page 37

• “Settings Reference”, page 59

In order to fill the coverage.xml file with runtime coverage data, the DTP Engine must have access to
the runtime coverage data generated during test execution, as well as the static coverage data. Run
the Calculate Application Coverage test configuration using the following arguments to provide the
necessary data:

Reviewing Coverage in DTP
You can use the Coverage Explorer in DTP to review the application coverage achieved during test
execution. See the DTP documentation for details on viewing coverage information.

Web Application Coverage Tutorial
The following tutorial will guide you through collecting application coverage with the Jtest DTP Engine.
It includes information about basic topics, such as running the server and deploying applications, so
that beginners and advanced users can benefit.

Prerequisites

jtestcli -staticcoverage [path to static_coverage.xml file] -runtimecoverage
[path/dir] -config "builtin://Calculate Application Coverage"
49

Application Coverage
The following requirements are only necessary to complete this tutorial. Web Application Coverage can
be collected on any server that can accept Java Agents.

• Java JDK 1.5

• Apache Maven build system

• Calculator example, which is extremely basic web application. You can find this example in the
[INSTALL]/examples directory

• One of the following application servers:

• Apache Tomcat (this scenario has been verified with versions 6.0, 7.0, 8.0)

• JBoss/WildFly

• Oracle WebLogic

Step 1: Preparing Calculator Example
The application must be packaged into a WAR file (Web Application Archive) on the server. Use the
maven-war-plugin shipped with the engines to package the application. The plugin automatically builds
applications with the correct WAR structure. Execute the following command in the application direc-
tory:

When the project finished building, the WAR file will be placed into the target directory:
Calculator\target\Calculator.war

Step 2a: Deploying Example to Tomcat Application Servers
Before proceeding with this step, you must build the WAR file as described in “Step 1: Preparing Calcu-
lator Example”, page 50. If you are using a JBoss/WildFly application server, skip to “Step 2b: Deploy-
ing Example to WildFly/JBoss Application Servers”, page 51. If you are using a WebLogic application
server, skip to “Step 2c: Deploying Example to Oracle WebLogic Server”, page 52

There are many ways to deploy application servers, but in this tutorial we demonstrate how to deploy
remotely using the Tomcat Manager web application.

1. Add a new user to the server by opening [Apache Tomcat Installation Directory]/conf/tomcat-
users.xml and add the following line in the <tomcat-users> section:

2. Run the server by executing the following command:

Windows

Linux

mvn clean install

<user username="tomcat" password="tomcat" roles="tomcat, manager-gui"/>

[Your apache-tomcat installation directory]/bin/startup.bat

[Your apache-tomcat installation directory]/bin/startup.sh
50

Application Coverage
3. Open the following URL in a browser and enter the username and password set in step 1 (tom-
cat/tomcat):

4. In the WAR file to deploy section, click Choose File and browse to Calculator.war

5. Click Deploy; the application will be available at the following URL:

6. Interact with the application to as a sanity test.

Step 2b: Deploying Example to WildFly/JBoss Application Servers
There are many ways to deploy WildFly/JBoss application servers, but we demonstrate deployment in
this tutorial by using the JBoss web console. These instructions can be applied to JBoss AS 7.1.1,
JBoss EAP 6.4, and WildFly 8.2 and 9.0 servers.

1. Add a new user to the server by running the add-user script on Windows:

2. Choose Management User when prompted to choose a type of user:

3. Enter a username and password when prompted leaving the Realm field blank:

4. Run the server by executing the following script:

5. Open the following URL in a browser and enter the username and password specified in step 3
(admin/1adm-adm-adm):

6. Click Add (or Add Content for JBoss 7.1.1) and browse to the Calculator.war file.

7. Click Next and click Save.

http://localhost:8080/manager/html

http://localhost:8080/calculator

[JBoss installation directory]/bin/add-user.bat

What type of user do you wish to add?

 a) Management User (mgmt-users.properties)

 b) Application User (application-users.properties)

(a): a

Enter the details of the new user to add.

Realm (ManagementRealm) :

Username : admin

Password : 1adm-adm-adm

[JBoss installation directory]/bin/standalone.bat

http://localhost:9990/console/App.html#deployments
51

Application Coverage
8. Enabled the Calculator.war file in the Deployments list and open the following URL in a
browser:

9. Interact with the application to as a sanity test.

Step 2c: Deploying Example to Oracle WebLogic Server
There are many ways to deploy WebLogic application server, but in this tutorial we demonstrate how to
deploy remotely using the Admin Console. This scenario has been verified with versions 12.2.1 and
10.3.6.

This tutorial assumes that you have already installed the WebLogic server and created your server
domain.

1. Go to Administration Console (http://localhost:7001/console).

2. In the Domain Structure panel menu, click Deployments to open the Summary of Deploy-
ments section.

3. In the Deployments table, click the Install button.

4. Specify the path to your WAR file in th Arguments field.

5. Click Next.

6. Choose the Install this deployment as an application option.

7. Click Next.

8. Click Finish.

9. Interact with the application to test its functionalities (http://localhost:7001/Calculator)

Step 3: Preparing Metadata Files
Execute the following command in the example application’s main directory:

The goal generates the monitor.zip package, which contains artifacts necessary for collecting applica-
tion coverage. See “Generating the Static Coverage File”, page 46, for details.

Step 4: Generating the javaagent VM Argument
Extract the contents of the monitor.zip package to the server machine and run the agent.bat (Windows)
or agent.sh (Linux) script. This will generate the javaagent flag that will be printed to the console.

Your javaagent flag may resemble the following:

Step 5a: Collecting Runtime Data from Apache Tomcat

http://localhost:8080/Calculator

mvn package jtest:monitor

-javaagent:"E:\Parasoft\JTest\examples\calculator\target\jtest\monitor\monitor\

agent.jar"=settings="E:\Parasoft\JTest\examples\calculator\target\jtest\monitor\

monitor\agent.properties",runtimeData="E:\Parasoft\JTest\examples\calculator\

target\jtest\monitor\monitor\runtime_coverage"
52

Application Coverage
If you are using a JBoss/WildFly server, skip to “Step 5b: Collecting Runtime Data from JBoss and
WildFly”, page 53. If you are using a WebLogic server, skip to “Step 5c: Collecting Runtime Data from
Oracle WebLogic Server”, page 55s

1. Open the script file:

 Windows

Linux

2. Place the javaagent flag at the beginning of the script:

 Windows

Linux

The -javaagent flag must be placed in a single line.

3. Restart the server and open the following URL in a browser: .

4. Interact with the application and stop the server

The Jtest Agent will write runtime data according to the runtimeData property of the -javaagent flag
generated by the mvn package jtest:monitor goal. By default, the runtime data be written to the
[path to monitor dir]/monitor/runtime_coverage directory.

Step 5b: Collecting Runtime Data from JBoss and WildFly
Standard Java hierarchical class loaders are not suitable for J2EE servers because all JAR files are
always loaded, whether they are used or not; the application cannot load JAR files on demand. Addi-
tionally, an adequate solution for restricting visibility between JAR files is not available, which fre-
quently causes conflicts between two versions of one library. This also leads to the creation of big class
loaders that contain everything.

JBoss and WildFly servers use JBoss Modules to overcome these challenges. The implementation of
modular, non-hierarchical class loading is also the basis of JBoss OSGi and JBoss Java EE implemen-
tations.

The advantages of this class loader, however, introduces new problems in terms of collecting runtime
data from these servers. The Jtest Agent library must be visible to application classes, but it is pre-

[Your apache-tomcat installation directory]/bin/catalina.bat

[Your apache-tomcat installation directory]/bin/catalina.sh

if "%1"=="stop" goto skip_instrumentation

set JAVA_OPTS=%JAVA_OPTS% [generated javaagent flag]

:skip_instrumentation

if ["$1" = "start" -o "$1" = "run"]; then

export JAVA_OPTS="$JAVA_OPTS [generated javaagent flag]”

fi

http://localhost:8080/Calculator
53

Application Coverage
vented by JBoss Modules. This is one reason for adding the -javaagent flag. Failing to do so will
return ClassNotFoundException.

For this reason, the jboss.modules.system.pkgs system property should also be used. But there is
another problem: JBoss sets this flag in its own scripts. This behavior complicates integration between
JBoss and the Jtest Agent because these scripts may overwrite previously set scripts.

JBOss AS 7.1/JBoss EAP 6.4/WildFly 8.2/9.0
1. Add the -javaagent flag to the startup script:

Windows:

a. Open [Your jboss installation directory]/bin/standalone.conf.bat and
add the javaagent flag to JAVA_OPTS at the end of the file:

Leave ":JAVA_OPTS_SET" as the last line in the file.

Place the -javaagent flag on one line.

Add the -XX:-UseSplitVerifier flag to JAVA_OPTS for servers working on Java 7.

Add the -noverify flag to JAVA_OPTS for servers on working on Java 8.

b. Add javaagent classes to jboss.modules.system.pkgs settings by changing the fol-
lowing section from:

to

c. Restart the server using the standalone.bat script.

Linux:

a. Open [Your jboss installation directory]/bin/standalone.conf and add the
javaagent flag to JAVA_OPTS at the end of the file:

Place the -javaagent flag on one line.

Add the -XX:-UseSplitVerifier flag to JAVA_OPTS for servers working on Java 7.

Add the -noverify flag to JAVA_OPTS for servers on working on Java 8.

b. Add javaagent classes to jboss.modules.system.pkgs settings by changing the fol-
lowing section from:

set "JAVA_OPTS=%JAVA_OPTS% [generated javaagent flag]"

set "JAVA_OPTS=%JAVA_OPTS% -Djboss.modules.system.pkgs=org.jboss.byteman"

set "JAVA_OPTS=%JAVA_OPTS% -Djboss.modules.system.pkgs=org.jboss.byte-
man,com.parasoft.jtest.instrumentation,shaded.com.parasoft.jtest.runtime"

set "JAVA_OPTS=$JAVA_OPTS [generated javaagent flag]"

JBOSS_MODULES_SYSTEM_PKGS="org.jboss.byteman"
54

Application Coverage
to

c. Restart the server using the standalone.sh script.

2. Open to the following URL in a web browser:

3. Interact with the application and stop the server.

The Jtest Agent will create a runtimeData.data file in the Jtest target maven directory (target/
jtest).The location is written into the .json data file, so you do not need to remember it.

JBOss 6.1/5.1
The jboss.modules.system.pkgs property does not need to be set for older versions of JBoss.

Windows:

1. Open [Your jboss installation directory]/bin/run.conf.bat and add the javaagent
flag to JAVA_OPTS at the end of the file:

Leave ":JAVA_OPTS_SET" as the last line in the file.

Place the -javaagent flag on one line.

2. Restart the server using the run.bat script.

Linux:

1. Open [Your jboss installation directory]/bin/run.conf.bat and add the javaagent
flag to JAVA_OPTS at the end of the file:

Place the -javaagent flag on one line.

2. Restart the server using the run.sh script.

Step 5c: Collecting Runtime Data from Oracle WebLogic Server
1. Open the script file:

 Windows

Linux

JBOSS_MODULES_SYSTEM_PKGS="org.jboss.byteman,com.parasoft.jtest.instrumenta-
tion,shaded.com.parasoft.jtest.runtime"

http://localhost:8080/Calculator/

set "JAVA_OPTS=%JAVA_OPTS% [generated javaagent flag]"

set "JAVA_OPTS=$JAVA_OPTS [generated javaagent flag]"

[Your weblogic installation directory]/user_projects/domains/[your domain]bin/
startWebLogic.cmd

[Your weblogic installation directory]/user_projects/domains/[your domain]bin/
startWebLogic.sh
55

Application Coverage
2. Add the -javaagent flag to JAVA_OPTIONS (in the section that starts with the START
WEBLOGIC comment). The -javaagent flag must be placed in a single line:

Windows

Linux

3. Restart the server and open the following URL in the browser: http://localhost:7001/Calculator

4. Interact with the application.

5. Stop the server

The Jtest Agent will write runtime data according to the runtimeData property of the -javaagent flag
generated by the mvn package jtest:monitor goal. By default, the runtime data be written to the
[path to monitor dir]/monitor/runtime_coverage directory.

Step 6: Produce Coverage Report
Run the Calculate Application Coverage test configuration and pass the static_coverage.xml file and
directory to the runtime coverage data using the dedicated -staticcoverage and -runtimecoverage
parameters:

The path to the static_coverage.xml file must point to the extracted contents of the monitor.zip pack-
age, which contains this file.

The path to the runtime_coverage directory is printed to the console as the runtimeData property of
the -javaagent VM argument.

@REM START WEBLOGIC

set JAVA_OPTIONS=%JAVA_OPTIONS% [generated javaagent flag]

START WEBLOGIC

export JAVA_OPTIONS=$JAVA_OPTIONS [generated javaagent flag]

jtestcli -staticcoverage [path to static_coverage.xml file] -runtimecoverage
[path/dir] -config "builtin://Calculate Application Coverage"
56

Customizing DTP Engines for Java
Default settings are specified in the jtestcli.properties file located in the [INSTALL_DIR] directory.
You can use the -settings switch followed by an absolute or relative path to a settings file to custom-
ize Static Analysis Engine. You can use -settings multiple times to specify several properties files.

Settings configured in the jtestcli.properties file are read first and any references specified in
additional files will be overwritten. You can also store common settings in a jtestcli.properties file
in the $USER_HOME directory to overwrite settings stored in the properties file in the [INSTALL_DIR]
directory.

General settings are applied in the following order:

1. [INSTALL_DIR]/etc/jtestcli.properties; the base configuration file for Static Analysis
Engine and should not be modified.

2. [INSTALL_DIR]/jtestcli.properties; contains templates for commonly used settings
(license, reporting etc.)

3. [USER_HOME]/jtestcli.properties; optional

4. [WORKING_DIR]/jtestcli.properties; optional

5. Custom settings passed with the command line switch -settings path/to/settings.prop-
erties (e.g., -settings ../settings.properties)

6. Custom settings passed with the command line switch -property [key=value]

All of the above settings can be overridden by custom settings that are passed with command line
switches (e.g. - report, -config, -dtp.share.enabled).

Ant and Maven Pattern

Settings Hierarchy for Maven
If you use Maven, you can configure jtestcli settings with:

• -Djtest.[Maven property name] (e.g., -Djtest.settings="my.general.properties").

• the pom.xml file

• -Dproperty.jtest.[property name] (e.g., -Dproperty.jtest.license.use_network=true)

Both -Djtest and pom.xml override settings that are passed with -Dproperty.jtest.

-Djtest overrides settings in pom.xml if they are provided as user properties. However, if a setting
value is specified directly in pom.xml, it has the highest priority and cannot be overridden by command
line settings. For example, the test configuration specified in pom.xml as a user property <con-
fig>${jtest.config}</config> can be overridden with -Djtest.config. If it is hardcoded as
<config>builtin://Demo Configuration</config>,cannot be overridden.

See the Jtest Goal page in plugins-manual.html for the complete list of parameters.

You should keep all user-level customizations, including custom settings, license, rules, test configura-
tions, compiler configurations, outside of the DTP Engine installation directory so they are not affected
by reinstallations or updates.

jtestcli -settings path/to/settings.properties

-settings path/to/another/settings.properties

<settings>path/to/settings.properties</settings>
57

Viewing Current Settings
Use the -showsettings option to print the current settings and customizations, including the origin file
for each configuration.

Ant and Maven Pattern

Settings Property Pattern

Using Variables
You can use the following variables in settings values.

<showsettings>true</showsettings>

jtest.showsettings=true

Variable Description Example

analysis_type Outputs a comma separated list of enabled analy-
sis types (e.g., Static, Generation and Execution)

${analysis_type}

env_var Outputs the value of the environmental variable
specified after the colon.

${env_var:HOME}

config_name Outputs the name of executed Test Configuration. ${config_name}

dtp_project Outputs the name of DTP project specified in the
settings file using dtp.project option.

${dtp_project}

project_module Outputs the name of the tested project's module. If
more than one module is provided as an input, the
first tested module name is output followed by an
ellipsis (...). The variable can be configured in the
settings file with the project.module option.

${module_name}

host_name Outputs the name of the host. ${host_name}

user_name Outputs the name of the current user. ${user_name}

os Outputs the name of the operating system. ${os}

arch Outputs the name of the operating system archi-
tecture

${arch}

exec_env Outputs the execution environment. Ths variable
is a concatenation of ${os} and ${arch} vari-
ables. It can be configured in the sittings file with
the exec.env option.

${exec_env}
58

Settings Reference
The following tables contain settings that are currently supported in DTP Engines.

Base Configuration Settings

scontrol_branch Outputs the source control branch name for the
tested project. If more than one branch name is
detected, the first branch name is output followed
by an ellipsis (...). The variable can be configured
in the settings file with the scontrol.branch
option.

${scontrol_branch}

tool_name Outputs the name of the tool (i.e., Jtest, C++test,
dotTEST).

${tool_name}

jvm_prop Outputs the value of the Java vm property speci-
fied after the colon.

${jvm_prop:os.name}

Setting Value Description/Notes

console.verbosity.level low

normal

high

Specifies the verbosity level for the
Console

low: configures the Console view to
show errors and basic information
about the current steps and status
(done, failed, up-to-date).

normal: (default) also shows com-
mand lines and issues reported dur-
ing test and analysis.

high: also shows warnings.

parallel.mode disabled

auto

manual

Determines which of the following
modes is active:

disabled: configures Parasoft Test
to use only one of the available
CPUs.

auto: (default) allows Parasoft Test
to control parallel processing set-
tings.

manual: allows you to manually con-
figure parallel processing settings to
suit your specific needs.

parallel.no_memory_limit true

false
Enables/disables restrictions
(beyond existing system limitations)
on the memory consumed by parallel
processing.

Default is false

Variable Description Example
59

parallel.free_memory_limit [percentage] Specifies the amount of memory that
should be kept free in low memory
conditions (expressed as a percent-
age of the total memory available for
the application). This is used to
ensure that free memory is available
for other processes.

Default is 25

parallel.max_threads [number] Specifies the maximum number of
parallel threads that can be executed
simultaneously. The actual number of
parallel threads is determined by the
number of CPUs, available memory,
and license settings.

The default value is equal to the
number of CPUs

file.encoding.mode default

auto

user

Specifies how file encoding is deter-
mined.

default: enables use of system
properties

auto: enables automatic detection of
encoding for the Far-East languages
specified with file.encod-
ing.lang

user: enables use of specified
encoding by file.encoding.name.

file.encoding.lang [code] Allows specify language’s numeric
code when file.encoding.mode
is set to auto:

Japanese = 1

Chinese = 2

Simplified Chinese = 3

Traditional Chinese = 4

Korean = 5

file.encoding.name [encoding] Allows you to specify the encoding
name when file.encoding.mode
is set to user:

ASCII-US

UTF-8

UTF-16

UTF-16LE

UTF-16BE

 …

settings.validation true

false
Enables/disables settings validation.

Setting Value Description/Notes
60

Test Configuration Settings

Development Testing Platform Settings

settings.rules.file.jtest path Indicates the path to a file that
contains additional rules for settings
validation. The file should follow the
.properties format and include rules
according to the following examples:

engine.path=$ANY

engine.enabled=$BOOLEAN

engine.analysis.deep=$INTEGER

engine.severity.limit=$REGEXP{[1-
5]}

engine.verbosity.level=$REGEXP_IC{(
low)|(normal)|(high)}

Setting Value Description/Notes

configuration.dir.builtin [path] Path to directory with built-in test
configurations.

configuration.dir.user [path] Path to directory with user-
defined test configurations.

configuration.share.path [path] Path on DTP server share with
shared test configuration.

jtest.custom.rule.dir [path to directory] Specifies the location of user-
defined coding standard rules.

Default is [INSTALL_DIR]/
rules/user

Setting Value Description/Notes

dtp.server [host] Specifies the host name of the
DTP server.

dtp.port [port] Specifies the port number on
DTP server port. The default
settings is 443.

dtp.user

dtp.password

[username]

[password]
Specifies authentication to con-
nect to DTP server.

dtp.project [project_name] Specifies the name of the DTP
project that you want linked to.
This settings is optional.

dtp.autoconfig true

false
Enables auto configuration with
settings stored on the DTP
server. The default is false.

Setting Value Description/Notes
61

report.dtp.publish true

false
Determines whether the current
installation is reporting test
results to DTP server. The
default is false.

report.dtp.publish.src off

min

full

Determines whether tested
source code is published to DTP
server.

off: code is not published to
DTP server.

min: publishes minimal part of
sources. In most cases, source
code without references to
source control, e.g., auto-gener-
ated code, is published.

full: publishes all sources
associated with the specified
scope.

The default is full if
report.dtp.publish is
enabled, otherwise the default is
off

dtp.share.enabled true

false
Enables/disables connection to
Team Server. The default is
false.

jtest.license.use_network true

false
Enables/disables license
retrieval from License Service.
The default setting is true.

jtest.license.network.type dtp

ls
Sets the network license type.

dtp:file count license that limits
usage to a certain number of
files as determined by your
licensing agreement

ls: floating license (machine
locked) that limits usage to a
certain number of machines

jtest.license.local.password [password] Specifies the local license pass-
word.

jtest.license.local.expiration [expiration] Specifies the local license expi-
ration date.

jtest.license.network.edition desktop_edition

server_edition

custom_edition

Specifies the type of license that
will be retrieve from License
Service for this installation.
Default is custom_edition

jtest.license.custom_edition_features [feature_name, ...] Specifies active features for cus-
tom license edition.

Setting Value Description/Notes
62

Scope and Authorship Settings

jtest.license.wait.for.tokens.time [minutes] Specifies the time that tool will
wait for a license if a license is
not currently available.

Setting Value Description/Notes

scope.local true

false
Enables/disables code author-
ship computation based on the
local user and system files mod-
ification time. Default is true

scope.scontrol true

false
Enables/disables code author-
ship computation based on data
from a supported source control
system. Default is false

scope.xmlmap true

false
Enables/disables task assign-
ment based on an XML mapping
file that defines how tasks
should be assigned for particular
files or sets of files. Default is
false

scope.xmlmap.file [path] Specifies the path to XML map-
ping file that defines how tasks
should be assigned for particular
files or sets of files.

authors.ignore.case true

false
Enables/disables author name
case sensitivity.

Example:

true: David and david are con-
sidered the same user.

Default is false

authors.mappings.location local

shared
Specifies where the authorship
mapping file is stored. Default is
local.

See authors.user and
authors.mapping options for
details.

When set to shared, mappings
could be specified in file located
on DTP share. See
authors.shared.path
option for details.

Setting Value Description/Notes
63

Suppression Settings

authors.shared.path [path] Specifies the location of authors
mapping file in DTP share.

Example:

authors.shared.path=xte
st/authors_map.txt

authors.user{n} [user_name, email,
full_name]

Specifies a specific author by
user name, email, and full
name.

Example:

authors.user1=dan,dan@p
arasoft.com,Dan Stowe

authors.user2=jim,jim@p
arasoft.com,Jim White

authors.mapping{n} [from_user, to_user] Specifies a specific author map-
ping.

Example:

authors.mapping1=old_us
er,new_user

authors.mapping2=broken
_user,correct_user

Setting Value Description/Notes

suppression{n}.file.ext [ext] Specifies the extension of types of files
that should be scanned for comment sup-
pressions.

Example:

suppression1.file.ext=xml

suppression2.file.ext=java

Set the comment prefix with the
suppression{n}.comment setting.

suppression{n}.comment [comment] Specifies comment prefix for types of files
identified in suppression.file.ext
setting.

Example:

suppression1.comment=//

suppression2.comment=<!--

Setting Value Description/Notes
64

Technical Support Settings

suppression{n}.comment.suffix [comment suffix] Defines the suppression comment suffix
when file extensions has been specified
with the suppression.file.ext set-
ting. If not specified then suppression
comments will not be suffixed.

Example:

suppression1.comment.suffix=-->

suppression{n}.block.only true|fales Enables/disables block-only comment
suppressions support when file extensions
have been specified with the
suppression.file.ext setting.

Default is false.

Setting Value Description/Notes

techsupport.enabled true

false
Enables/disables global auto-
matic technical support data col-
lection is globally enabled with
verbose logging.

Default is false

logging.verbose true

false
Enables/disables verbose logs.

Verbose logs are stored in the
xtest.log file in the location
specified with the local.stor-
age.dir setting.

Verbose logging state persists
across sessions (restored on
application startup).

The log is a rolling file with a
fixed maximum size. A backup is
created whenever the max size
is reached .

Default is false

logging.scontrol.verbose true

false
Enables/disables output from
source control commands in
verbose logs. Note that output
from source control may include
fragments of analyzed source
code.

Default is false

Setting Value Description/Notes
65

Report Settings

techsupport.create.on.exit true

false
Enables/disables automatic
archive creation when the appli-
cation is shut down.

The techsupport.enabled
setting must also be enabled for
packages to be created automat-
ically.

Default is false

techsupport.archive.location [path] Specifies the custom directory
where support packages should
be created.

techsupport.include.reports true

false
Enables/disables the inclusion of
reports in the technical support
package.

Setting Value Description/Notes

session.tag [name] Specifies a tag for signing
results form the test session.
The tag is a unique identifier for
the specified analysis process
made on a specified module.
Reports for different test ses-
sions should be marked with dif-
ferent session tags.

build.id [id] Specifies a build identifier used
to label results. It may be unique
for each build but may also label
more than one test sessions that
were executed during a speci-
fied build.

The default settings is build-
yyyy-MM-dd HH:mm:ss

project.module [name] Specifies a custom name for the
project's module. The setting
may be used to describe unique
runs. If unspecified, the tested
module is detected automatically
based on code provided to anal-
ysis.

Setting Value Description/Notes
66

exec.env [env1;env2...] Specifies a list of tags that
describe the environment where
the run was executed. Tags may
describe operating system (e.g.,
Windows, Linux), architecture
(e.g., x86, x86_64), compiler,
browser, etc. The exec.env
tags enable the entire session to
be described. A detailed descrip-
tion of the environment may also
be included in the test suite, test,
or test case levels via services
API.

report.location [path] Specifies the directory where
report should be created.

report.format xml

html

pdf

csv

custom

Specifies the report format. Use
a comma separated list of for-
mats to generate multiple for-
mats.

Default is xml

report.custom.extension [ext] Specifies the report file exten-
sion of the XSL file for a custom
format.

Use with report.for-
mat=custom and
report.custom.xsl.file.

report.custom.xsl.file [path] Specifies the location of the XSL
file for a custom format.

Use with
report.format=custom and
report.custom.extension

report.developer_errors true

false
Determines whether manager
reports include details about
developer errors. The default is
true.

report.developer_reports true

false
Determines whether the system
generates detailed reports for all
developers (in addition to a sum-
mary report for managers). The
default is false.

report.authors_details true

false
Determines whether the report
includes an overview of the
number and type of tasks
assigned to each developer. The
default is true.

Setting Value Description/Notes
67

report.contexts_details true

false
Determines whether the report
includes an overview of the files
that were checked or executed
during testing. The default is
false.

report.suppressed_msgs true

false
Determines whether report
includes suppressed messages.
The default setting is false.

report.metadata true

false
Determines whether additional
metadata about findings should
be downloaded from DTP. Only
findings that are already present
on DTP are affected. The DTP
server must also support the
metadata service for this settting
to have an effect. Default is
true.

report.scontrol off

min

full

Specifies if and how much addi-
tional information from source
control is included in the report:

min: repositories, file paths and
revisions

full: includes the same infor-
mation as min, as well as task
revisions and comments.

Default is off

report.associations true

false
Enables/disables showing
requirements, defects, tasks,
and feature requests associated
with a test in the report. The
default is false.

issue.tracking.tags [tag1,tag2,...] Specifies a list of issue tracking
tags. The following tags are sup-
ported by default: pr, fr, task,
asset, req.

report.assoc.url.[tag] [url] Generates link to association
inside the HTML report. The
URL is a query string containing
an [%ID%] placeholder for the
PropertyAttribute value.

report.active_rules true

false
Determines if report contains a
list of the rules that were
enabled for the test. The default
setting is false.

Setting Value Description/Notes
68

report.rules [url] Specifies a directory for storing
static analysis rules HTML files
(retrieved by clicking the Print-
able Docs button in the Test
Configuration's Static Analysis
tab).

Examples:

report.rules=file:///C:/
parasoft/gendoc/

report.rules=../gendoc/

report.test_params true

false
Determines whether report
includes test parameter details.

The default setting is false.

report.coverage.images [tag1,. . .] Specifies a set of tags that will
be used to create coverage
images in DTP Server.

DTP supports up to 3 coverage
images per report.

report.coverage.limit [limit] Value that specifies the lower
coverage threshold. Coverage
results lower than this value are
highlighted in the report.

Default is 40

report.metrics.attributes [attr1;attr2;...] Specifies a list of additional
attributes for metric results. The
following attributes are sup-
ported by default: module,
namespace, type, method.

report.archive true

false
Enables/disables archiving
reports into a ZIP file.

report.graph.start_date [MM/dd/yy] Specifies start date for trend
graphs that track static analysis
task, test execution, and cover-
age.

Use with
report.graph.period=[?d|
?m|?y]

report.graph.period [?d|?m|?y] Determines the duration from
the start date for trend graphs
that track static analysis task,
test execution, and coverage.

Use with
report.graph.start_date=
[MM/dd/yy]

Setting Value Description/Notes
69

report.mail.enabled true

false
Enables/disables report emails
to developers and additional
recipients specified with the
report.mail.cc setting.

If enabled, all developers that
worked on project code will auto-
matically be sent a report that
contains the errors/results
related to his or her work.

The default setting is false.

report.mail.server [host] Specifies the mail server used to
send reports.

report.mail.port [port] Specifies the port for SMTP
server. The default port is 25.

report.mail.security [security] Specifies SMTP server connec-
tion security. STARTTLS and
SSL are supported. The default
is STARTTLS.

report.mail.subject [subject line] Specifies the subject line of the
emails sent.

report.mail.username

report.mail.password

report.mail.realm

[user_name]

[password]

[realm]

Specifies the settings for SMTP
server authentication. The realm
value is required only for those
servers that authenticate using
SASL realm.

report.mail.domain [domain] Specifies the mail domain used
to send reports.

report.mail.time_delay [time] Specifies a time delay between
emailing reports (to avoid bulk
email restrictions).

report.mail.from [email|user_name] Specifies the "from" line of the
emails sent.

report.mail.attachments true

false
Enables/disables sending
reports as attachments. All com-
ponents are included as attach-
ments; before you can view a
report with images, all attach-
ments must be saved to the disk.

The default setting is false.

Setting Value Description/Notes
70

report.mail.compact trends

links
Specifies how report information
is delivered in the email.

trends: email contains a trend
graph, summary tables, and
other compact data; detailed
data is not included.

links: email only contains a
link to a report available on DTP
server.

This setting is not configured by
default

report.mail.format html

ascii
Specifies content type for the
email. The default setting is
html.

report.mail.cc [email; ...] Specifies email address for
sending comprehensive man-
ager reports. Multiple addresses
must separated with a semico-
lon. This setting is commonly
used to send reports to manag-
ers or architects, as well as
select developers.

report.mail.include [email, ...] Specifies email addresses of
developers that you want to
receive developer reports. Multi-
ple addresses must separated
with a semicolon.

This setting is commonly used to
send developer reports to devel-
opers if developer reports are
not sent automatically (e.g.,
because the team is not using a
supported source control sys-
tem).

This setting overrides addresses
specified in the 'exclude' list.

report.mail.exclude [email; ...] Specifies email addresses that
should be excluded from auto-
matically receiving reports.

report.mail.exclude.developers true

false
Enables/disables report emails
to developers not explicitly listed
in the report.mail.cc set-
ting. This setting is used to pre-
vent reports from being mailed
to individual developers.

The default setting is false.

Setting Value Description/Notes
71

report.mail.unknown [email|user_name] Specifies where to email reports
for errors assigned to
"unknown".

report.mail.on.error.only true

false
Enables/disables email reports
to the manager when an error is
found or a fatal exception
occurs. Developer emails are
not affected by this setting;
developer emails are sent only
to developers who are responsi-
ble for reported errors.

The default setting is false.

report.setup.problems top

bottom

hidden

Determines placement of setup
problems section in report.

The default setting is bottom.

report.setup.problems.category_limit [numerical value] Specifies a limit to the number of
messages reported in a single
setup problem category.

Default is 10

report.setup.problems.display_limit [numerical value] Specifies a limit to the total
number of messages displayed
in the HTML report in the setup
problem section.

Default is 100

report.setup.problems.console true

false

Determines whether setup
problems will be printed on the
console.

The default setting is true.

report.ue_coverage_details_htmls LC

DC
Specifies type of coverage
included in an additional report,
which includes source code
annotated with line-by-line cov-
erage details, when a test's
HTML report links to it.

LC: line coverage

DC: decision coverage

report.separate_vm.xmx [size] Specifies how much memory
should be used for reports gen-
eration. The default is 1024M.

report.separate_vm true

false
Enables/disables generating
reports as a separate virtual
machine.

Default is false.

report.separate_vm.launch.file [path] Specifies path to launch file
which should be used during
reports generation.

Setting Value Description/Notes
72

General Source Control Settings

AccuRev Source Control Settings

dupcode.sorting.mode oldest|newest|paths Determines how elements in the
code duplication findings are
sorted.

oldest: the oldest result
appears at the top.

newest: the newest result
appears at the top.

paths: sorts by full path names
in ascending alphabetical order
(A to Z).

The default is paths.

report.coverage.version 1

2
Specifies the version of the XML
coverage report:

1: the standard version will be
used.

2: the size of the XML report will
be optimized.

The default value is 1.

Setting Name Value Description/Notes

scontrol.timeout [seconds] Specifies timeout value for oper-
ations with source control. The
default value is 60.

scontrol.branch [name] Enables you to specify a custom
name for the tested branch. This
setting may be used to describe
unique runs. If it is not specified,
the tested branch is detected
automatically based on code
provided to analysis.

Setting Name Value Description/Notes

scontrol.rep{n}.type accurev AccuRev repository type identi-
fier.

scontrol.accurev.exec [path] Path to external client execut-
able (accurev).

scontrol.rep{n}.accurev.host [host] AccuRev server host.

scontrol.rep{n}.accurev.port [port] AccuRev server port. Default
port is 1666.

scontrol.rep{n}.accurev.login [login] AccuRev user name.

Setting Value Description/Notes
73

ClearCase Source Control Settings

CVS Source Control Settings

scontrol.rep{n}.accurev.password [password] AccuRev password.

Setting Name Value Description/Notes

scontrol.rep{n}.type ccase ClearCase repository type name.

scontrol.ccase.exec [path] Path to external client executable
(cleartool).

scontrol.rep{n}.ccase.vob [path] Specifies the VOB's mount point - the
path at which the VOB will be accessed
by user.

Examples:

scontrol.rep.ccase.vob=X:\myvob

scontrol.rep.ccase.vob=/vobs/myvob

scontrol.rep{n}.ccase.vob_tag [tag] The VOB's unique tag in the ClearCase
network region.

Setting Name Value Description/Notes

scontrol.rep{n}.type cvs CVS repository type identifier.

scontrol.rep{n}.cvs.root [root] Full CVSROOT value.

Setting Name Value Description/Notes
74

scontrol.rep{n}.cvs.pass [password] Plain or encoded password. The
encoded password should match
password in the .cvspass file.

For CVS, use the value in .cvs-
pass from within the user's home
directory.

For CVSNT, use the value store
in the registry under
HKEY_CURRENT_USER\Soft-
ware\Cvsnt\cvspass

The password is saved in the
registry when you first log into
the CVS repository from the
command line using cvs
login. To retrieve the pass-
word, go to the registry (using
regedit) and look for the value
under
HKEY_CURRENT_USER-
>CVSNT> cvspass. This dis-
plays your entire login name
(e.g., :pserver:exam-
pleA@exampleB:/exampleC)
and encrypted password value.

scontrol.rep{n}.cvs.useCustomSSHCredentials true

false
Enables/disables using the cvs
login and password for EXT/SSH
connections. Default is false.

scontrol.rep{n}.cvs.ext.server [cvs] Specifies which CVS application
to start on the server side if con-
necting to a CVS server in EXT
mode. Has the same meaning as
the CVS_SERVER variable.
Default is cvs.

scontrol.rep{n}.cvs.ssh.loginname [login] Specifies the login for SSH con-
nections (if an external program
can be used to provide the
login).

scontrol.rep{n}.cvs.ssh.password [password] Specifies the password for SSH
connection.

scontrol.rep{n}.cvs.ssh.keyfile [file] Specifies the private key file to
establish an SSH connection
with key authentication.

scontrol.rep{n}.cvs.ssh.passphrase [passphrase] Specifies the passphrase for
SSH connections with the key
authentication mechanism.

scontrol.rep{n}.cvs.useShell true

false
Enables/disables an external
program (CVS_RSH) to estab-
lish a connection to the CVS
repository. Default is false.

Setting Name Value Description/Notes
75

Git Source Control Settings

Mercurial Source Control Settings

scontrol.rep{n}.cvs.ext.shell [path] Specifies the path to the execut-
able to be used as the
CVS_RSH program. Command
line parameters should be speci-
fied in the cvs.ext.params
property.

scontrol.rep{n}.cvs.ext.params [parameters] Specifies the parameters to be
passed to an external program.
The following case-sensitive
macro definitions can be used to
expand values into command
line parameters:

{host} repository host

{port} port

{user} cvs user

{password} cvs password

{extuser} parameter
cvs.ssh.loginname

{extpassword} parameter
cvs.ssh.password

{keyfile} parameter
cvs.ssh.keyfile

{passphrase} parameter
cvs.ssh.passphrase

Setting Name Value Description/Notes

scontrol.rep{n}.type git Git repository type identifier.

scontrol.git.exec [path] Path to git executable. If not set,
assumes git command is on the
path.

scontrol.rep{n}.git.url [url] The remote repository URL (e.g.,
git://hostname/repo.git).

scontrol.rep{n}.git.workspace [path] The directory containing the local
git repository.

Setting Name Value Description/Notes

scontrol.rep{n}.type hg Mercurial reposity type identifyer.

Setting Name Value Description/Notes
76

Perforce Source Control Settings

Serena Dimensions Source Control Settings

scontrol.hg.exec [path] Path to external client execut-
able. Devault is hg

scontrol.rep{n}.hg.url [url] The remote repository URL (e.g.,
http://hostname/path).

scontrol.rep{n}.hg.workspace [path] The directory containing the local
Mercurial repository.

Setting Name Value Description/Notes

scontrol.rep{n}.type perforce Perforce repository type identi-
fier.

scontrol.perforce.exec [path] Path to external client executable
(p4).

scontrol.rep{n}.perforce.host [host] Perforce server host.

scontrol.rep{n}.perforce.port [port] Perforce server port. Default port
is 1666.

scontrol.rep{n}.perforce.login [login] Perforce user name.

scontrol.rep{n}.perforce.password [password] Perforce password, optional if
ticket is used for authentication.

scontrol.rep{n}.perforce.client [client] The client workspace name as
specified in the P4CLIENT envi-
ronment variable or its equiva-
lents. Root directory for specified
workspace should be configured
correctly for local machine.

Setting Name Value Description/Notes

scontrol.rep{n}.type serena Serena Dimensions repository type
identifier.

scontrol.serena.dmroot [path] Path to the Serena Dimensions exe-
cutable. Example:

C\:\\Program Files
(x86)\\Serena\\Dimensions
2009 R2\\CM\\

scontrol.rep{n}.serena.login [login] Serena user name.

scontrol.rep{n}.serena.password [password] Password.

scontrol.rep{n}.serena.host [host] Serena Dimensions server host name.

Setting Name Value Description/Notes
77

StarTeam Source Control Settings

scontrol.rep{n}.serena.dbname [name] Name of the database for the product
you are working with.

scontrol.rep{n}.serena.dbconn [connection] Connection string for that database.

scontrol.rep{n}.serena.locale [locale] The language used, (e.g., en_US)

scontrol.rep{n}.serena.mapping [mapping] If the project has been downloaded/
moved to a location other than default
work area, use this option to specify a
mapping between the project or
stream with the Serena repository and
the local project. If you are working in
the default work area, you do not need
to define mappings.

Setting Name Value Description/Notes

scontrol.rep{n}.type starteam StarTeam repository type identifier.

scontrol.rep{n}.starteam.host [host] StarTeam server host.

sscontrol.rep{n}.starteam.port [port] StarTeam server port. Default port is
49201.

scontrol.rep{n}.starteam.login [login] Login name.

scontrol.rep{n}.starteam.password [password] Password (not encoded).

scontrol.rep{n}.starteam.path [path] Specifies the project, view, or folder that
you are currently working with.

You can specify a project name (all views
will be scanned when searching for the
repository path), project/view (only the
given view will scanned) or project/view/
folder (only the specified Star Team
folder will be scanned). This setting is
useful for working with large multi-project
repositories.

Examples:

scontrol.rep.starteam.path=proj1

scontrol.rep.starteam.path=proj1/view1

scontrol.rep.starteam.path=proj1/
view1/folderA

scontrol.rep.starteam.path=proj1/
view1/folderA/folderB

Setting Name Value Description/Notes
78

Subversion Source Control Settings

Synergy/CM Source Control Settings

scontrol.rep{n}.starteam.workdir [path] Specifies a new working directory for the
selected view's root folder (if the path
represents a view) or a new working
directory for the selected folder (if the
path represents a folder) when the
scontrol.rep.starteam.path set-
ting points to a StarTeam view or folder.

Examples:

scontrol.rep.starteam.workdir=C:\\stor
age\\dv

scontrol.rep.starteam.workdir=/home/
storage/dv

Setting Name Value Description/Notes

scontrol.rep{n}.type svn Subversion repository type identi-
fier.

scontrol.svn.exec [path] Path to external client executable
(svn).

scontrol.rep{n}.svn.url [url] Subversion URL specifies proto-
col, server name, port and start-
ing repository path. Example:

svn://buildmachine.foobar.com/
home/svn

scontrol.rep{n}.svn.login [login] Login name.

scontrol.rep{n}.svn.password [password] Password (not encoded).

Setting Name Value Description/Notes

scontrol.rep{n}.type synergy Synergy/CM repository type iden-
tifier.

scontrol.synergy.exec [path] Path to external client executable
(ccm).

scontrol.rep{n}.synergy.host [host] Computer on which synergy/cm
engine runs. Local host is used
when missing. For Web mode,
the host must be a valid Synergy
Web URL with protocol and port
(e.g., http://synergy.server:8400).

scontrol.rep{n}.synergy.dbpath [path] Absolute synergy database path
(e.g., \\host\db\name).

Setting Name Value Description/Notes
79

Microsoft Team Foundation Server Source Control Settings

Microsoft Visual SourceSafe Source Control Settings

scontrol.rep{n}.synergy.projspec [specification] Synergy project specification
which contains project name and
its version (e.g., name-
version).

scontrol.rep{n}.synergy.login [login] Synergy user name.

scontrol.rep{n}.synergy.password [password] Synergy password (not encoded).

scontrol.rep{n}.synergy.port [port] Synergy port.

scontrol.rep{n}.synergy.remote_client [client] (UNIX only) Specifies that you
want to start ccm as a remote cli-
ent. Default value is false.
Optional. This is not used for Web
mode.

scontrol.rep{n}.synergy.local_dbpath [path] Specifies the path name to which
your database information is cop-
ied when you are running a
remote client session. If null, then
the default location will be used.
This is not used for Web mode.

Setting Name Value Description/Notes

scontrol.rep{n}.type tfs TFS repository type identifier.

scontrol.rep{n}.tfs.url [url] URL to TFS repository, e.g.,
http://localhost:8080/
tfs

scontrol.rep{n}.tfs.login [login] TFS user name.

scontrol.rep{n}.tfs.password [password] TFS password.

Setting Name Value Description/Notes

scontrol.rep{n}.type vss Visual SourceSafe repository type
identifier.

scontrol.vss.exec [path] Path to external client executable
(ss).

scontrol.rep{n}.vss.ssdir [path] Path of repository database.

scontrol.rep{n}.vss.projpath [path] VSS project path.

scontrol.rep{n}.vss.login [login] VSS login.

scontrol.rep{n}.vss.password [password] VSS password.

Setting Name Value Description/Notes
80

 Other Settings

Setting Name Value Description/Notes

jtest.fail true
false

Fails the build by returning a non-zero
exit code if any violation is reported

jtest.show.settings true
false

Prints the current settings and customiza-
tions, showing the source of each config-
uration entry (for example, .properties
file)

jtest.data.additional [path] Path to additional json.data file. In case
of may files, use a comma separated list
of file paths
81

82

Integrations
• Integrating with Source Control Systems

• Build Systems Integration

• External Analyzers Integration

• Using DTP Engines in an IDE

• Integrating with CI Tools

Build Systems Integration

83

Build Systems Integration
Jtestcli runs on jtest.data.json files created by the build system plug-ins. See “Specifying Test Data
Location”, page 10, for information about the structure of the jtest.data.json file. For details on
plug-ins, including troubleshooting issues with Maven, Ant, or Gradle, see manuals/plugins-man-
ual.html.

Additional Information for Jtest 9.5 Users
The release of Static Analysis Engine for Java marks a substantial improvement over Jtest 9.x support
for build automation systems. Static Analysis Engine integrates with builds differently than previous
Jtest 9.x releases. Static Analysis Engine retains Jtest abilities, but the current release no longer needs
to leverage Eclipse and import projects into workspace to perform analysis. This change significantly
reduces execution time.

The command line tool has also been modified. As a result, part of build system plugins' options have
been changed in order to preserve naming consistency.

External Analyzers Integration
External Analyzers Integration

Checkstyle
DTP Engines supports static analysis with Checkstyle 5.5, 5.6, 5.7, and 6.5.

To enable Checkstyle rules and to use plugins dropped into this folder, you need to reconfigure the set-
tings in the $JTEST_INSTALL_DIR/etc/framework.properties configuration file.

Add the following .jar file as the first entry to the felix.auto.start.4 set:

org.apache.felix.fileinstall-3.4.0.jar

Downloading and Installing Checkstyle
1. Download Checkstyle from the following website: http://sourceforge.net/projects/checkstyle/

files

2. Unpack Checkstyle to install.

3. Copy the configs, plugins, and rules folders from the $HOME/integration/checkstyle directory
into the installation directory

4. Modify the jtestcli.properties file to include the following properties:

Analyzing Code with Checkstyle
Specify the Checkstyle user test configurations to perform analysis with Checkstyle.

Optional Customizations
You can customzie your Checkstyle integration by configuring the following properties.

jtest.analyzer.checkstyle.enabled=true

jtest.analyzer.checkstyle.dir=CHECKSTYLE/INSTALLATION/DIRECTORY

rules.provider_cs.analyzer=com.puppycrawl.tools.checkstyle

rules.provider_cs.data=${jtest.home}/rules/csrules.xml

user://Checkstyle Enables every rule

user://Checkstyle Recommended Enables Checkstyles recommended rules

Custom limit for number of files to be tested in a single executed Checkstyle process. Default is 50.

However, if subsequent files are placed in the same directory, they will be still scheduled to that

process unless the "hard" limit is reached (twice the "regular" limit).

jtest.analyzer.checkstyle.files.limit=50

Custom timeout (seconds) for the Checkstyle process to start. Default is 5 seconds.

jtest.analyzer.checkstyle.launch.timeout=5

Custom timeout (seconds) for the Checkstyle process to complete. Default is 60 seconds.

jtest.analyzer.checkstyle.timeout=60

Custom launch file for Checkstyle process. Default is taken from the Checkstyle analyzer jar file.

If one cannot be found, attempts to use file 'checkstyle.ini' from current working directory.

jtest.analyzer.checkstyle.launch.file=CUSTOM/LAUNCH/FILE
84

http://sourceforge.net/projects/checkstyle/files/

External Analyzers Integration
The rulemap.txt file located in the $HOME/integration/checkstyle directory contains information about
how rule IDs used in test configuration are mapped to Checkstyle rule types.

FindBugs
Static Analysis Engine supports flow analysis with FindBugs 2.0.2 and 2.0.3

Downloading and Installing FindBugs
1. Download FindBugs from the following website: http://findbugs.sourceforge.net/down-

loads.html

2. Unpack FindBugs to install.

3. Copy the configs, plugins, and rules folders from the $HOME/integration/findbugs directory
into the installation directory

4. Modify the jtestcli.properties file to include the following properties:

Analyzing Code with FindBugs
Specify the FindBugs user test configurations to perform analysis with Findbugs.

Project must be built prior to analysis because Findbugs requires compiled classes to be present/

Optional Customizations
You can customzie your FindBugs integration by configuring the following properties.

jtest.analyzer.findbugs.enabled=true

jtest.analyzer.findbugs.dir=FINDBUGS/INSTALLATION/DIRECTORY

rules.provider_fb.analyzer=edu.umd.cs.findbugs

rules.provider_fb.data=${jtest.home}/rules/fbrules.xml

user://FindBugs Enables every rule

user://FindBugs Recommended Enables FindBugs recommended rules

Custom limit for number of files to be tested in a single executed FindBugs process.
Default is reasonably high.

jtest.analyzer.findbugs.files.limit=1000

Custom timeout (seconds) for the FindBugs process to start. Default is 5 seconds. /

jtest.analyzer.findbugs.launch.timeout=5

Custom timeout (seconds) for the FindBugs process to complete. Default is 360 seconds. /

jtest.analyzer.findbugs.timeout=360

Custom launch file for FindBugs process. Default is taken from the FindBugs analyzer jar
file.

If one cannot be found, attempts to use file 'findbugs.ini' from current working directory.

jtest.analyzer.findbugs.launch.file=CUSTOM/LAUNCH/FILE
85

http://findbugs.sourceforge.net/downloads.html

External Analyzers Integration
The rulemap.txt file located in the $HOME/integration/findbugs directory contains information about
how rule IDs used in test configuration are mapped to FindBug rule types.
86

Integrating with Source Control Systems

87

Integrating with Source Control
Systems
DTP Engines can collect information from source control systems and use the data to assign owner-
ship of violations, filter analyzed files based on time or modification history, and report information
about controlled files to DTP Server. Use the Jtest 9.5 or later interface to configure integration with
source control systems:

1. In your IDE , choose Parasoft > Preferences and click Source Controls

2. Configure your repository and source control client and click Apply.

3. In the Preferences panel menu, click Scope and Authorship

4. Enable the Use source control (modification author) to compute scope option and click
Apply.

5. In the Preferences panel menu, click Parasoft

6. Click the share to open the Export to localsettings file panel.

7. Select the Source Controls, Scope and Authorship, and any other options you want to save.

8. Choose a location and click OK.

9. Add the following line to the settings file, which ensures that information on source control
details are saved to the report:

10. Either pass the file to the command line or copy the settings in the administration panel of a
project in DTP server (Parasoft Test settings tab) if applicable.

11. Run the analysis.

report.scontrol=min

Integrating with CI Tools

88

Integrating with CI Tools

Integrating with Jenkins
DTP Engines for Java can be integrated with Jenkins continuous integration software. The Parasoft
Findings Plugin for Jenkins allows you to visualize static analysis and test results as trend graphs and
warnings.

Parasoft Findings Plugin is available directly in Jenkins. See Parasoft Findings Plugin for details.

You can download the plugin source files form GitHub, see Parasoft Findings Plugin Project. If you
need additional information on how to rebuild the plugin, contact Parasoft Support.

https://wiki.jenkins-ci.org/display/JENKINS/Parasoft+Findings+Plugin
https://github.com/jenkinsci/parasoft-findings-plugin
https://wiki.jenkins-ci.org/display/JENKINS/Parasoft+Findings+Plugin
https://github.com/jenkinsci/parasoft-findings-plugin

89

Getting Help
Use the the -help switch to access usage information on the command line.

Technical Support
You can configure DTP Engines to create package for technical support. Add the following settings to
your .properties configuration file:

A technical support package will be created in the output directory at the end of an analysis run.

You need to escape the backslashes to specify the package location. The following example shows
what the path may look like:

jtestcli.exe -help

techsupport.enabled=true

techsupport.create.on.exit=true

techsupport.archive.location=[OUTPUT DIRECTORY]

C:\\Project\\Mailsystem\\Report

Third-Party Content
DTP Engines for Java incorporate items that have been sourced from third parties. The names of the
items and their license agreements have been listed in the table. Click the license name to see the
details.

Item License

commons-collections.jar Apache License 2.0

commons-vfs.jar Apache License 2.0

avalon-framework.jar Apache License 2.0

batik-all.jar Apache License 2.0

fop.jar Apache License 2.0

chardet.jar Mozilla Public License

bcprov.jar MIT License

saxon.jar Mozilla Public License

jfreechart.jar GNU LGPL License

jcommon.jar GNU LGPL License

cvslib.jar CDDL License

javax.xml.stream_1.0.1.jar Eclipse Public License

javax.activation_1.1.1.jar Apache License 2.0

jakarta-log4j.jar Apache License 2.0

xmlgraphics-commons.jar Apache License 2.0

fst.jar Apache License 2.0

truezip.jar Apache License 2.0

jjawin.jar DevelopMentor OpenSource Soft-
ware License

trilead-ssh2.jar Trilead AG License

javanet.staxutils_1.0.0.jar BSD License

commons-codec.jar Apache License 2.0

commons-httpclient.jar Apache License 2.0

org.apache.commons.io_1.4.0.v20081110-
1000.jar

Apache License 2.0

org.apache.commons.logging_1.1.3.jar Apache License 2.0

httpclient.jar Apache License 2.0

httpcore.jar Apache License 2.0
90

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
https://www.mozilla.org/en-US/MPL/2.0/
https://opensource.org/licenses/MIT
https://www.mozilla.org/en-US/MPL/2.0/
https://www.mozilla.org/en-US/MPL/2.0/
https://www.gnu.org/licenses/lgpl.html
https://www.gnu.org/licenses/lgpl.html
https://opensource.org/licenses/CDDL-1.0
https://eclipse.org/org/documents/epl-v10.php
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://jawinproject.sourceforge.net/LICENSE.txt
https://github.com/jenkinsci/trilead-ssh2/blob/master/LICENSE.txt
http://www.opensource.org/licenses/bsd-license.php
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

httpclient.jar Apache License 2.0

httpmime.jar Apache License 2.0

org.apache.jcs_1.3.4.jar Apache License 2.0

org.codehaus.stax2_3.2.4.jar Apache License 2.0

org.json_1.0.0.v201507290100.jar JSON License

javax.mail_1.5.0.jar CDDL License

org.suigeneris.jrcs.diff_0.4.2.jar GNU LGPL License

org.apache.felix.scr-1.6.2.jar Apache License 2.0

osgi.core-5.0.0.jar Apache License 2.0

antlr-2.7.7.jar ANTLR 4 License (BSD)

asm ASMDEX License

asm-analysis ASMDEX License

asm-commons ASMDEX License

asm-tree ASMDEX License

asm-util ASMDEX License

c3p0-0.9.5.jar GNU LGPL License 2.1, Eclipse
Public License 1.0

com.esotericsoftware.minlog_1.2.0.jar BSD License

commons-collections-3.2.2.jar Apache License 2.0

commons-compress-1.11.jar Apache License 2.0

commons-configuration_1.9.0.jar Apache License 2.0

commons-dbutils-1.6.jar Apache License 2.0

commons-exec-1.1.jar Apache License 2.0

commons-io-2.2.jar Apache License 2.0

commons-io_2.4.0.jar Apache License 2.0

commons-lang-2.6.jar Apache License 2.0

commons-lang3-3.1.jar Apache License 2.0

com.sun.xml.bind.2.2.7.jar CDDL and LGPL 2.1

dom4j-1.6.1.jar BSD License

doxia-core-1.2.jar Apache License 2.0

doxia-decoration-model-1.2.jar Apache License 2.0

Item License
91

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.json.org/license.html
https://opensource.org/licenses/CDDL-1.0
https://www.gnu.org/licenses/lgpl.html
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.antlr.org/license.html
http://asm.ow2.org/asmdex-license.html
http://asm.ow2.org/asmdex-license.html
http://asm.ow2.org/asmdex-license.html
http://asm.ow2.org/asmdex-license.html
http://asm.ow2.org/asmdex-license.html
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
http://www.opensource.org/licenses/bsd-license.php
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
https://www.mozilla.org/en-US/MPL/1.1/
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
http://dom4j.sourceforge.net/license.html
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

doxia-logging-api-1.2.jar Apache License 2.0

doxia-module-xhtml-1.2.jar Apache License 2.0

doxia-sink-api-1.2.jar Apache License 2.0

doxia-site-renderer-1.2.jar Apache License 2.0

gson-2.2.4.jar Apache License 2.0

guava_18.0.0.jar Apache License 2.0

h2-1.4.186.jar Mozilla Public License 2.0, or
Eclipse Public License 1.0

hibernate-c3p0-4.3.5.Final.jar GNU LGPL License 2.1

hibernate-commons-annotations-
4.0.4.Final.jar

GNU LGPL License 2.1

hibernate-core-4.3.5.Final.jar GNU LGPL License 2.1

hibernate-jpa-2.1-api-1.0.0.Final.jar Eclipse Public License 1.0,
Eclipse Distribution License
1.0

jandex-1.1.0.Final.jar Apache License 2.0

javassist-3.18.1-GA.jar Mozilla Public License 1.1,
LGPL 2.1, Apache License 2.0

javassist-3.18.2-GA.jar Mozilla Public License 1.1,
LGPL 2.1, Apache License 2.0

jaxb-api_2.2.7.jar CDDL 1.1,GPL 2

jboss-logging-3.1.3.GA.jar Apache License 2.0

jboss-transaction-api_1.2_spec-
1.0.0.Final.jar

CDDL, GPL 2.0 with the Class-
path Exception

jsr305-2.0.3.jar Apache License 2.0

junit-4.11.jar Common Public License 1.0

jython_2.5.3.jar Jython Software License

kryo_2.24.0.jar BSD License

lucene-core.jar Apache License 2.0

maven-artifact-2.1.0.jar Apache License 2.0

maven-reporting-api-3.0.jar Apache License 2.0

maven-reporting-impl-2.2.jar Apache License 2.0

mchange-commons-java-0.2.9.jar GNU LGPL License 2.1, Eclipse
Public License 1.0

Item License
92

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://h2database.com/html/license.html
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
https://www.eclipse.org/legal/epl-v10.html
https://eclipse.org/org/documents/edl-v10.php
http://www.apache.org/licenses/LICENSE-2.0
https://www.mozilla.org/en-US/MPL/1.1/
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
http://www.apache.org/licenses/LICENSE-2.0
https://www.mozilla.org/en-US/MPL/1.1/
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
http://www.apache.org/licenses/LICENSE-2.0
https://glassfish.java.net/public/CDDL+GPL_1_1.html
http://www.apache.org/licenses/LICENSE-2.0
http://repository.jboss.org/licenses/cddl.txt
http://repository.jboss.org/licenses/gpl-2.0-ce.txt
http://repository.jboss.org/licenses/gpl-2.0-ce.txt
http://www.apache.org/licenses/LICENSE-2.0
http://www.opensource.org/licenses/cpl1.0.txt
http://www.jython.org/Project/license.html
http://www.opensource.org/licenses/bsd-license.php
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html

mockito-all-1.9.5.jar MIT License

objenesis-2.1.jar Apache License 2.0

org.abego.treelayout.core_1.0.1.jar BSD 3-Clause 'New' or 'Revised'
License (BSD-3-Clause)

org.antlr.4-annotations_4.2.1.jar ANTLR 4 License (BSD)

org.antlr.4-runtime_4.2.1.jar ANTLR 4 License (BSD)

org.apache.felix.fileinstall-3.5.0.jar Apache License 2.0

org.apache.felix.gogo.command-
0.14.0.jar

Apache License 2.0

org.apache.felix.gogo.runtime-
0.12.1.jar

Apache License 2.0

org.apache.felix.gogo.shell-0.10.0.jar Apache License 2.0

org.apache.felix.main-4.4.1.jar Apache License 2.0

org.apache.felix.scr-1.8.2.jar Apache License 2.0

org.eclipse.core.contenttype_3.5.100.ja
r

Eclipse Public License 1.0

org.eclipse.core.filesystem_1.6.0.jar Eclipse Public License 1.0

org.eclipse.core.jobs_3.8.0.jar Eclipse Public License 1.0

org.eclipse.core.resources_3.11.0.jar Eclipse Public License 1.0

org.eclipse.core.runtime_3.12.0.jar Eclipse Public License 1.0

org.eclipse.equinox.common_3.8.0.jar Eclipse Public License 1.0

org.eclipse.equi-
nox.preferences_3.6.0.jar

Eclipse Public License 1.0

org.eclipse.jdt.core_3.12.0.jar Apache License 2.0

org.eclipse.osgi_3.11.0.jar Eclipse Public License 1.0

org.eclipse.text_3.6.0.jar Eclipse Public License 1.0

org.objenesis_2.1.0.jar Apache License 2.0

org.restlet Apache License 2.0

org.restlet.ext.json Apache License 2.0

org.restlet.ext.simple Apache License 2.0

org.restlet.lib.org.json Apache License 2.0

org.simpleframework Apache License 2.0

oro_2.0.8.jar Apache License 1.1

Item License
93

https://opensource.org/licenses/MIT
http://www.apache.org/licenses/LICENSE-2.0
http://treelayout.googlecode.com/files/LICENSE.TXT
http://www.antlr.org/license.html
http://www.antlr.org/license.html
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
https://eclipse.org/org/documents/epl-v10.php
https://eclipse.org/org/documents/epl-v10.php
https://eclipse.org/org/documents/epl-v10.php
https://eclipse.org/org/documents/epl-v10.php
https://eclipse.org/org/documents/epl-v10.php
https://eclipse.org/org/documents/epl-v10.php
https://eclipse.org/org/documents/epl-v10.php
http://www.apache.org/licenses/LICENSE-2.0
https://eclipse.org/org/documents/epl-v10.php
https://eclipse.org/org/documents/epl-v10.php
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
https://perl.apache.org/start/LICENSE.txt

plexus-archiver-2.10.1.jar Apache License 2.0

plexus-i18n-1.0-beta-10.jar Apache License 2.0

plexus-io-2.6.jar Apache License 2.0

plexus-utils-2.1.jar Apache License 2.0

plexus-velocity-1.1.8.jar Apache License 2.0

powermock-mockito-1.5.5-full.jar Apache License 2.0

servlet-api.jar Apache License 2.0

spell.jar Apache License 2.0

stax2-api-3.1.1.jar BSD License

velocity-1.7.jar Apache License 2.0

woodstox-core-lgpl-4.2.0.jar GNU LGPL License 2.1

xmlpull_1.1.3.1.jar Public Domain

xpp3.min_1.1.0.4c.jar Public Domain

xstream_1.4.4.jar BSD style

Item License
94

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.opensource.org/licenses/bsd-license.php
http://www.apache.org/licenses/LICENSE-2.0
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
http://www.xmlpull.org/v1/download/unpacked/LICENSE.txt
http://xstream.codehaus.org/license.html

	PARASOFT END USER LICENSE AGREEMENT
	Introduction
	Static Analysis Engine (SAE)
	Unit Test Connector (UTC)
	Code Coverage Engine (CCE)

	Getting Started
	System Requirements
	Windows 32-bit
	Windows 64-bit
	Linux 32-bit
	Linux 64-bit
	Mac OS X 64-bit

	Installing DTP Engines
	JVM, Framework, and Application Setup

	Setting the License
	Local License
	Obtaining the Machine ID

	Network License

	Connecting to DTP Server
	Creating an Encoded Password

	Connecting to Source Control

	Static Analysis Engine
	Basic Analysis
	Specifying Test Data Location
	Settings Property Pattern
	Data File Format
	Example Data File Object

	Displaying Detailed Progress Information
	Ant and Maven Pattern
	Settings Property Pattern

	About Error Codes

	Specifying Test Configurations
	Ant and Maven Pattern
	Settings Property Pattern
	Viewing Available Test Configurations
	Built-in Test Configurations
	Creating Custom Rules

	Defining Test Scope
	Ant and Maven Pattern
	Settings Property Pattern
	Resource Pattern Syntax
	Fine-tuning the Scope
	Ant and Maven Pattern
	Settings Property Pattern

	Creating Project Files
	Example

	Configuring Authorship
	About Authorship Configuration Priority
	Configuring How Authorship is Computed
	Additional Authorship Configurations

	Creating Authorship XML Map Files
	You can use wildcards to map authors to sets of files. The following table contains examples:
	Description

	Suppressing Violations
	Line Suppression
	Line Suppression Examples
	Block Suppression
	Block Suppression Examples

	Code Duplicate Analysis
	Flow Analysis
	Configuring Depth of Flow Analysis
	Setting Timeout Strategy

	Metrics Analysis
	Setting Metrics Thresholds

	Using DTP Engines in an IDE

	Reporting
	Specifying Report Output Location
	Ant and Maven Pattern
	Settings Property Pattern

	Specifying Report Format
	Viewing Reports
	Header
	Static Analysis
	All Findings
	Findings by Author
	Findings by File
	Metrics Summary
	Test Execution
	All Findings
	Findings by Author
	Executed Tests (Details)
	Test Parameters

	Sending Results to Development Testing Platform (DTP) Server
	Ant and Maven Pattern

	Publishing Source Code to DTP Server
	Publishing Sources to DTP Without Running Code Analysis

	Unit Test Connector
	Framework Support Details
	Running JUnit Tests
	Tagging Unique Test Runs

	Associating Tests with Development Artifacts
	Enabling Artifact Associations
	Specifying Issue Tracking Tags
	Configuring Issue Tracking Tags and URL Associations
	Enabling Test Details
	Using Javadoc Tags
	Multiple Associations

	Collecting Coverage

	Code Coverage Engine
	Coverage for Unit Tests
	Merging Coverage Data

	Application Coverage
	Prerequisites
	Process Overview
	Configuring the Application Under Test for Coverage
	Generating the Static Coverage File
	Attaching the Coverage Agent to the AUT
	Configuring the Coverage Agent

	Test Configuration and Execution
	Uploading Test Results to DTP
	Generating a Dynamic Coverage Data File and Uploading it to DTP
	Reviewing Coverage in DTP
	Web Application Coverage Tutorial
	Prerequisites
	Step 1: Preparing Calculator Example
	Step 2a: Deploying Example to Tomcat Application Servers
	Step 2b: Deploying Example to WildFly/JBoss Application Servers
	Step 2c: Deploying Example to Oracle WebLogic Server
	Step 3: Preparing Metadata Files
	Step 4: Generating the javaagent VM Argument
	Step 5a: Collecting Runtime Data from Apache Tomcat
	Step 5b: Collecting Runtime Data from JBoss and WildFly
	JBOss AS 7.1/JBoss EAP 6.4/WildFly 8.2/9.0
	JBOss 6.1/5.1

	Step 5c: Collecting Runtime Data from Oracle WebLogic Server
	Step 6: Produce Coverage Report

	Customizing DTP Engines for Java
	Ant and Maven Pattern
	Settings Hierarchy for Maven
	Viewing Current Settings
	Ant and Maven Pattern
	Settings Property Pattern

	Using Variables
	Settings Reference
	Base Configuration Settings
	Test Configuration Settings
	Development Testing Platform Settings
	Scope and Authorship Settings
	Suppression Settings
	Technical Support Settings
	Report Settings
	General Source Control Settings
	AccuRev Source Control Settings
	ClearCase Source Control Settings
	CVS Source Control Settings
	Git Source Control Settings
	Mercurial Source Control Settings
	Perforce Source Control Settings
	Serena Dimensions Source Control Settings
	StarTeam Source Control Settings
	Subversion Source Control Settings
	Synergy/CM Source Control Settings
	Microsoft Team Foundation Server Source Control Settings
	Microsoft Visual SourceSafe Source Control Settings
	Other Settings

	Integrations
	Build Systems Integration
	Additional Information for Jtest 9.5 Users

	External Analyzers Integration
	Checkstyle
	Downloading and Installing Checkstyle
	Analyzing Code with Checkstyle
	Optional Customizations

	FindBugs
	Downloading and Installing FindBugs
	Analyzing Code with FindBugs
	Optional Customizations

	Integrating with Source Control Systems
	Integrating with CI Tools
	Integrating with Jenkins

	Getting Help
	Technical Support

	Third-Party Content

