
Development Testing Platform Engines
for C/C++ User’s Guide

Version 10.3

Parasoft Corporation
101 E. Huntington Drive, 2nd Floor
Monrovia, CA 91016
Phone: (888) 305-0041
Fax: (626) 305-9048
E-mail: info@parasoft.com
URL: www.parasoft.com

PARASOFT END USER LICENSE
AGREEMENT
PLEASE READ THIS END USER LICENSE AGREEMENT ("AGREEMENT") CAREFULLY BEFORE
USING THE SOFTWARE. PARASOFT CORPORATION ("PARASOFT") IS WILLING TO LICENSE
THE SOFTWARE TO YOU, AS AN INDIVIDUAL OR COMPANY THAT WILL BE USING THE SOFT-
WARE ("YOU" OR "YOUR") ONLY ON THE CONDITION THAT YOU ACCEPT ALL OF THE TERMS
OF THIS AGREEMENT. THIS IS A LEGALLY ENFORCEABLE CONTRACT BETWEEN YOU AND
PARASOFT. BY CLICKING THE "ACCEPT" OR "YES" BUTTON, OR OTHERWISE INDICATING
ASSENT ELECTRONICALLY, OR BY INSTALLING THE SOFTWARE, YOU AGREE TO THE TERMS
AND CONDITIONS OF THIS AGREEMENT AND ALSO AGREE THAT IS IT ENFORCEABLE LIKE
ANY WRITTEN AND NEGOTIATED AGREEMENT SIGNED BY YOU. IF YOU DO NOT AGREE TO
THESE TERMS AND CONDITIONS, CLICK THE "I DO NOT ACCEPT" OR "NO" BUTTON AND
MAKE NO FURTHER USE OF THE SOFTWARE.

1. DEFINITIONS

1.1."Community Edition" means a limited version of certain Software available with a no cost
license. You can execute only one Instance of a Community Edition on a single machine. You
shall provide Parasoft with a valid email address at the time of installation, and such email
address cannot be used by any other individual to register a Community Edition. You may not
transfer the Community Edition to another machine without prior written approval from Para-
soft. You may not tamper or attempt to bypass any of the installation steps for a Community
Edition, and Parasoft shall terminate your right to a Community Edition in the event that you do
so. Notwithstanding any other provisions herein, Parasoft (a) does not provide Maintenance
for Community Editions; (b) provides no warranty for Community Editions; (c) provides no
indemnification for Community Editions; and (d) accepts no liability for Community Editions.

1.2."Concurrent User" means a person that has accessed the Software at any given point in
time, either directly or through an application.

1.3."Instance" means a single occurrence of initialization or execution of software on one
machine. You are prohibited from using more than one Instance on the same machine at the
same time.

1.4."Licensed Capacity" means the capacity-based license pricing metrics, including, without
limitation, Concurrent Users, Node Locked machines, Instances, and Community Editions.

1.5."Maintenance" means the maintenance and technical support services for the Software iden-
tified in the Order Instrument and provided by Parasoft pursuant to this Agreement.

1.6."Node Locked" means a license for a single machine that has been authorized to run a single
Instance of the licensed Software. A Node Locked license requires that users are physically
present and not accessing the machine and using the Software from a remote location.

1.7."Software" means Parasoft's software products, in object code form, that are commercially
available at the time of Your order and identified on the Order Instrument, and any modifica-
tions, corrections and updates provided by Parasoft in connection with Maintenance.

1.8."Territory" means the country or countries in which You have a license to use the Software, as
specified in Your order for the Software; or, if no Territory is specified, the country from which
Your order has been issued.

1.9."User Documentation" means the user's guide, installation guides, and/or on-line documen-
tation applicable to the Software. User Documentation does not include marketing materials
or responses to requests for proposals.

2. GRANT OF LICENSE AND USE OF SOFTWARE

2.1.License Grant. Subject to the terms and conditions of this Agreement, Parasoft grants to You
a non-exclusive license to use the Software within the Territory, in accordance with the User
Documentation and in compliance with the authorized Licensed Capacity. This license may be
perpetual or for a limited duration term, as stated in (a) an executed agreement between You
and Parasoft; (b) a sales quotation from Parasoft; (c) a purchase order that You issue to Para-
soft; or (d) the online ordering process found on Parasoft's website or an authorized third
party's website. You acknowledge and agree that this Agreement only grants a license to the
Software as set forth herein and does not constitute a sale of the Software by Parasoft. You
have no right to resell the Software, whether by contract or by operation of applicable copyright
law.

2.2.Usage Rights. You may only use the Software and/or the User Documentation for Your inter-
nal business operations and to process Your data. You shall not (a) permit any third parties or
non-licensed entities to use the Software or the User Documentation; (b) process or permit to
be processed any data that is not Your data; (c) use the Software in the operation of a service
bureau; (d) sublicense, rent, or lease the Software or the User Documentation to a third party;
or (e) perform, publish, or release to any third parties any benchmarks or other comparisons
regarding the Software or User Documentation. You shall not make simultaneous use of the
Software on multiple, partitioned, virtual, or cloud hosted computers without first procuring an
appropriate number of licenses from Parasoft. You shall not bypass or attempt to bypass any
licensing controls either contained within the Software or imposed by Parasoft. You shall not
permit a third party outsourcer to use the Software to process data on Your behalf without
Parasoft's prior written consent.

2.3.License Keys. You acknowledge that the Software contains one or more license keys that will
enable the functionality of the Software and third party software embedded in or distributed
with the Software. You may only access and use the Software with license keys issued by
Parasoft, and shall not attempt to modify, tamper with, reverse engineer, reverse compile, or
disassemble any license key. If Parasoft issues a new license key for the Software, You shall
not use the previous license key to enable the Software. If a particular license is then currently
on Maintenance, You may transfer such license to a different machine and request a new
license key from Parasoft.

2.4.Archival Copies. You may make one copy of the Software for back-up and archival purposes
only. You may make a reasonable number of copies of the User Documentation for Your inter-
nal use. All copies of Software and User Documentation must include all copyright and similar
proprietary notices appearing on or in the originals. Copies of the Software may be stored off-
site provided that all persons having access to the Software are subject to Your obligations
under this Agreement and You take reasonable precautions to ensure compliance with these
obligations. Parasoft reserves the right to revoke permission to reproduce copyrighted and
proprietary material if Parasoft reasonably believes that You have failed to comply with its obli-
gations hereunder.

2.5.Licensed Capacity. Parasoft licenses Software based on Licensed Capacity for different
types of usage, including, without limitation, Concurrent Users, Node Locked machines, and
Community Editions. A Concurrent User license allows multiple Concurrent Users to share
access to and use the Software, provided that the number of Concurrent Users accessing the
Software at any time does not exceed the total number of licensed Concurrent Users. A Node
Locked license allows a single specified machine to run a single Instance of the Software. If
an application accessing the Software is a multiplexing, database, or web portal application
that permits users of such application to access the Software or data processed by the Soft-
ware, a separate Concurrent User license will be required for each Concurrent User of such
application. Regardless of usage type, You shall immediately notify Parasoft in writing of any
increase in use beyond the Licensed Capacity. You must obtain a license for any increase in

Licensed Capacity, and You agree to pay to Parasoft additional Software license fees, which
will be based on Parasoft's then-current list price.

2.6.Third Party Terms. You acknowledge that software provided by third party vendors ("Third
Party Software") may be embedded in or delivered with the Software. The terms of this Agree-
ment and any other terms that Parasoft may specify will apply to such Third Party Software,
and the Third Party Software vendors will be deemed third party beneficiaries under this
Agreement. You may only use the Third Party Software with the Software. You may not use
the Third Party Software on a stand-alone basis or use or integrate it with any other software or
device.

2.7.Evaluation License. This Section 2.7 applies if Parasoft has provided the Software to You for
evaluation purposes. Parasoft grants to You a thirty (30) day, limited license solely for the pur-
pose of internal evaluation. You are strictly prohibited from using the Software for any produc-
tion purpose or any purpose other than the sole purpose of determining whether to purchase a
commercial license for the Software that You are evaluating. Parasoft is not obligated to pro-
vide maintenance or support for the evaluation Software. YOU ACKNOWLEDGE THAT
SOFTWARE PROVIDED FOR EVALUATION MAY (A) HAVE LIMITED FEATURES; (B)
FUNCTION FOR A LIMITED PERIOD OF TIME; OR (C) HAVE OTHER LIMITATIONS NOT
CONTAINED IN A COMMERCIAL VERSION OF THE SOFTWARE. NOTWITHSTANDING
ANYTHING TO THE CONTRARY IN THIS AGREEMENT, PARASOFT IS PROVIDING THE
EVALUATION SOFTWARE TO YOU "AS IS", AND PARASOFT DISCLAIMS ANY AND ALL
WARRANTIES (INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE, AND STATUTORY WARRANTIES OF
NON-INFRINGEMENT), LIABILITIES, AND INDEMNIFICATION OBLIGATIONS OF ANY
KIND. In the event of any conflict between this Section 2.7 and any other provision of this
Agreement, this Section 2.7 will prevail and supersede such other provision with respect to
Software licensed to You for evaluation purposes.

2.8.Education License. If You are an educational or academic institution and are receiving a dis-
count from Parasoft, You may use the Software solely for education or academic purposes and
You may not use the Software for any commercial purpose. Parasoft may require that You pro-
vide proof of your status as an educational or academic institution.

2.9.Audit. You shall maintain accurate business records relating to its use and deployment of the
Software. Parasoft shall have the right, not more than once every twelve (12) months and
upon ten (10) business days prior written notice, to verify Your compliance with its obligations
under this Agreement by auditing Your business records and Your use and deployment of the
Software within Your information technology systems. Parasoft and/or a public accounting firm
selected by Parasoft shall perform the audit during Your regular business hours and comply
with Your reasonable safety and security policies and procedures. Any agreement You may
require the public accounting firm to execute shall not prevent disclosure of the audit results to
Parasoft. You shall reasonably cooperate and assist with such audit. You shall, upon demand,
pay to Parasoft all license and Maintenance fees for any unauthorized deployments and/or
excess usage of Software products disclosed by the audit. License fees for such unautho-
rized deployments and/or excess usage shall be invoiced to and paid by You at Parasoft's
then-current list price, and applicable Maintenance fees shall be applied retroactively to the
entire period of the unauthorized and/or excess usage. Parasoft shall be responsible for its
own costs and expenses in conducting the audit, unless the audit indicates that You have
exceeded its Licensed Capacity or otherwise exceeds its license restrictions, such that the
then-current list price of non-compliant Software deployment exceeds five percent (5%) of the
total then-current list price of the Software actually licensed by You, in which event You shall,
upon demand, reimburse Parasoft for all reasonable costs and expenses of the audit.

3. TITLE. Parasoft retains all right, title and interest in and to the Software and User Documenta-
tion and all copies, improvements, enhancements, modifications and derivative works of the
Software and User Documentation, including, without limitation, all patent, copyright, trade

secret, trademarks and other intellectual property rights. You agrees that it shall not, and shall
not authorize others to, copy (except as expressly permitted herein), make modifications to,
translate, disassemble, decompile, reverse engineer, otherwise decode or alter, or create
derivative works based on the Software or User Documentation. Except as otherwise pro-
vided, Parasoft grants no express or implied rights under this license to any of Parasoft's pat-
ents, copyrights, trade secrets, trademarks, or other intellectual property rights..

4. TERMINATION

4.1.Default; Bankruptcy. Parasoft may terminate this Agreement if (a) You fail to pay any amount
when due under any order You have placed with Parasoft and do not cure such non-payment
within ten (10) days of receipt of written notice of non-payment; (b) You materially breach this
Agreement and do not cure such breach within thirty (30) days of receipt of written notice of
such breach; (c) subject to provisions of applicable bankruptcy and insolvency laws, You
become the subject of any involuntary proceeding relating to insolvency and such petition or
proceeding is not dismissed within sixty (60) days of filing; or (d) You become the subject of
any voluntary or involuntary petition pursuant to applicable bankruptcy or insolvency laws, or
request for receivership, liquidation, or composition for the benefit of creditors and such peti-
tion, request or proceeding is not dismissed within sixty (60) days of filing.

4.2.Effect of Termination. Upon termination of this Agreement, You shall immediately discon-
tinue use of, and uninstall and destroy all copies of, all Software. Within ten (10) days follow-
ing termination, You shall certify to Parasoft in a writing signed by an officer of Yours that all
Software has been uninstalled from Your computer systems and destroyed.

5. LIMITED WARRANTY

5.1.Performance Warranty. Parasoft warrants that the Software, as delivered by Parasoft and
when used in accordance with the User Documentation and the terms of this Agreement, will
substantially perform in accordance with the User Documentation for a period of ninety (90)
days from the date of initial delivery of the Software. If the Software does not operate as war-
ranted and You have provided written notice of the non-conformity to Parasoft within the ninety
(90) day warranty period, Parasoft shall at its option (a) repair the Software; (b) replace the
Software with software of substantially the same functionality; or (c) terminate the license for
the nonconforming Software and refund the applicable license fees received by Parasoft for
the nonconforming Software. The foregoing warranty specifically excludes defects in or
non-conformance of the Software resulting from (a) use of the Software in a manner not in
accordance with the User Documentation; (b) modifications or enhancements to the Software
made by or on behalf of You; (c) combining the Software with products, software, or devices
not provided by Parasoft; or (d) computer hardware malfunctions, unauthorized repair, acci-
dent, or abuse.

5.2.Disclaimers. THE WARRANTIES SET FORTH IN THIS SECTION 5 ARE EXCLUSIVE AND
IN LIEU OF ALL OTHER WARRANTIES, WHETHER EXPRESS OR IMPLIED, AND PARA-
SOFT EXPRESSLY DISCLAIMS ALL OTHER WARRANTIES, INCLUDING ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
STATUTORY WARRANTIES OF NON-INFRINGEMENT. PARASOFT DOES NOT WARRANT
THAT THE SOFTWARE WILL MEET YOUR REQUIREMENTS OR THAT USE OF THE
SOFTWARE WILL BE UNINTERRUPTED OR ERROR FREE. THE REMEDIES SET FORTH
IN THIS SECTION 5 ARE YOUR SOLE AND EXCLUSIVE REMEDIES AND PARASOFT'S
SOLE AND EXCLUSIVE LIABILITY REGARDING FAILURE OF ANY SOFTWARE TO FUNC-
TION OR PERFORM AS WARRANTED IN THIS SECTION 5.

6. INDEMNIFICATION

6.1. Infringement. Parasoft shall defend any claim against You that the Software infringes any
intellectual property right of a third party, provided that the third party is located in a country
that is a signatory to the Berne Convention, and shall indemnify You against any and all dam-
ages finally awarded against You by a court of final appeal, or agreed to in settlement by Para-

soft and attributable to such claim, so long as You (a) provide Parasoft prompt written notice of
the claim; (b) provide Parasoft all reasonable assistance and information to enable Parasoft to
perform its duties under this Section 6; (c) allow Parasoft sole control of the defense and all
related settlement negotiations; and (d) have not compromised or settled such claim. If the
Software is found to infringe, or if Parasoft determines in its sole opinion that it is likely to be
found to infringe, then Parasoft may, at its option (a) obtain for You the right to continue to use
the Software; (b) modify the Software to be non-infringing or replace it with a non-infringing
functional equivalent, in which case You shall stop using any infringing version of the Software;
or (c) terminate Your rights and Parasoft's obligations under this Agreement with respect to
such Software and refund to You the unamortized portion of the Software license fee paid for
the Software based on a five year straight-line depreciation schedule commencing on the date
of delivery of the Software. The foregoing indemnity will not apply to any infringement resulting
from (a) use of the Software in a manner not in accordance with the User Documentation; (b)
modifications or enhancements to the Software made by or on behalf of You; (c) combination,
use, or operation of the Software with products not provided by Parasoft; or (d) use of an alleg-
edly infringing version of the Software if the alleged infringement could be avoided by the use
of a different version of the Software made available to You.

6.2.Disclaimers. THIS SECTION 6 STATES YOUR SOLE AND EXCLUSIVE REMEDY AND
PARASOFT'S SOLE AND EXCLUSIVE LIABILITY REGARDING INFRINGEMENT OR MIS-
APPROPRIATION OF ANY INTELLECTUAL PROPERTY RIGHTS OF A THIRD PARTY.

7. LIMITATION OF LIABILITY. IIN NO EVENT WILL PARASOFT OR ITS THIRD PARTY VEN-
DORS BE LIABLE TO YOU OR ANY OTHER PARTY FOR (A) ANY SPECIAL, INCIDENTAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OR (B) LOSS OF DATA, LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR SIMILAR DAMAGES OR LOSS, EVEN IF PARASOFT AND
ITS THIRD PARTY VENDORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. EXCEPT AS LIMITED BY APPLICABLE LAW AND EXCLUDING PARASOFT'S
LIABILITY TO YOU UNDER SECTION 6 (INDEMNIFICATION), AND REGARDLESS OF THE
BASIS FOR YOUR CLAIM, PARASOFT'S MAXIMUM LIABILITY UNDER THIS AGREEMENT
WILL BE LIMITED TO THE LICENSE OR MAINTENANCE FEES PAID FOR THE SOFT-
WARE OR MAINTENANCE GIVING RISE TO THE CLAIM. THE FOREGOING LIMITATIONS
WILL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY
LIMITED REMEDY.

8. CONFIDENTIAL INFORMATION. For purposes of this Agreement, "Confidential Information"
will include trade secrets contained within the Software and User Documentation, the terms
and pricing of the Software and Maintenance (including any pricing proposals), and such other
information (a) identified by either party as confidential at the time of disclosure or (b) that a
reasonable person would consider confidential due to its nature and circumstances of disclo-
sure ("Confidential Information"). Confidential Information will not include information that (a)
is or becomes a part of the public domain through no act or omission of the receiving party; (b)
was in the receiving party's lawful possession prior to receiving it from the disclosing party; (c)
is lawfully disclosed to the receiving party by a third party without restriction on disclosure; or
(d) is independently developed by the receiving party without breaching this Agreement. Each
party agrees to maintain all Confidential Information in confidence and not disclose any Confi-
dential Information to a third party or use the Confidential Information except as permitted
under this Agreement. Each party shall take all reasonable precautions necessary to ensure
that the Confidential Information is not disclosed by such party or its employees, agents or
authorized users to any third party. Each party agrees to immediately notify the other party of
any unauthorized access to or disclosure of the Confidential Information. The receiving party
agrees that any breach of this Section 8 may cause irreparable harm to the disclosing party,
and such disclosing party shall be entitled to seek equitable relief in addition to all other reme-
dies provided by this Agreement or available at law.

9. MAINTENANCE

9.1.Maintenance Period. If You have purchased a perpetual license, You are required to pur-
chase first year Maintenance with the Software, and the Maintenance period will commence
upon the initial delivery of the Software and continue for a period of one year. If You have pur-
chased a term license, Maintenance during the term is included at no additional charge. The
Maintenance period, at Your option, may be renewed pursuant to subsequent orders. Prior to
such renewal, Parasoft may, upon ten (10) business days written notice, require You to provide
a report on Your use and deployment of the Software. Such report will be certified by an officer
of Yours and will specify, with respect to Your Software: (a) the type and amount of Licensed
Capacity; (b) the version; and (c) the Parasoft license serial number. Parasoft shall issue an
annual renewal notice to You at least ninety (90) days prior to the expiration of the then-current
Maintenance period. Maintenance fees will be based on the then-current list price and are
subject to change without notice.

9.2.Support Coordinators. Maintenance will consist of support services provided by Parasoft to
one designated support coordinator of Yours (and one backup coordinator) per Your location,
by telephone, email, and website. Support is available during normal business hours in the
applicable location within the Territory, Monday through Friday, excluding nationally observed
holidays.

9.3.Additional Licensed Capacity. Additional Licensed Capacity. In the event that You pur-
chases additional Licensed Capacity for the Software prior to the annual anniversary date of
the Maintenance period, You agree to pay applicable Maintenance fees based on Parasoft's
then-current Maintenance rates. Maintenance fees will apply from the effective date of such
additional Licensed Capacity and continue for a period of one year thereafter, unless otherwise
agreed to in writing by the parties, so that Maintenance for Your previously acquired Software
and added Licensed Capacity is coterminous.

9.4.New Releases. During any period in which You are current on Maintenance, Parasoft shall
provide You with any new release of the Software, which may include generally available error
corrections, modifications, maintenance patch releases, enhancements (unless priced sepa-
rately by Parasoft and generally not included with new licenses for the Software at that time),
and the revised User Documentation, if applicable. Notwithstanding the foregoing, stand-alone
error corrections that are not part of a new release will not be independently supported but will
be incorporated into the next release of the Software. If You install a new release of the Soft-
ware, You may continue to use the previous version of the Software for up to ninety (90) days
in order to assist You in the transition to the new release. Once You complete its transition to
the new release of the Software, You must discontinue use of the previous version of the Soft-
ware.

9.5.Supported Releases. Parasoft shall continue to support the immediately preceding release of
the Software for a period of twelve (12) months following the discontinuance of such Software
or the date on which the new release becomes generally available, provided that You have
paid applicable Maintenance fees and incorporated all Maintenance patch releases issued by
Parasoft for the release of the Software.

9.6.Reinstatement of Maintenance. If You allow Maintenance to expire, You may, at a later date,
renew Maintenance by paying the following: (a) if You have installed the current release of the
Software but have failed to pay the applicable renewal fee on or before the ninetieth (90th) day
following expiration of the Maintenance period, annual Maintenance fees at Parasoft's
then-current rates, plus Parasoft's then-current reinstatement fee; or (b) if You have not
installed the current release of the Software or have failed to pay the applicable renewal fee by
the ninetieth (90th) day following expiration of the Maintenance period, annual Maintenance
fees at Parasoft's then-current rates, plus Parasoft's then-current license update fee for the
current release of the Software.

10. GENERAL

10.1.Independent Contractors. The parties acknowledge and agree that each is an independent
contractor. This Agreement will not be construed to create a partnership, joint venture or
agency relationship between the parties.

10.2.Entire Agreement. The terms and conditions of this Agreement apply to all Software
licensed, all User Documentation provided, and all Maintenance purchased hereunder. This
Agreement will supersede any different, inconsistent or preprinted terms and conditions in any
order form of Yours, purchase order or other ordering document.

10.3.Assignment. You have no right to assign, sublicense, pledge, or otherwise transfer any of
Your rights in and to the Software, User Documentation or this Agreement, in whole or in part
(collectively, an "Assignment"), without Parasoft's prior written consent, and any Assignment
without such consent shall be null and void. Any change in control of Your organization or
entity, whether by merger, share purchase, asset sale, or otherwise, will be deemed an Assign-
ment subject to the terms of this Section 10.3.

10.4.Force Majeure. No failure, delay or default in performance of any obligation of a party to this
Agreement, except payment of license fees due hereunder, will constitute an event of default
or breach of the Agreement to the extent that such failure to perform, delay or default arises
out of a cause, existing or future, that is beyond the reasonable control of such party, including,
without limitation, action or inaction of a governmental agency, civil or military authority, fire,
strike, lockout or other labor dispute, inability to obtain labor or materials on time, flood, war,
riot, theft, earthquake or other natural disaster ("Force Majeure Event"). The party affected by
such Force Majeure Event shall take all reasonable actions to minimize the consequences of
any Force Majeure Event.

10.5.Severability. If any provision of this Agreement is held to be illegal or otherwise unenforce-
able by a court of competent jurisdiction, that provision will be severed and the remainder of
the Agreement will remain in full force and effect.

10.6.Waiver. The waiver of any right or election of any remedy in one instance will not affect any
rights or remedies in another instance. A waiver will be effective only if made in writing and
signed by an authorized representative of the applicable party.

10.7.Notices. All notices required by this Agreement will be in writing, addressed to the party to be
notified and deemed to have been effectively given and received (a) on the fifth business day
following deposit in the mail, if sent by first class mail, postage prepaid; (b) upon receipt, if sent
by registered or certified U.S. mail, postage prepaid, with return receipt requested; (c) upon
transmission, if sent by facsimile and confirmation of transmission is produced by the sending
machine and a copy of such facsimile is promptly sent by another means specified in this Sec-
tion 10.7; or (d) upon delivery, if delivered personally or sent by express courier service and
receipt is confirmed by the recipient. Notices will be addressed to the parties based on the
address stated in the applicable order, to the attention of the Legal Department. A change of
address for notice purposes may be made pursuant to the procedures set forth above.

10.8.Export Restrictions. You acknowledge that the Software and certain Confidential Informa-
tion (collectively "Technical Data") are subject to United States export controls under the U. S.
Export Administration Act, including the Export Administration Regulations, 15 C.F.R. Parts
730 et seq. (collectively, "Export Control Laws"). Each party agrees to comply with all require-
ments of the Export Control Laws with respect to the Technical Data. Without limiting the fore-
going, You shall not (a) export, re-export, divert or transfer any such Technical Data, or any
direct product thereof, to any destination, company, or person restricted or prohibited by Export
Control Laws; (b) disclose any such Technical Data to any national of any country when such
disclosure is restricted or prohibited by the Export Control Laws; or (c) export or re-export the
Technical Data, directly or indirectly, for nuclear, missile, or chemical/biological weaponry end
uses prohibited by the Export Control Laws.

10.9.U. S. Government Rights. The Software and User Documentation are deemed to be "com-
mercial computer software" and "commercial computer software documentation" as defined in
FAR Section 12.212 and DFARS Section 227.7202, as applicable. Any use, modification,
reproduction, release, performance, display, or disclosure of the Software and User Documen-
tation by the United States government will be solely in accordance with the terms of this
Agreement.

10.10.Choice of Law; Jurisdiction. This Agreement is governed by and construed in accordance
with the laws of the State of California, U. S. A., exclusive of any provisions of the United
Nations Convention on Contracts for the International Sale of Goods, including any amend-
ments thereto, and without regard to principles of conflicts of law. Any suits concerning this
Agreement will be brought in the federal courts for the Central District of California or the state
courts in Los Angeles County, California. The parties expressly agree that the Uniform Com-
puter Information Transactions Act, as adopted or amended from time to time, will not apply to
this Agreement or the Software and Maintenance provided hereunder.

10.11.Amendment. This Agreement may only be modified by a written document signed by an
authorized representative of Parasoft and by You.

10.12.Survival. Any terms of this Agreement which by their nature extend beyond the termination
or expiration of this Agreement will remain in effect. Such terms will include, without limitation,
all provisions herein relating to limitation of liability, title and ownership of Software, and all
general provisions.

Parasoft Corporation

101 East Huntington Drive, 2nd Floor

Monrovia, CA 91016 USA

 +1 (626) 256-3680

 +1 (888) 305-0041 (USA only)

 +1 (626) 256-9048 (Fax)

 info@parasoft.com

 http://www.parasoft.com

Printed in the U.S.A, May 16, 2017

Table of Contents

Introduction

Static Analysis Engine (SAE) ...5

Unit Test Connector (UTC) ...5

Code Coverage Engine (CCE) ...5

Getting Started

System Requirements ..6

Installing DTP Engines ...6

Setting the License ...7

Connecting to DTP Server ..8

Connecting to Source Control ..8

Static Analysis Engine

Basic Analysis ... 11

Prerequisites ...11

Analyzing a Single File ...11

Analyzing a Makefile-based Project ...12

Re-analyzing a Project without Re-building ..14

Generating a .csv Report ..15

Testing a Microsoft Visual Studio Project or Solution15

Specifying Test Data Location ..16

Specifying Test Configurations.. 17

Viewing Available Test Configurations ...17

Built-in Test Configurations ..18

Creating Custom Rules ..20

Compiler Configuration.. 21

Specifying Multiple Compilers ..21

Working with Custom Compiler Configurations21

Defining Input Scope .. 22

Analyzing a Single File ...22

Analyzing a Makefile-based Project ...22

Analyzing Code Using Existing Build Data ...22

Defining Source File Structures (Modules) ...22

Fine-tuning the Input Scope ...23

Configuring Authorship.. 25

About Authorship Configuration Priority ...25

Configuring How Authorship is Computed ..25

Creating Authorship XML Map Files ...26

Suppressing Violations.. 27

Line Suppression ..27

Flow Analysis .. 29

Configuring Depth of Flow Analysis ..29

Setting Timeout Strategy ..30

Running Flow Analysis in Incremental Mode ..30

Running Flow Analysis with Swapping of Analysis Data Enabled30

Configuring Verbosity of Flow Analysis ..31

Specifying Terminating Functions ..31

Specifying Multithreading Options ..32

Specifying Resources ...34

Reusing Flow Analysis Data for Desktop Analysis36

Compiler-specific Settings ..36

Metrics Analysis .. 38

Setting Metrics Thresholds ...38

Code Duplicate Analysis ... 39

Using DTP Engines in an IDE ... 40

Reporting

Specifying Report Output Location ...41

Specifying Report Format ...41

Viewing Reports ...41

Sending Results to Development Testing Platform (DTP) Server47

Publishing Source Code to DTP Server ...47

Unit Test Connector

Google Test Connector ..49

CppUnit and CppUtest Connector ..51

Reporting Assertions ..54

Code Coverage Engine

Instrumenting and Building Source Code ...56

Executing Instrumented Code ..57

Generating Reports ..57

CCE Usage Example ..58

Integrating with Make-based Build Systems ...59

Integrating with MSBuild ...61

Using Coverage Tool for Complex Projects ...62

Annotating Results Stream with Test Start/Stop Information63

Code Coverage Engine Runtime Library ..64

Customizing the Runtime Library ...66

Building the Runtime Library ..71

Customizing DTP Engines for C/C++

Modifying a Single Property ..76

Viewing Current Settings ..76

Advanced Configuration ...76

Using Variables ..77

Settings Reference ...77

Integrations

Integrating with Source Control Systems 102

Integrating with CI Tools.. 103

Integrating with Jenkins ..103

Supported Compilers

Custom-developed and Deprecated Compilers107

Getting Help

Technical Support ...111

 Troubleshooting ...111

Third-Party Content

5

Introduction
Parasoft Development Testing Platform (DTP) Engines for C/C++ are integrated solutions for
automating a broad range of best practices to improve productivity and software quality. DTP Engines
are a component of the Parasoft Development Testing Platform family of software quality
solutions.Please read the following guide for additional information about how DTP Engines integrate
into Parasoft’s Development Testing ecosystem:

The Parasoft Development Testing Solution (PDF)

This documentation provides information on how to use the following engines:

Static Analysis Engine (SAE)
SAE enforces your coding policy with proven quality practices, such as static analysis and flow
analysis, to ensure that your C and C++ applications function as expected. See “Static Analysis
Engine”, page 10.

Unit Test Connector (UTC)
UTC allows you to run unit tests from open format tools, and report results to Development Testing
Platform (DTP) Server. See “Unit Test Connector”, page 49.

Code Coverage Engine (CCE)
CCE collects coverage information during a run of the executable and generates reports that can be
sent to DTP Server. See “Code Coverage Engine”, page 56.

Parasoft_Development_Testing.pdf

Getting Started
This chapter will help you verify that your system meets the requirements for using DTP Engines, as
well as help you configure DTP Engines so you can quickly start analyzing code.

System Requirements

Windows 32-bit
• Windows 7, Windows 8

• 4GB memory minimum*

• 2GHz or faster processor (x86-compatible), multi-CPU configuration recommended

• Supported C / C++ compiler

Windows 64-bit
• Windows 7 (x64), Windows 8 (x64), Windows 10, Windows 2008 Server (x64), Windows

Server 2012

• 4GB memory minimum, 8GB recommended*

• 2GHz or faster processor (x86_64-compatible), multi-CPU configuration recommended

• Supported C / C++ compiler

Linux 32-bit
• Linux kernel 2.6 (or newer) with glibc 2.9 (or newer)

• 4GB memory minimum*

• 2GHz or faster processor (x86-compatible), multi-CPU configuration recommended

• Supported C / C++ compiler

Linux 64-bit
• Linux kernel 2.6 (or newer) with glibc 2.12 (or newer)

• 4GB memory minimum, 8GB recommended*

• 2GHz or faster processor (x86_64-compatible), multi-CPU configuration recommended

• Supported C / C++ compiler

*DTP Engines for C/C++ may allocate up to 1GB RAM on 32-bit machines or up to 2GB RAM on 64-bit
machines for the Java Virtual Machine process. You can change memory allocation for the JVM pro-
cess in the [INSTALL_DIR]/etc/cpptestcli.jvm configuration file (-Xmx option). When running an
analysis, DTP Engines’ native code analyzers will require additional memory, depending on the test
configuration parameters.

Installing DTP Engines
1. Unpack the distribution file. A directory ([NSTALL_DIR]) called "cpptest" that contains all DTP

Engine files will be created.
6

2. Add [INSTALL_DIR] to $PATH to enable convenient access to the cpptestcli executable.

3. Add [INSTALL_DIR]/bin to $PATH to enable convenient access to utility tools, including the
tool for instrumenting the code for coverage (cpptestcc).

Remove the installation directory from disk to uninstall DTP Engines.

Setting the License
DTP Engines can run on either a local or a network license. There are two types of network licenses:

• dtp: This license is stored in DTP. Your DTP license limits analysis to the number of files spec-
ified in your licensing agreement. This is the default type when license.use_network is set to
true.

• ls: This is a "floating" or "machine-locked" license that limits usage to a specified number of
machines. This type of license is stored in DTP in License Server.

Network licenses are also available in three editions that determine what functionality is available:

• desktop_edition: Functionality is optimized for desktop usage.

• server_edition: Functionality configured for high performance usage in server command line
mode.

• custom_edition: functionality can be customized.

Local License
In the .properties configuration file:

1. Set the cpptest.license.use_network property to false

2. Set the cpptest.license.local.password property with your password

Obtaining the Machine ID
If you are using a local license, you will need your machine ID to request a license from Parasoft. Run
the following command from a command line window to obtain your machine ID:

Network License
In the .properties configuration file:

1. Set the cpptest.license.use_network property to true

If you are using Azure or AWS services, you need to configure the cloudvm option in the .properties
configuration file. You can set the option to one of the following values:

• azure - Enables integration with Azure

• aws - Enables integration with AWS

• true - Enables integration with the automatically detected cloud computing platform

• false - Disables integration (the default value)

If you set the value to false or if the option is not configured, integration with Azure or AWS is
disabled.

cpptestcli -machineID
7

2. Set the cpptest.license.network.type

3. Set the cpptest.license.network.edition

Connecting to DTP Server
Connecting to DTP Server is required for licensing, as well as extending other team-working capabili-
ties, such as:

• Reporting analysis to a centralized database (see “Sending Results to Development Testing
Platform (DTP) Server”, page 47)

• Sharing test configurations

• Sharing static analysis rules

Modify the following settings in the [INSTALL_DIR]\cpptestcli.properties file to configure the con-
nection to DTP Server.

Creating an Encoded Password
DTP Engines can encrypt your password, which adds a layer of security to your interactions with DTP
Server. Run the following command to print an encoded password:

Copy the encoded password that is returned and paste it into the cpptestcli.properties file.

Connecting to Source Control
Parasoft DTP Engines ship with out-of-the-box support for the following SCMs:

dtp.server=[SERVER]

dtp.port=[PORT]

dtp.user=[USER]

dtp.password=[PASSWORD]

-encodepass [MYPASSWORD]

dtp.password=[ENCODED PASSWORD]

Brand Tested Version

AccuRev 4.6, 5.4, 6.2

ClearCase 2003.06, 7.0, 8.0

CVS 1.1.2

Git 1.7

Mercurial 1.8.0 - 3.6.3

Perforce 2006, 2012, 2013, 2014, 2015

Serena Dimensions 9.1, 10.1, 10.3 (2009 R2), 12.2
8

Edit the cpptestcli.properties file located in the installation directory to connect to your SCM.
Parameters will vary depending on the brand of your SCM. The following example shows the parame-
ters required to connect to SVN:

See “Customizing DTP Engines for C/C++”, page 76, for information about configuring your SCM con-
nection.

If you have C++test 9.5 or later, you can use its interface to configure integration with source control
systems. See “Integrating with Source Control Systems”, page 102 for details.

Star Team 2005, 2008, 2009

Subversion (SVN) 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9

Synergy/CM 6.4, 7.0, 7.1

Microsoft Team Foundation Server 2008, 2010, 2012, 2013, 2015

Visual SourceSafe 5.0, 6.0, 2005

scontrol.rep.type=svn

scontrol.rep.svn.url=https://svn_server/

scontrol.rep.svn.login=username

scontrol.rep.svn.password=password

scontrol.svn.exec=C:\\path\to\svn.exe

Brand Tested Version
9

10

Static Analysis Engine
Static Analysis Engine (SAE) enforces your coding policy with proven quality practices, such as static
analysis and flow analysis, to ensure that your applications function as expected. The following sec-
tions describe how to analyze code with SAE.

• Basic Analysis

• Specifying Test Configurations

• Defining Input Scope

• Code Duplicate Analysis

• Using DTP Engines in an IDE

Basic Analysis
Basic Analysis
Executable
Verify that the executable (cpptestcli) is on $PATH. See “Installing DTP Engines”, page 6.

Prerequisites

Compiler
Static Analysis Engine must be configured for use with specific C and C++ compilers and versions
before you can analyze code. The configuration should reflect the original compiler and version used
for building the code under test. The original compiler executable must be available on $PATH (unless
it is specified with a full path).

Use the -compiler switch to specify the compiler configuration identifier:

Alternatively, the cpptest.compiler.family entry could be added to a custom configuration file:

If you are using a single compiler and version for all testing, the compiler identifier can be specified in
the cpptestcli.properties global configuration file in either the [INSTALL_DIR] or [USER_HOME]
directory.

Compiler Discovery
Perform one of the following actions to find the configuration for that compiler:

• Use the -detect-compiler switch to auto-detect configuration:

• Use the -list-compilers switch to find the configuration in the list of all supported compilers:

Also see “Compiler Configuration”, page 21, and “Supported Compilers”, page 104, for additional
information.

About Usage Examples
The following instructions assume that:

• GNU GCC 3.4 compiler is being used (configuration identifier: gcc_3_4)

• The prerequisites discussed above have been met.

• Users are running commands in the [INSTALL_DIR]/examples/ATM directory.

Analyzing a Single File

cpptestcli -config "builtin://Recommended Rules" -compiler gcc_4_5 -input
cpptest.bdf

cpptest.compiler.family=gcc_4_5

cpptestcli -detect-compiler gcc

cpptestcli -list-compilers
11

Basic Analysis
Run an analysis and specify the original compiler command with the -- switch (separator):

Static Analysis Engine will analyze the Bank.cxx file using the original compiler executable and com-
piler options and report detected violations to the output console.

All values after -- switch will be interpreted as a compiler command, so options specific to Static Anal-
ysis Engine must be specified before -- switch.

Only the specified source files will be analyzed. Header files included by the source files will be
excluded from analysis. To broaden the scope of files tested, including header files, see “Defining
Input Scope”, page 22.

Analyzing a Makefile-based Project
Run code analysis and specify the original build command with the -trace switch:

Static Analysis Engine will perform the following tasks:

1. Run the original build (make clean all)

2. Detect which files to test

3. Run the analysis for these files

4. Report results to the output console

5. Store all build information in the cpptest.bdf file for future runs (see “About Build Data Files”,
page 12, for additional information about build data files)

All values after -trace will be interpreted as a build command, so options specific to Static Analysis
Engine must be specified before -trace. Additionally, Static Analysis Engine will detect a source file for
testing only if that file was compiled when running the build command. Only source files from Makefile
will be analyzed. Header files included by the source files will be excluded from analysis. To broaden
the scope of files tested, including header files, see “Defining Input Scope”, page 22.

About Build Data Files
You can create a build data file (.bdf), which stores information such as the working directory, com-
mand line options for the compilation, and link processes of the original build, so that Static Analysis
Engine can analyze a project without having to rebuild it. The following example is a fragment from a
build data file:

working_dir=/home/place/project/hypnos/pscom
project_name=pscom
arg=g++
arg=-c
arg=src/io/Path.cc
arg=-Iinclude
arg=-I.
arg=-o
arg=/home/place/project/hypnos/product/pscom/shared/io/Path.o

You can use the -trace switch to create a .bdf (see “Analyzing a Makefile-based Project”, page 12) or
use the standalone cpptestscan or cpptesttrace utility located in the [INSTALL_DIR]/bin directory.

cpptestcli -config "builtin://Recommended Rules" -compiler gcc_3_4 -- gcc -I
include Bank.cxx

cpptestcli -config "builtin://Recommended Rules" -compiler gcc_3_4 -trace make
clean all
12

Basic Analysis
Using cpptestscan and cpptesttrace Utilities
The cpptestscan utility is used as a wrapper for the compiler and/or linker during the normal build. To
use cpptestscan with an existing build, prefix the compiler/linker executable with cpptestscan when
building the code base. This can be done in two ways:

• Modify the build command line to use cpptestscan as the wrapper for the compiler/linker exe-
cutables

• If you aren’t able to override the compiler variable on the command line, embed cpptestscan
in the actual make file or build script.

To use cpptesttrace with an existing build, prefix the entire build command with cpptesttrace
when building the code base. cpptesttrace will trace the compiler and linker processes executed
during the build and store them in the build data file.

In both cases, you must specify the full path to either utility in your PATH environment variable. Addi-
tional options for cpptestscan and cpptesttrace are summarized in the following table. Options can
be set directly for the cpptestscan command or via environment variables. Most options can be
applied to cpptestscan or cpptesttrace by changing the prefix in command line.

Basic cpptestscan usage:

• Windows: cpptestscan.exe [options] [compile/link command]

• Linux and Solaris: cpptestscan [options] [compile/link command]

Basic cpptesttrace usage:

• Windows: cpptesttrace.exe [options] [build command]

• Linux, Solaris: cpptesttrace [options] [build command]

Option Environment Variable Description Default

--cpptestscanOutput-
File=<OUTPUT_FILE>

--cpptesttraceOutput-
File=<OUTPUT_FILE>

CPPTEST_SCAN_OUTPUT_
FILE

Defines file to append
build information to.

cpptestsc
an.bdf

--cpptestscanProject-
Name=<PROJECT_NAME>

--cpptesttraceProject-
Name=<PROJECT_NAME>

CPPTEST_SCAN_PROJECT
_NAME

Defines suggested
name of the C++test
project.

name of
the cur-
rent work-
ing
directory

--cpptestscanRun-
OrigCmd=[yes|no]

--cpptesttraceRun-
OrigCmd=[yes|no]

CPPTEST_SCAN_RUN_ORI
G_CMD

If set to "yes", original
command line will be
executed.

yes
13

Basic Analysis
Re-analyzing a Project without Re-building
Run code analysis and specify the existing build data file with the -input switch:

Static Analysis Engine will perform the following tasks:

--cpptestscanQuoteCmd-
LineMode=[all|sq|none]

--cpptesttraceQuoteCmd-
LineMode=[all|sq|none]

CPPTEST_SCAN_QUOTE_C
MD_LINE_MODE

Determines the way
C++test quotes param-
eters when preparing
cmd line to run.

all: all params will be
quoted

none: no params will
be quoted

sq: only params with
space or quote charac-
ter will be quoted

cpptestscanQuoteCmd-
LineMode is not sup-
ported on Linux

all

--cpptestscanCmd-LinePre-
fix=<PREFIX>

--cpptesttraceCmd-LinePre-
fix=<PREFIX>

CPPTEST_SCAN_CMD_LINE
_PREFIX

If non-empty and run-
ning original executable
is turned on, the speci-
fied command will be
prefixed to the original
command line.

 [empty]

--cpptestscanEnvInOut-
put=[yes|no]

--cpptesttraceEnvInOut-
put=[yes|no]

CPPTEST_SCAN_ENV_IN_O
UTPUT

Enabling dumps the
selected environment
variables and the com-
mand line arguments
that outputs the file. For
advanced settings use -
-cpptestscanEnvFile
and --cpptestscanEn-
vars options

no

--cpptestscanEnv-
File=<ENV_FILE>

--cpptesttraceEnv-
File=<ENV_FILE>

CPPTEST_SCAN_ENV_FILE If enabled, the specified
file keeps common
environment variables
for all build commands;
the main output file will
only keep differences.
Use this option to
reduce the size of the
main output file. Use
this option with --
cpptestscanEnvInOut-
put enabled

[empty]

cpptestcli -config "builtin://Recommended Rules" -compiler gcc_3_4 -input
cpptest.bdf

Option Environment Variable Description Default
14

Basic Analysis
1. Read the information about which files to test from the existing cpptest.bdf file

2. Run the analysis for these files

3. Report results to the output console

4. The original build will not be executed

Multiple build data files can be specified using multiple -input switches:

Only the source files defined in the build data file will be analyzed. Header files included by the source
files will be excluded from analysis. To broaden the scope of files tested, including header files, see
“Defining Input Scope”, page 22.

Generating a .csv Report
Be sure the project was already analyzed with Static Analysis Engine and that the cpptest.bdf file exists
(see above)

Create an empty configuration file (csv.properties) and add the following line:

Run code analysis and specify the configuration file with -settings switch:

Static Analysis Engine will perform the following tasks:

1. Run the analysis as described above

2. Report results to the output console

3. Create an additional report.csv result file

Testing a Microsoft Visual Studio Project or Solution
Static Analysis Engine can read Visual Studio project and solution files and analyze all source and
included header files from the project or solution. Use the -input switch to specify a Visual Studio
project or solution file:

You can specify the build configuration and the platform you want to use during analysis of your
project or solution. Append the configuration and platform names to the solution or project file name.
Your command may resemble the following:

cpptestcli -config "builtin://Recommended Rules" -compiler gcc_3_4 -input
project1.bdf -input project2.bdf

cpptest.report.csv.enabled=true

cpptestcli -config "builtin://Recommended Rules" -compiler gcc_3_4 -settings
csv.properties -input cpptest.bdf

cpptestcli -config "builtin://Recommended Rules" -input MyProject.vcproj

cpptestcli -config "builtin://Recommended Rules" -input MyProject.vcproj@Debug|x64
15

Basic Analysis
Alternatively, you can use the following properties to specify the build configuration and the platform
you want to use during analysis of all Visual Studio solutions and projects:

For all Microsoft Visual Studio settings, see “Visual Studio Configuration Settings”, page 100.

Make sure that the correct version of Microsoft Visual C++ compiler is available on $PATH before run-
ning analysis. Microsoft Visual Studio 6 is not supported.

Specifying Test Data Location
Exclusive access to the .cpptest directory is required. The directory is created in the current working
directory by default, which is where some of the run-specific data is stored. As a result, only one
instance of Static Analysis Engine can run in a directory at a time. You can use the -workspace switch
to change the location of the .cpptest directory.

cpptest.input.msvc.config=Debug

cpptest.input.msvc.platform=x64

-workspace <WORKSPACE_LOCATION>
16

Specifying Test Configurations
Specifying Test Configurations
Test configurations define how DTP Engines test and analyze code, including which static analysis
rules are enabled, which tests to run, and other analysis parameters. DTP Engines ship with built-in
test configurations, but users can create and store their own test configurations in the DTP server. You
can access the DTP server via the DTP plug-in. If you have administrator-level access in DTP Report
Center, you can also create test configurations directly in DTP (administration> Engines> Test Con-
figurations).

User-defined test configurations can be downloaded from the DTP server and stored in the
[INSTALL_DIR]/configs/user directory as *.properties files.

Use the -config switch to specify which test configuration to run:

The test configuration being executed can be specified in the following ways (by default, the buil-
tin://Recommended Rules test configuration is used):

Built-in Configurations

User-defined Configurations

DTP Server-hosted Configurations

Test configurations can also be referenced by filename and URL:

By File Name

By URL

Viewing Available Test Configurations
Use the -listconfigs switch to print the available test configurations. Use arguments to filter configu-
rations; the use of "*" expresssions is supported.

cpptestcli -config "builtin://Recommended Rules" -compiler gcc_3_4 -input
cpptest.bdf

-config "builtin://Recommended Rules"

-config "user://Foo Configuration"

-config "dtp://Foo Team Configuration"

-config "dtp://FooTeamConfig.properties"

-config "C:\Devel\Configs\FooConfig.properties"

-config "http://foo.bar.com/configs/FoodConfig.properties"

-listconfigs
17

Specifying Test Configurations
Built-in Test Configurations
The following table includes the test configurations shipped with DTP Engines in the [INSTALL]/
configs/builtin directory.

Configuration Name Description

CERT C Coding Standard Checks rules for the CERT C Secure Coding
Standard. This standard provides guidelines for
secure coding. The goal is to facilitate the
development of safe, reliable, and secure sys-
tems by, for example, eliminating undefined
behaviors that can lead to undefined program
behaviors and exploitable vulnerabilities.

CRules Checks rules that enforce C best practices.

Effective C++ Checks rules from Scott Meyers’ "Effective
C++" book. These rules check the efficiency of
C++ programs.

Effective STL Checks rules from Scott Meyers’ "Effective STL"
book.

Ellemtel Checks rules based on a C++ style guide that
originated by Ellemtel Telecom Systems and is
used widely in the telecommunications industry.

GoogleTest Analyzes Google Test unit test results.

HIS Source Code Metrics Checks metrics required by the Herstellerinitia-
tive Software (HIS) group.

ISO 26262 Recommended Rules Checks rules recommended by the ISO 26262
standard.

Joint Strike Fighter Checks rules that enforce the Joint Strike
Fighter (JSF) program coding standards.

MISRA C Checks rules that enforce the MISRA C coding
standards.

MISRA C [2004, 2012] Checks rules that enforce the MISRA C 2004 or
2012 coding standards.

MISRA C++ 2008 Checks rules that enforce the MISRA C++ 2008
coding standards.

Parasoft's Recommended FDA C++ Phase 1 Checks the core set of rules recommended for
complying with the FDA General Principles for
Software Validation.

Parasoft's Recommended FDA C++ Phase 2 Checks a broader set of rules recommended for
complying with the FDA General Principles for
Software Validation; recommended for organi-
zations who have already implemented the
phase 1 rule set.
18

Specifying Test Configurations
Parasoft's Recommended FDA C++ Phase 3 Checks a broader set of rules recommended for
complying with the

FDA General Principles for Software Validation;
recommended for

organizations who have already implemented
the phase 2 rule set.

Sutter-Alexandrescu Checks rules based on the book "C++ Coding
Standards," by Herb Sutter and Andrei Alexan-
drescu.

The Power of Ten Checks rules based on Gerard J. Holzmann’s
article "The Power of Ten - Rules for Developing
Safety Critical Code."

http://spinroot.com/gerard/pdf/
Power_of_Ten.pdf

Recommended Rules The default configuration of recommended
rules. Covers most Severity 1 and Severity 2
rules. Includes rules in the Flow Analysis Fast
configuration.

Parasoft’s Recommended Rules (Deprecated) The default configuration of recommended
rules. Covers most Severity 1 and Severity 2
rules. Includes rules in the Flow Analysis Fast
configuration.

Find Duplicated Code Applies static code analysis rules that report
duplicate code. Duplicate code may indicate
poor application design and lead to maintain-
ability issues.

Metrics Computes values for several code metrics.

DISA-STIG Coding Standard Includes rules that find issues identified in the
DISA-STIG standard

Flow Analysis Detects complex runtime errors without requir-
ing test cases or application execution. Defects
detected include using uninitialized or invalid
memory, null pointer dereferencing, array and
buffer overflows, division by zero, memory and
resource leaks, and dead code. This requires a
special Flow Analysis license option.

Flow Analysis Aggressive Includes rules for deep flow analysis of code.
Significant amount of time may be required to
run this configuration.

Flow Analysis Fast Includes rules for shallow depth of flow analysis,
which limits the number of potentially accept-
able defects from being reported.

Configuration Name Description
19

http://spinroot.com/gerard/pdf/Power_of_Ten.pdf

Specifying Test Configurations
Creating Custom Rules
Use RuleWizard to create custom rules. To use the rule in the Static Analysis Engine, it needs to be
enabled in a test configuration and the custom rule file must be located in one of the following directo-
ries:

• [INSTALL_DIR]\rules\user\

• [DOCUMENTS DIR]\Parasoft\[engine]\rules where [DOCUMENTS DIR] refers to the "My
Documents" directory in Windows

CWE-SANS Top 25 Most Dangerous Program-
ming Errors

Includes rules that find issues classified as Top
25 Most Dangerous Programming Errors of the
CWE-SANS standard.

SAMATE Annex A Source Code Weaknesses Includes rules that find issues identified in the
NIST SAMATE standard

OWASP Top 10 Security Vulnerabilities Includes rules that find issues identified in
OWASP’s Top 10 standard

Payment Card Industry Data Security Standard Includes rules that find issues identified in PCI
Data Security Standard

SecurityRules General test configuration that finds security
issues

Coverage Used to generate the code coverage report.

Configuration Name Description
20

Compiler Configuration

21

Compiler Configuration
You must configure Static Analysis Engine for specific C and C++ compilers, including compiler ver-
sions, before running the analysis. See “Compiler”, page 11, for basic information on configuring com-
pilers. For a full list of supported compilers, see “Supported Compilers”, page 104.

Specifying Multiple Compilers
If multiple compilers need to be used during a single test run, they can be configured with the following
extended syntax of the -compiler / cpptest.compiler.family option where <COMPILER_COMMAND>
is the path to the original compiler executable and ’*’ is match-all character:

Example

Working with Custom Compiler Configurations
When working with custom compiler configurations, the configuration files should be copied into a
directory defined with the cpptest.compiler.dir.user configuration entry:

Each custom compiler should be located in a dedicated subdirectory with unique name:

-compiler <COMPILER_ID>:<COMPILER_COMMAND>;<COMPILER_ID>:<COMPILER_COMMAND>;...

cpptest.compiler.family=<COMPILER_ID>:<COMPILER_COMMAND>;<COMPILER_ID>:<COMPILER_COMMAND>;...

-compiler vc_9_0:*cl.exe;gcc_3_4:/usr/bin/gcc.exe

cpptest.compiler.family=vc_9_0:*cl.exe;gcc_3_4:/usr/bin/gcc.exe

cpptest.compiler.dir.user=/home/custom_compilers

/home/custom_compilers (cpptest.compiler.dir.user configuration entry)

 custom_gcc

 c.psrc

 cpp.psrc

 gui.properties

 custom_iar

 c.psrc

 cpp.psrc

 gui.properties

Defining Input Scope
Defining Input Scope
The input scope defines the C and C++ source files to test with Static Analysis Engine. The input scope
also provides the full set of information about compiler options and environment, so Static Analysis
Engine can re-create the original build environment to provide accurate test results. See “Compiler”,
page 11, for information about defining compilers.

Analyzing a Single File
See “Analyzing a Single File”, page 11, for instructions.

Analyzing a Makefile-based Project
See “Analyzing a Makefile-based Project”, page 12, for instructions.

Analyzing Code Using Existing Build Data
Only the source files defined in the build data file will be analyzed. Header files included by the source
files will be excluded from analysis. See the following sections for additional information:

• “About Build Data Files”, page 12, describes the concept of the .bdf and how to create it

• “Re-analyzing a Project without Re-building”, page 14, describes the steps for using the .bdf
for analysis

• “Defining Source File Structures (Modules)”, page 22, desribes how to broaden the scope of
files tested, including header files

Defining Source File Structures (Modules)
Static Analysis Engine treats the input scope as a set of unrelated source files. Defining modules
allows you to introduce a well-defined source file structure and add additional files, such as header
files, into the Input Scope.

Modules are defined by specifying its name and the root directory. All tested files located in the root
directory or its sub-directories will belong to the module. All header files located in the root directory or
its sub-directories that are included by the tested source files will also belong to the module and be
analyzed with the source files.

For all files from the module, a "module-relative path" will be available. A project-relative path is com-
puted as a relative path from the module root to the actual file location. In most cases, module-relative
paths are independent from machines, so the test results can be easily shared across different
machines.

Example of Module Structure
The first block of code describes a simple directory/file structure. In the second block of code, the rela-
tionships between the files and module root directory are described, as well as which files will be ana-
lyzed:

/home/devel_1/project/src/foo.cpp tested file defined in bdf will be analyzed

/home/devel_1/project/includes/foo.h #included by foo.cpp

/home/devel_1/project/includes/other.h not #included by foo.cpp
22

Defining Input Scope
Assuming module MyApp is defined with /home/devel_1/project root location, the following files will
be tested as part of the module:

Defining a Basic Module Structure
Use the -[<MODULE_NAME>=]<MODULE_ROOT_LOCATION> switch to define a module. If the
name is unspecified, the name of the root directory will be used:

Alternatively, module structures can be defined in a custom configuration file using the
cpptest.scope.module.<MODULE_NAME>=<MODULE_ROOT_LOCATION> property:

Defining a Module with Multiple Root Locations
Add a logical path to the module name that points to the appropriate root location to define multiple,
non-overlapping locations:

Fine-tuning the Input Scope
Use the -resource switch to specify a file or set of files for testing.

You can specify the following resources in the path:

• File path (only selected file will be tested)

/home/devel_1/common/common.h #included by foo.cpp

/home/devel_1/project/src/foo.cpp belongs to MyApp as MyApp/src/foo.cpp; will be
analyzed

/home/devel_1/project/includes/foo.h belongs to MyApp as MyApp/includes/foo.h; will be
analyzed

/home/devel_1/project/includes/other.h not #included; will not be analyzed

/home/devel_1/common/common.h does not belong to MyApp; will not be analyzed

-module MyApp=/home/devel_1/project

-module /home/devel_1/project

-module MyModule=../projects/module1

-module .

cpptest.scope.module.MyApp=/home/devel_1/project

cpptest.scope.module.MyModule=../projects/module1

-module MyApp/module1=/home/devel_1/project -module MyApp/module2=/home/external/
module2/src

cpptest.scope.module.MyApp/module1=/home/devel_1/project

cpptest.scope.module.MyApp/module2=/home/external/module2/src

-resource /home/cpptest/examples/ATM/ATM.cxx

-resource /home/cpptest/examples/ATM

-resource ATM.cxx
23

Defining Input Scope
• Directory path (only files from selected directory will be tested)

• File name (only files with selected name will be tested)

Use the -include and -exclude switches to apply additional filters to the scope.

• -include instructs Static Analysis Engine to test only the files that match the file system path;
all other files are skipped.

• -exclude instructs Static Analysis Engine to test all files except for those that match the file
system path.

If both switches are specified, then all files that match -include, but not those that match -exclude
patterns are tested.

The -include and -exclude switches accept an absolute path to a file, with asterisk (*) as an
accepted wildcard. .

You can specify a file system path to a list file (*.lst) to include or exclude files in bulk. Each item in
the *.lst file is treated as a separate entry.

-include /home/project/src/ATM.cxx

-include /home/project/CustomIncludes.lst

-exclude /home/project/src/*.cxx

-exclude /home/project/CustomExcludes.lst
24

Configuring Authorship
Configuring Authorship
You can configure DTP Engines to collect authorship data during analysis to facilitate task assignment.
The data can be sent to the DTP server where additional analysis components, such as the Process
Intelligence Engine (PIE), can be leveraged to facilitate defect remediation and development optimiza-
tion.

You can configure DTP Engines to assign authorship based on information from source control, XML
files that directly map sources to authors, and/or the current local user.

About Authorship Configuration Priority
Authorship priority is determined by reading the settings in the .properties configuration file from top to
bottom. If multiple authorship sources are used, the following order of precedence is used:

1. information from source control

2. XML map file

3. current user

If one of the selected options does not determine an author, Authorship will be determined based on
the next option selected. If an author cannot be determined, the user is set as "unknown". Likewise, if
none of these options is selected, the user is set as "unknown."

Configuring How Authorship is Computed
Edit the cpptestcli.properties configuration file to specify how authorship is determined:

Additional Authorship Configurations
By default, author names are case-sensitive, but you can disable case sensitivity:

You can set the user name, email, and full name for a user with the authors.user[identifyer] set-
ting. For example:

If a user is no longer on team or must transfer authorship to another user, you can use the
authors.mapping[x,y] setting:

scope.local=[true or false]

scope.scontrol=[true or false]

scope.xmlmap=[true or false]

authors.ignore.case=true

authors.user1=john,john.doe@company.com,John Doe

authors.mapping1=old_user,new_user
25

Configuring Authorship
If you are transferring authorship between users, the author-to-author mapping information can be
stored locally or in an a shared XML map file:

If the mapping file is shared, you must specify the location of the shared XML file:

Creating Authorship XML Map Files
The <authorship> element contains indicates the beginning of the mapping information.

The <file /> element is placed inside the <authorship> element and takes two properties, author
and path to map users to files or sets of files:

You can use wildcards to map authors to sets of files. The following table contains examples:

Mapping order matters. The mapping file is read from top to bottom, so beginning with the most spe-
cific mapping ensures that authorship will map to the correct files.

authors.mappings.location=[local or shared]

authors.shared.path=[path to file]

<?xml version="1.0" encoding="UTF-8" ?>

 <!DOCTYPE authorship (View Source for full doctype...)>

 <authorship>

 <!-- assigns all files named: "foo/src/SomeClass.java" to "author1" -->

 <file author="author1" path="foo/src/SomeClass.java" />

Wildcard Expression Description

?oo/src/Foo.c Assigns all files that have names starting with any character (except /)
and ends with "oo/src/"

**.cs Assigns all *.cs files in any directory

/src/ Assigns every file whose path has a folder named "src"

src/** Assigns all files located in directory "src"

src/**/Test* Assigns all files in directory "src" whose name starts with "Test" (e.g.,
"src/some/other/dir/TestFile.c")
26

Suppressing Violations
Suppressing Violations
Suppressions prevent DTP Engines from reporting additional occurrences of a specific static analysis
task (multiple tasks might be reported for a single rule). Suppressions are useful when you want to fol-
low a rule, but do not want to receive repeated messages about your intentional rule violations. If you
do not want to receive error messages for any violations of a specific rule, disable the rule in the test
configuration.

If you are using DTP Engines in an IDE, you can define suppressions using the GUI (see the DTP Plu-
gin documentation for your IDE for details), otherwise suppressions are defined in the source code
using the following syntax.

Line Suppression
<suppression keyword> [<rule category> | <rule category> . <rule id> | <rule
category > - <rule severity> | ALL] <suppression comment>

Line Suppression Examples
// parasoft-suppress CODSTA "suppress all rules in category CODSTA"

// parasoft-suppress CODSTA.NEA "suppress rule CODSTA.NEA"

// parasoft-suppress CODSTA-1 "suppress all rules in category CODSTA with severity
level 1"

// parasoft-suppress ALL "suppress all rules"

// parasoft-suppress CODSTA FORMAT.MCH JAVADOC-3 "suppress all rules in category
CODSTA and rule FORMAT.MCH and all rules in category JAVADOC with severity level 3"

Block Suppression
<begin suppression keyword> [<rule category> | <rule category> . <rule id> | <rule
category > - <rule severity> | ALL] <suppression comment>

 source code block

<end suppression keyword> [<rule category> | <rule category> . <rule id> | <rule
category > - <rule severity> | ALL] <suppression comment>

Block Suppression Examples
// parasoft-begin-suppress CODSTA "begin suppress all rules in category CODSTA"

.....

// parasoft-end-suppress CODSTA "end suppress all rules in category CODSTA"

// parasoft-begin-suppress CODSTA.NEA "begin suppress rule CODSTA.NEA"

.....
27

Suppressing Violations
// parasoft-end-suppress CODSTA.NEA "end suppress rule CODSTA.NEA"

// parasoft-begin-suppress CODSTA-1 "begin suppress all rules in category CODSTA
with severity level 1"

......

// parasoft-end-suppress CODSTA-1 "end suppress all rules in category CODSTA with
severity level 1"

//parasoft-begin-suppress ALL "begin suppress all rules"

.....

// parasoft-end-suppress ALL "end suppress all rules"

// parasoft-begin-suppress CODSTA FORMAT.MCH "begin suppress all rules in category
CODSTA and rule FORMAT.MCH"

.....

// parasoft-end-suppress CODSTA FORMAT.MCH "end suppress all rules in category COD-
STA and rule FORMAT.MCH"

// parasoft-begin-suppress CODSTA "begin suppress all rules in category CODSTA"

.....

// parasoft-end-suppress CODSTA-1 "end suppress all rules in category CODSTA with
severity level 1; however rules with severity level 2-5 in category CODSTA are still
suppressed."

.....

// parasoft-end-suppress CODSTA "end suppress all rules in category CODSTA"

// parasoft-begin-suppress ALL "begin suppress all rules"

.....

// parasoft-end-suppress CODSTA FORMAT-1 "end suppress all rules in category CODSTA
and all rules in category FORMAT with severity level 1; however, others rules in COD-
STA and FORMAT-1 are still suppressed."

.....

// parasoft-end-suppress ALL "end suppress all rules"

//parasoft-begin-suppress ALL "begin suppress all rules, since no end suppression
comment, all rules will be suppressed starting from this line"
28

Flow Analysis
Flow Analysis
Flow Analysis is a type of static analysis technology that uses several analysis techniques, including
simulation of application execution paths, to identify paths that could trigger runtime defects. Defects
detected include use of uninitialized memory, null pointer dereferencing, division by zero, memory and
resource leaks.

Since this analysis involves identifying and tracing complex paths, it exposes bugs that typically evade
static code analysis and unit testing, and would be difficult to find through manual testing or inspection.

Flow Analysis’ ability to expose bugs without executing code is especially valuable for users with leg-
acy code bases and embedded code (where runtime detection of such errors is not effective or possi-
ble).

Run one of the Flow Analysis test configurations during analysis to execute flow analysis rules:

Configuring Depth of Flow Analysis
Flow Analysis engine builds paths through the analyzed code to detect different kinds of problems.
Since the analysis of all possible paths that span through the whole application may be infeasible, you
can set up the desired level of depth of analysis. A deeper analysis will result in more findings, but the
performance will be slower and the memory consumption will increase slightly.

You can specify the depth of analysis by using the test configuration interface in DTP. Go to Report
Center> Test Configurations> Static Analysis> Flow Analysis Advanced Settings> Perfor-
mance> Depth of analysis and choose one of the following options by selecting a radio button:

• Shallowest (fastest): Finds only the most obvious problems in the source code. It is limited to
cases where the cause of the problem is located close to the code where the problem occurs.
The execution paths of violations found by this type of analysis normally span several lines of
code in a single function. Only rarely will they span more than 3 function calls.

• Shallow (fast): Like the "Shallowest" analysis type, finds only the most obvious problems in
the source code. However, it produces a greater overall number of findings and allows for
examination of somewhat longer execution paths.

• Standard: Finds many complicated problems with execution paths containing tens of ele-
ments. Standard analysis goes beyond shallow analysis and also looks for more complicated
problems, which can occur because of bad flow in a single function or due to improper interac-
tion between different functions in different parts of the analyzed project. Violations found by
this type of analysis often reveal non-trivial bugs in the analyzed source code and often span
tens of lines of code.

• Deep (slow): Allows for detection of a greater number of problems of the same complexity and
nature as those defined for "Standard" depth. This type of analysis is slower than the standard
one.

• Thorough (slowest): Finds more complicated problems. This type of analysis will perform a
thorough scan of the code base; this requires more time, but will uncover many very compli-
cated problems whose violation paths can span more than a hundred lines of code in different
parts of the scanned application. This option is recommended for nightly runs.

The depth of Flow Analysis is set to Standard by default.

builtin://Flow Analysis Fast

builtin://Flow Analysis Standard

builtin://Flow Analysis Aggressive
29

Flow Analysis
Setting Timeout Strategy
Apart from the depth of analysis, Flow Analysis engine uses an additional timeout guard to ensure the
analysis completes within a reasonable time. An appropriate strategy can be set by using the test con-
figuration interface in DTP. Go to Report Center> Test Configurations> Static Analysis> Flow
Analysis Advanced Settings> Performance> Strategy for Timeouts and choose one of the follow-
ing options by selecting a radio button:

• time: Analysis of the given hotspot is stopped after spending the defined amount of time on it.
Note: in some cases, using this option can result in a slightly unstable number of violations
being reported.

• instructions: Analysis of the given hotspot is stopped after executing the defined number of
Flow Analysis engine instructions.Note: to determine the proper number of instructions to be
set up for your environment, review information about timeouts in the Setup Problems section
of the generated report.

• off: No timeout. Note: using this option may require significantly more time to finish the analy-
sis.

The default timeout option is time set to 60 seconds. To get information about the Flow Analysis time-
outs that occurred during the analysis, review the Setup Problems section of the report generated after
the analysis.

Running Flow Analysis in Incremental Mode
By default, Flow Analysis performs a complete analysis of the scope it is run on. This can take consid-
erable time when running on large code bases.

The most common way of performing Flow Analysis analysis is to run nightly tests on a single code
base that changes slightly from day to day. Flow Analysis’s incremental analysis mode is designed to
reduce the time required to run analysis in this typical scenario. With incremental analysis mode, Anal-
ysis memorizes important analysis data during the initial run, then reuses it during the subsequent
runs—rerunning analysis only for parts of the code that have been modified or are tightly connected to
the modified code.

When using incremental analysis, remember that:

• The initial run of Flow Analysis may be slightly slower than running without incremental analy-
sis. This is because Flow Analysis in addition to performing a complete analysis of the code
base, Flow Analysis saves data to be reused in subsequent runs.

Disk space is required to store the necessary data.

Incremental analysis options control the incremental analysis feature. Available options are:

• Enable incremental analysis: Determines whether incremental analysis is used.

• Compact incremental caches every [days]: Determines how often compactization
of incremental caches is run. Incremental analysis is optimized for speed; although
Flow Analysis strives to always keep cache sizes small and remove unnecessary data,
source code changes may result in these caches containing some data that will no
longer be used. Compactization, which is run regularly as defined by this parameter,
removes all outdated data. More precisely, if the time that has elapsed since the pre-
vious compactization is greater than the number of days specified for this option, com-
pactization is performed immediately after the incremental run of Flow Analysis

Running Flow Analysis with Swapping of Analysis
30

Flow Analysis
Data Enabled
In this mode, analysis data is written to disk. Swapping of analysis data uses the same persistent stor-
age and is done in a similar process as incremental analysis. If analysis is run on a large project, the
analysis data that represents a semantical model of the analyzed source code may consume all the
memory available for running Flow Analysis. If this occurs, Flow Analysis will remove from memory
parts of the analysis data that are not currently necessary and reread it from disk later.

In general, we recommend running C++test in a large JVM heap configured with the Xmx JVM option.
This is to minimize swapping, which results in greater performance. If sufficient memory is available,
swapping of analysis data may be disabled, which may speed up code analysis. You can enable or dis-
able the mode by using the test configuration interface in DTP:

Enable swapping of analysis data to disk: Enabled by default. If this option is disabled, it may result
in faster analysis, if you are running Flow Analysis analysis on small to moderate size projects that do
not require a lot of memory or when plenty of memory is available (for example, for 64-bit systems).

Configuring Verbosity of Flow Analysis
You can configure the following options by using the test configuration interface in DTP:

• Do not report violations when cause cannot be shown: Determines whether Flow Analy-
sis reports violations where causes cannot be shown.

Some Flow Analysis rules require that Flow Analysis checks all the possible paths leading to a
certain point and verifies that a certain condition is met for all those paths. In such cases, a vio-
lation is associated with a set of paths (whereas in simple cases, a violation is represented by
only one path). All of the paths in such a violation end with the violation point common to all the
paths in the violation. However, different paths may start at different points in code. The begin-
ning of each path is a violation cause (a point in code which stipulates a violation of a certain
condition later in the code at the violation point). If a multipath violation's different paths have
different causes, Flow Analysis will show only the violation point (and not the violation causes).

Violations containing only the violation point may be difficult to understand (compared to regu-
lar cases where Flow Analysis shows complete paths starting from violation causes and lead-
ing to violation points). That’s why we provide an option to hide violations where the cause
cannot be shown.

• Do not show more than one violation per point: Restricts reporting to one violation (for a
single rule) per violation point. For example, one violation will be reported when Flow Analysis
detects a potential null dereference with multiple sources of the null value. When verbosity is
set to this level, Flow Analysis performance is somewhat faster.

Specifying Terminating Functions
You can define functions that terminate application execution. C/C++ developers sometimes use func-
tions that terminate application execution in the event of a fatal error from which recovery is impossible.
Examples of such functions are abort() and exit() from the standard library. Since Flow Analysis ana-
lyzes the application’s execution flow, it's important for it to be aware of the terminating functions that
break execution flow by immediately stopping the application. Without such knowledge, Flow Analysis
might make incorrect assumptions about the application flow.

Flow Analysis is aware of the terminating functions that are defined in the standard library. However,
this is often not sufficient because non-standard libraries define their own terminating functions. If your
application uses one of these functions, you should communicate that to Flow Analysis by specifying
31

Flow Analysis
the custom terminating function in the Terminators tab. Otherwise, Flow Analysis may produce false
positives with execution paths passing by terminating functions.

Use the table listing supported APIs to enable/disable terminators from various APIs as well as to
define your own APIs containing terminating functions. To add information about terminating functions
from a certain library:

1. Click the + button in the top row of the table.

2. Click the arrow to expand the Functions that terminate application execution tab.

3. Complete the table that opens; the table has the following columns:

• Enabled: Specifies whether a built-in or custom terminator should be considered dur-
ing the analysis.

• Fully qualified type name or namespace (wildcard): Specifies the entity for a partic-
ular terminator. If this field is left empty, only the global function with the name speci-
fied in the 'Function name' column will be considered a terminator.

• For example: The field value may be "myNameSpace::myClass" if the terminator is
declared in 'myClass' coming from the 'myNameSpace' name space. Or, it may be
"myNameSpace" if it is not declared in a type, but belongs only to the 'myNameSpace'.

• Function name (wildcard): Specifies the name of the terminating function.

• + definitions in subclasses: Indicates whether the terminating function definitions in
subclasses should be considered terminating functions as well. This applies to both
instance and non-instance functions, and makes sense only if its fully qualified type
name is specified.

Specifying Multithreading Options
The Multitheading tab allows you to define functions for synchronization between threads as well as
to activate/deactivate known multithreading functions. The information defined here affects the behav-
ior of rules from the BD.TRS (Threads and Synchronization) category. These rules will check all the
functions that are defined and activated on this tab.

Use the table that lists supported APIs to enable/disable synchronization functions from various APIs
as well as to define your own APIs containing synchronization functions. To add information about syn-
chronization functions from a certain library:

1. Click the + button in the top row of the table.

2. Type the name of the library in the API field.

3. Click the arrow to expand the tabs and complete the tables to define the following types of
functions (details about completing the tables are provided below):

• Functions for locking (for instance, obtaining a mutex)

• Functions for unlocking (for instance, releasing a mutex)

• Sleep functions
32

Flow Analysis
• Destroy lock functions

Functions for locking
Complete the table with the following information:

• Enabled: specifies whether the locking function should be considered during analysis.

• Fully-qualified type name or namespace (wildcard): the fully-qualified name of the type or
namespace where the function is declared. Use '*' if you want to describe a function declared
in any type or namespace, or a global function declared outside of any type.

• Function name (wildcard): the name of the locking function. '*' can be used to denote any
number of any symbols.

• + definitions in subclasses: a check box that indicates whether the definitions (of the func-
tion with the given name) in subclasses should be considered locking functions as well. Note
that this applies to both instance and static functions.

• "this" object is a mutex: a check box that indicates that the function locks a mutex in the
object on which the function is called.

• Returns a mutex: a check box that indicates that the function returns a mutex.

• Return value constraint on error: specifies a return value constraint in case of allocation fail-
ure if a resource allocator returns an integral value. Enter the condition in the following format:
<comparison operator><integer value>. For example, if the function returns non-zero
value on failure, enter "!=0" (without quotes) into the field. If return code on error is -1, type
"==-1" there. In addition to "!=" and "==", you can use the following operators for specifying
error conditions: ">", ">=", "<", and "<=".

• Mutex parameter: specifies that the function locks a mutex in one of its parameters.

Functions for unlocking

Complete the table with the following information:
• Enabled: specifies whether the unlocking function should be considered during analysis.

• Fully-qualified type name or namespace (wildcard): the fully-qualified name of the type or
namespace where the function is declared. Use '*' if you want to describe a function declared
in any type or namespace, or a global function declared outside of any type.

• Function name (wildcard): the name of the unlocking function. '*' can be used to denote any
number of any symbols.

• + definitions in subclasses: a check box that indicates whether the definitions (of the func-
tion with the given name) in subclasses should be considered unlocking functions as well.
Note that this applies to both instance and static functions.

• "this" object is a mutex: a check box that indicates that a mutex in the object on which the
function is called is unlocked
33

Flow Analysis
• Mutex parameter: specifies that a mutex in one of the parameters is unlocked.

Sleep functions

Complete the table with the following information:
• Enabled: specifies whether the sleep function should be considered during analysis.

• Fully-qualified type name or namespace (wildcard): the fully-qualified name of the type or
namespace where the function is declared. Use '*' if you want to describe a function declared
in any type or namespace, or a global function declared outside of any type.

• Function name (wildcard): the name of the sleep function. '*' can be used to denote any num-
ber of any symbols.

• + definitions in subclasses: a check box that indicates whether the definitions (of the func-
tion with the given name) in subclasses should be considered sleep functions as well. Note
that this applies to both instance and static functions.

Destroy lock functions

Complete the table with the following information:
• Enabled: specifies whether the lock-destroying function should be considered during analysis.

• Fully-qualified type name or namespace (wildcard): the fully-qualified name of the type or
namespace where the function is declared. Use '*' if you want to describe a function declared
in any type or namespace, or a global function declared outside of any type.

• Function name (wildcard): the name of the lock-destroying function. '*' can be used to denote
any number of any symbols.

• + definitions in subclasses: a check box that indicates whether the definitions (of the func-
tion with the given name) in subclasses should be considered lock-destroying functions as
well. Note that this applies to both instance and static functions.

• "this" object is a mutex: a check box that indicates that a mutex in the object on which
the function is called is destroyed.

• Mutex parameter: specifies that a mutex in one of the parameters is destroyed.

Specifying Resources
The Resources tab allows you to define which resources the BD.RES category (Resources) rules
should check. These rules check for the correct usage of all resources that are defined and enabled on
this tab.

1. Specify the Type of resource.

2. Select the Enabled checkbox.

3. If appropriate/desired, disable the Do not report leaks at termination option.
34

Flow Analysis
4. Click the arrow to expand the Resource Allocators and Resource Closers tabs and com-
plete the tables that open with the information about allocators and closers. Details about com-
pleting these tabs are provided below. .

Configuring Resource Allocators
The Resource allocators table can be completed with the descriptors of functions that can produce a
resource. The table has the following columns:

• Enabled: specifies whether the allocator should be considered during analysis.

• Fully-qualified type name or namespace (wildcard): the fully-qualified name of the type or
namespace where the function is declared. Use '*' if you want to describe a function declared
in any type or namespace, or a global function declared outside of any type.

• Function name (wildcard): the name of the allocating function. '*' can be used to denote any
number of any symbols.

• Resource parameters: specifies that the function allocates a resource in one or more of its
parameters. In this case, either specify a 1-based number of the parameter that is allocated by
the function, or use '*' to denote that all of the parameters are allocated.

• + definitions in subclasses: a check box that indicates whether the definitions (of functions
with the given name) in subclasses should be considered allocators as well. Note that this
applies to both instance and static functions.

• "this" object is a resource: a check box that indicates that the function allocates a resource
in the object on which the function is called.

• Returns a resource object: a check box that inticates that a the function returns an allocated
resource.

• Return value constraint on error: specifies a return value constraint in case of allocation fail-
ure if a resource allocator returns an integral value. Enter the condition in the following format:
<comparison operator><integer value>. For example, if the function returns non-zero
value on failure, enter "!=0" (without quotes) into the field. If return code on error is -1, type
"==-1" there. In addition to "!=" and "==", you can use the following operators for specifying
error conditions: ">", ">=", "<", and "<=".

It is common that allocation functions return an error code to indicate allocation failure. When an allo-
cation function returns a pointer to a resource, a NULL pointer normally indicates an allocation failure.
When Flow Analysis is looking for resource leaks, it needs to understand if allocation succeeded or
failed; this helps it report only missing calls to deallocation functions on paths where allocation actually
occurred. In cases where a resource allocator function returns a pointer to a resource, Flow Analysis
assumes that the resource is successfully allocated if the pointer is not NULL.

Configuring Resource Closers
The Resource closers table can be completed with the descriptors of functions that can close a
resource. The table has the following columns:
35

Flow Analysis
• Enabled: specifies whether the closer should be considered during analysis.

• Fully-qualified type name or namespace (wildcard): the fully-qualified name of the type or
namespace where the function is declared. Use '*' if you want to describe a function declared
in any type or namespace, or a global function declared outside of any type.

• Function name (wildcard): the name of the closing function. '*' can be used to denote any
number of any symbols.

• + definitions in subclasses: a check box that indicates whether the definitions (of functions
with the given name) in subclasses should be considered closers as well. Note that this applies
to both instance and static functions.

• "this" object is a resource: a check box that indicates that a resource in the object on which
the function is called is closed.

• Resource parameters: specifies that a resource in one or more of its parameters is closed. In
this case, either specify a 1-based number of the parameter that is closed by the function, or
use '*' to denote that all of the parameters are allocated.

Reusing Flow Analysis Data for Desktop Analysis
One way to improve desktop performance with Flow Analysis is to reuse the server analysis data on
the desktop. To do this, you need to define a mapping that allows Flow Analysis engine to match server
file paths with corresponding desktop file paths.

Additionally, you can reuse data to run the analysis on a small scope (for example, one file) and build
paths that include methods defined in files outside the defined scope of analysis, provided that these
files have been analyzed.

Please, contact Parasoft Support for more information on how to use this functionality.

Compiler-specific Settings
You can configure advancesd compiler-specific settings by using the test configuration interface in
DTP.

• Internal representation of the "errno" value: The Standard defines erno to be a modifiable
lvalue of type int. It is unspecified whether errno is a macro or an identifier declared with an
external linkage. Implementations may use the global variable "errno" or "__errno", or apply
the "(*errno_function())" pattern with different names of the called functions. This option allows
you to specify the names of these variables and functions with regular expressions.

• Function name pattern: The name of the function that is called when the "errno"
value is used. The name must be specified with regular expressions.

• Variable name pattern: The name of the variable that is called when the "errno" value
is used. The name must be specified with regular expressions.

• Internal representation of the call to a function from the header <ctype.h>: The Standard
specifies several functions to be defined in the header <ctype.h>. Some implementations (e.g
GNU GCC in the C mode) define these functions as macros that expand to the code which
tests an element of the internal array against some flags. This can be either a global array or a
pointer returned by a function. This option allows you to specify names of these variables and
functions with regular expressions.

• Function name pattern: The name of the function that is invoked internally instead of
one of the functions from the header <ctype.h> (define with regular expressions). The
name must be specified with regular expressions.
36

Flow Analysis
• Variable name pattern: The name of the variable that is used internally after a call to
one of the functions from the header <ctype.h>. The name must be specified with reg-
ular expressions.

Variable name pattern: The name of the variable that is used internally after a call to one of the func-
tions from the header <ctype.h>. The name must be specified with regular expressions.
37

Metrics Analysis

38

Metrics Analysis
DTP Engines can compute several code metrics, such as code complexity, coupling between objects,
and lack of cohesion, which can help you understand potential weak points in the code. Run the Met-
rics test configuration during analysis to execute metrics analysis rules:

Metrics analysis is added to the HTML and XML report files generated by DTP Engines. See “Metrics
Summary”, page 44, for information about reports.

Setting Metrics Thresholds
You can set upper and lower boundaries so that a static analysis violation is reported if a metric is cal-
culated outside the specified value range. For example, if you want to restrict the number of logical
lines in a project, you could configure the Metrics test configuration so that a violation is reported if the
Number of Logical Lines metric exceeds the limit.

The Metrics test configuration shipped with DTP Engines includes default threshold values. There are
some rules, such as Number of Files (METRIC.NOF), for which thresholds cannot be set.

Metric thresholds can be set using the following methods:

• By using the test configuration interface in DTP (see "Report Center> Test Configurations>
Editing Test Configurations> Metrics Tab" in the Development Testing Platform user manual for
details).

• By editing the test configuration using the interface in an IDE (see "Working with Test Configu-
rations> Creating Custom Test Configurations" in the DTP Plugin manual for your IDE).

• By manually editing the test configuration file:

1. Duplicate the built-in Metrics test configuration ([INSTALL]/configs/builtin) to the user
configurations directory ([INSTALL]/configs/user)

2. Open the duplicate configuration in an editor and set the
[METRIC.ID].ThresholdEnabled property to true.

3. Configure the lower and upper boundaries in the [METRIC.ID].Threshold property
according to the following format:

[METRIC.ID].Threshold=l [lower boundary value] g [upper boundary value]

4. Save the test configuration and run the analysis using the custom metrics test
configuration.

builtin://Metrics

Code Duplicate Analysis

39

Code Duplicate Analysis
DTP Engines can check for duplicate code, which may indicate poor application design, as well as
increase maintenance costs. During code duplication analysis, the code is parsed into smaller lan-
guage elements (tokens). The tokens are analyzed according to a set of rules that specify what should
be considered duplicate code. There are two types of rules for analyzing tokens:

• Simple rules for finding single token duplicates, e.g., string literals

• Complex rules for finding mulitple token duplicates, e.g., duplicate methods or statements

Run the Find Duplicated Code test configuration during analysis to execute code duplicates detection
rules:

builtin://Find Duplicated Code

Using DTP Engines in an IDE

40

Using DTP Engines in an IDE
You can use DTP Engines within Eclipse or Visual Studio. Integrating with an IDE gives you a desktop
interface for executing code analysis locally, viewing results, and leveraging the data and test configu-
rations stored in DTP server. You can also import findings from DTP Server into your development
environment.

This integration is achieved with the DTP Plugin for Eclipse or Visual Studio and the DTP Engine Plu-
gin. See the appropriate DTP Plugin User Guide for installation, usage, and other details stored in the
[INSTALL]/integration/[IDE]/ directory.

You can also leverage the IDE plug-ins to integrate the DTP Engines for C/C++ with the Wind River
Workbench IDE. See the "DTP Plugin Wind River Integration" guide for more information.

Reporting
DTP Engines print results to the output console, as well as save an HTML report to the
[WORKING_DIR]/reports directory by default. Data for the HTML report is stored in the directory as an
XML file, which can be used for importing results into a supported Parasoft DTP Plugin for the IDE and
Parasoft DTP Plugin for C/C++ (see "Parasoft DTP Plugin for [IDE] User’s Guide" for additional infor-
mation). For an overview of the HTML report structure, see “Viewing Reports”, page 41.

If the engines are connected to DTP, reports are also sent to the server (see “Sending Results to
Development Testing Platform (DTP) Server”, page 47).

Specifying Report Output Location
You can use the -report switch during analysis to specify an output directory for reports.

You can also use the report.location property to change the location of an HTML report.

A simple .csv report can also be generated by enabling the CVS reporter. See “Generating a .csv
Report”, page 15.

Specifying Report Format
You can also generate a PDF report or a report using a custom extension to the specified directory by
setting the report.format property. See “Report Settings”, page 85, for additional information.

Viewing Reports
Open the report.html or report.pdf file saved to the working directory or location specified with the -
report switch. Reports may contain different sections depending on the type of analysis, but the fol-
lowing sections are included in all static and flow analysis configurations.

Header

cpptestcli -report /home/reports/html …

report.location=<HTML_REPORT_LOCATION>

report.format=pdf
41

The following information is included:

• Tool used for the analysis

• Build ID

• Test configuration

• Time stamp of the analysis

• Machine name and user name

• Session tag

• Project name

• Number of findings with the highest severity

• Number of failed tests

Static Analysis
The first part of the report covers the Static Analysis findings and is divided into two main sections.The
first section is a summary which shows an overview of findings displayed as a pie chart. The colors
indicate different severity types and their corresponding number of findings detected during static anal-
ysis.

The second section shows the details of static analysis findings. It starts with a table which includes
static analysis results.

The following information is included:

• Name of module

• Number of suppressed rules

• Total number of findings

• Average number of findings per 10,000 lines

• Number of analyzed files

• Total number of files in the module

• Number of code lines analyzed

• Total number of code lines in the module
42

All Findings
The All Findings section displays the details of findings organized by category or severity. Click the
Severity or Category link to toggle between views.

In category view, findings are reported by rule and grouped by category. A count of how many times
each rule was violated in the scope of analysis is also shown.

In severity view, findings are reported and grouped by severity. A count of findings per severity is also
included.

These sections are merged in PDF versions of the report.

Findings by Author
43

This section includes a table of authors associated with the analyzed code and a count of findings per
each author. Findings are segmented into findings associated with suppressed rules and findings rec-
ommended for remediation. Click on an author link to view their finding details.

The details view includes the following information:

• File containing the finding and its location

• Violation message and rule

• Flow analysis reports also mark the cause of the violation (C), violation points (P), thrown
exceptions (E), and important data flows (!)

Findings by File
You can navigate the analyzed code to the reported findings in the Findings by File section. Each node
begins with a value that indicates the total number of findings in the node. The value in brackets shows
the number of suppressed rules in the node. You can click nodes marked with a plus sign (+) to expand
them. PDF versions of the reports are already fully expanded.

Active Rules
The rules enabled during analysis are listed in the Active Rules section.

Metrics Summary
44

If your test configuration includes metrics analysis, a metrics section will appear in the report. See
“Metrics Analysis”, page 38, for additional information.

Test Execution
The second part of the report covers the Test Execution results and is divided into two sections.The
first section is a summary which shows an overview of test failures and coverage displayed as pie
charts.

The second section shows the details of test execution. It starts with a table which includes test execu-
tion results and coverage information.

The following information is included:

• Module name

• Number of unit test problems which need to be fixed

• Number of exceptions which need to be reviewed

• Number of assertion failures which need to be reviewed

• Number of unit tests successfully executed

• Number of unit tests failures

• Number of incomplete unit tests

• Total number of unit tests

• Line coverage expressed as percentage

All Findings
45

The All Findings section displays the details of all unit test problems detected during test execution.

Findings by Author
This section includes a table of authors associated with the analyzed code and shows the total number
of findings for each author. Click on an author link to view their finding details.

The details view includes the following information:

• Finding location

• Test name

• Failure message

Executed Tests (Details)
You can view the findings in the Executed Tests (Details) section. The nodes where all the test passed
are marked with "P" in square brackets. The nodes with test failures begin with a set of values in
square brackets. The first value is a count of successfully passed tests and the second indicates the
total number of tests executed in the node.The letter "F" indicates the final node where the test failed.
You can click nodes marked with a plus sign (+) to expand them.

Coverage
This section shows the details of coverage collected during the test execution. Each node starts with a
set of values. The first value shows coverage expressed as percentage. The second value is a count of
46

the number of lines in the node which were covered during the test execution. The third value indicates
the total number of lines in the node. You can click nodes marked with a plus sign (+) to expand them.

Test Parameters
The arguments specified during analysis are shown in the Test Parameters section.

Sending Results to Development Testing Platform
(DTP) Server
See “Connecting to DTP Server”, page 8, for information about configuring your connection to DTP
Server. Use the -publish switch to report test results to DTP server.

Publishing Source Code to DTP Server
By default, tested sources are sent to DTP when the report setting is enabled. This enables DTP to
present source code associated with findings.

You can use the report.dtp.publish.src setting to disable the publishing of source code, restrict
the depth of source code publishing, or enable source code publishing when sending reports to DTP
Server is disabled. See “Settings Reference”, page 77, for additional information on DTP Engine set-
tings.

The report.dtp.publish.src setting takes one of the following values:

• off: Code is not published to DTP server.

• min: Publishes minimal part of sources. Only source code that has no reference to source con-
trol is published.

• full: Publishes all sources associated with the specified scope. This is the default settings.

See the "Development Testing Platform User Guide" for additional information about viewing source
code in DTP.

Publishing Sources to DTP Without Running Code Analysis
DTP Engines need to execute to send data to DTP Server, but you may want to send sources without
running analysis.

cpptestcli -publish . . .
47

1. Create an empty test configuration and save it to [INSTALL_DIR]/configs/user (see “Spec-
ifying Test Configurations”, page 17).

2. Run the configuration with appropriate report.dtp.publish.src setting.
48

Unit Test Connector
Unit Test Connector (UTC) allows you to run unit tests created in open source unit testing tools and
report results to DTP. UTC for C/C++ currently ships with out-of-the-box support for the following unit
testing tools:

• Google Test

• CppUnit

• CppUtest

Visit the Parasoft Marketplace (http://marketplace.parasoft.com) for additional unit test tool integra-
tions.

Unit Test Connector consists of:

• a module that extracts and reports unit test case execution results

• a module which annotates code coverage results to associate test cases with code coverage
to evaluate the quality of a particular unit test or collection of tests.

Integrating Unit Test Connector with a testing infrastructure requires minor modifications of the existing
test harness code.

Google Test Connector
Unit Test Connector for Google Test can send test execution results to DTP server, as well as generate
a local HTML report using the XML report created by the test framework.

Reporting Google Test Results
1. Add the following option to your normal Google Test test driver command:

A Google Test result XML file is generated

2. Run the following test configuration and specify the Google Test result XML file as the input
(see “Specifying Test Configurations”, page 17, for additional information about test configura-
tions):

This will generate an HTML report, as well as send test results to DTP server if configured (see
“Connecting to DTP Server”, page 8, for additional information).

UTE will perform the following actions:

• Associate the test results with the project name specified with the dtp.project property

• Associate test failures with the author specified with the dtp.user property

Improving the Test Case File Association
The Google Test result XML file provides limited information and may incorrectly associate passed test
cases with the tested file. This may affect how test results are displayed in some DTP Test widgets.

--gtest_output=xml:<result_filename>.xml

cpptestcli -config builtin://GoogleTest -input <result_filename>.xml -publish
49

http://marketplace.parasoft.com/#query?limit=24&offset=0

Use the RecordProperty function inside a test case to force an association between a test case and a
file. Use cpptest_filename as the attribute name and the filename as the second argument:

The RecordProperty function is provided by the Google Test framework.

Associating Tests with Code Coverage
You can automatically annotate code coverage results with test start/stop information (see “Annotating
Results Stream with Test Start/Stop Information”, page 63). This will allow you to selectively analyze
code coverage generated by a specific test or collection of tests.

1. Include a dedicated header file in the source file that contains Google Test main function:

2. Add the following code to the main function after the InitGoogleTest() call and before tests exe-
cution:

Alternatively, you can register the C++test listener using the GoogleTest API directly:

For simple setups, your modified main function may resemble the following:

3. Use the -I option to specify the cpptest/gtest.h header file location when compiling the source
file with the main function:

4. Use Code Coverage Engine to build test executable (see “Code Coverage Engine”, page 56).

TEST(ExampleTestSuite, ExampleTestCase) {

 RecordProperty("cpptest_filename", __FILE__);

}

#include "cpptest/gtest.h"

CppTest_GoogleTestListener::Append();

::testing::TestEventListeners& listeners = ::testing::UnitTest::GetInstance()->listeners();

listeners.Append(new CppTest_GoogleTestListener());

GTEST_API_ int main(int argc, char **argv)

{

 // Initializing GoogleTest

 testing::InitGoogleTest(&argc, argv);

 // Appending CppTest_GoogleTestListener

 CppTest_GoogleTestListener::Append();

 // Running tests

 return RUN_ALL_TESTS();

}

-I <Installation Directory>/runtime/include
50

5. Run the test executable with the following option:

6. Run cpptestcli specifying the GoogleTest result .xml file and coverage log file as the inputs to
generate a report:

See “Reporting”, page 41 for details on configuring and publishing reports.

CppUnit and CppUtest Connector
Unit Test Connector for CppUnit and CppUtest can report test execution results to DTP server, as well
as associate tests with code coverage. To integrate CppUnit or CppUtest with Unit Test Connector, you
need to install a results listener and a coverage annotator into the existing CppUnit or CppUtest infra-
structure.

The typical integration includes both the results listener and the coverage annotator, which give you
complete information about tests results and coverage. You may choose to install only the results lis-
tener for lightweight tests or for comparing results with and without coverage.

Installing Unit Test Connectors into Test Setups
This section describes CppUnit and CppUtest setups with both the results listener and the coverage
annotator. If you choose to install the results listener only, skip all the lines which mention the coverage
annotator.

Installing Unit Test Connector into CppUnit Setup
1. Include a dedicated header file in the source file that contains the CppUnit main function.

2. Install the results listener. The installation details will depend on the TestRunner class of the
CppUnit framework you use to execute unit tests.

--gtest_output=xml:<result_filename>.xml

cpptestcli -config builtin://GoogleTest -input <result_filename>.xml -input
cpptest_results.clog -publish

#include "cpptest/extensions/cppunit/results_listener.h"

#include "cpptest/extensions/cppunit/coverage_annotator.h"
51

For simple setups, your modified main function may resemble the following:

Depending on the class that was used, installation of the modifications may differ. The examples below
show installation for two classes of the CppUnit framework.

Installation for the CppUnit::TestRunner class:

Installation for the CppUnit::TextTestRunner class:

3. Modify your build system configuration to specify the results_listener.h header file location with
the -I option.

Installing Unit Test Connector into CppUtest Setup

 /* required header files */

 int main()

 {

 CPPUNIT_NS::Test *suite = CPPUNIT_NS::TestFactoryRegistry::getRegistry().makeTest();

 CPPUNIT_NS::TextUi::TestRunner runner;

 runner.addTest(suite);

 CppTest_CppUnitResultsOutputter cpptestResListener;

 CppTest_CppUnitCoverageAnnotator cpptestCovAnnotator;

 runner.eventManager().addListener(&cpptestResListener);

 runner.eventManager().addListener(&cpptestCovAnnotator);

 runner.setOutputter(new CPPUNIT_NS::CompilerOutputter(&runner.result(),
std::cout));

 bool wasSucessful = runner.run();

 return wasSucessful ? 0 : 1;

 CppUnit::TestResult controller;

 CppTest_CppUnitResultsListener cpptestResListener;

 CppTest_CppUnitCoverageAnnotator cpptestCovAnnotator;

 controller.addListener(&cpptestResListener);

 controller.addListener(&cpptestCovAnnotator);

 CppUnit::TestRunner runner;

 runner.addTest(CppUnit::TestFactoryRegistry::getRegistry().makeTest());

 runner.run(controller, testPath);

 CppUnit::TextTestRunner runner;

 CppTest_CppUnitResultsListener cpptestResListener;

 CppTest_CppUnitCoverageAnnotator cpptestCovAnnotator;

 runner.eventManager().addListener(&cpptestResListener);

 runner.eventManager().addListener(&cpptestCovAnnotator);

-I<C++test Installation Directory>/runtime/include
52

1. Include a dedicated header file in the source file that contains the CppUtest main function.

2. Install the results listener. The installation requires registration of the coverage annotator and
the results listener into the TestRegistry class. It also requires use of a C++test supplied
TestRunner.

For simple setups, your modified main function may resemble the following:

3. Modify your build system configuration to specify the results_listener.h header file location with
the -I option.

Reporting CppUnit and CppUtest Test Results
The results listener can record unit test execution results and store the data in a file. By default, execu-
tion results are stored in the cpptest_results.utlog file in the current working directory. You can change
the default file location by providing the path as an argument to the CppTest_CppUnitResultsListener
(CppUnit) or CppTest_CppUtestResultsListener (CppUtest) constructor:

• For CppUnit:

• For CppUtest:

Alternatively, you can use the following definition to specify the location during the test harness build
process:

#include "cpptest/extensions/cpputest/results_listener.h"

#include "cpptest/extensions/cpputest/coverage_annotator.h"

#include "cpptest/extensions/cpputest/test_runner.h"

 /* required header files */

int main()

{

 // Register C++Test cpputest plugins

 TestRegistry* registry = TestRegistry::getCurrentRegistry();

 TestPlugin* coverageAnnotator = new CppTest_CppUtestCoverageAnnotator();

 registry->installPlugin(coverageAnnotator);

 TestPlugin* resultsListener = new CppTest_CppUtestResultsListener();

 registry->installPlugin(resultsListener);

 // run the tests

 int result = CppTest_CppUtestTestRunner::RunAllTests(ac, av);

 delete coverageAnnotator;

 delete resultsListener;

 return result;

-I<C++test Installation Directory>/runtime/include

CppTest_CppUnitResultsListener cpptestResListener("c:/myworkspace/cpptest_results.utlog");

CppTest_CppUtestResultsListener cpptestResListener("c:/myworkspace/cpptest_results.utlog");

-DCPPTEST_UT_LOG_FILE=\"c:/home/my_workspace/cpptest_results.utlog\"
53

If you choose to change the default file location, it is important to retain the .utlog file extension.

Once the test executable with the results listener is built, you can execute the scheduled unit tests. In
standard setups, the cpptest_results.utlog file generated during test execution will be placed into the
directory that contains the executable. If you modified the file path, the file will be created in the speci-
fied location.

Unit test execution results can be published to DTP server or a local report can be generated with the
following command line:

See “Reporting”, page 41 for details on configuring and publishing reports.

Unit test execution results are typically combined with code coverage results.

Associating Tests with Code Coverage
You can automatically annotate code coverage results with test start/stop information (See “Annotating
Results Stream with Test Start/Stop Information”, page 63). This will allow you to selectively analyze
code coverage generated by a specific test or a collection of tests. Associating tests with code cover-
age requires the installation of both the coverage results annotator and the results listener, along with
Code Coverage Engine.

The coverage annotator adds special markers into the code coverage results stream. These markers
delimit coverage results for each test case. The coverage annotator adds the markers to the coverage
results file, which is managed by Code Coverage Engine. The annotator does not require any input
parameters.

Once the test executable with the results listener is installed, you can execute the scheduled unit tests.
In standard setups, the cpptest_results.clog file and the cpptest_results.utlog file generated during test
execution will be placed into the current working directory.

Run the following command to generate a local report and enable the selective analysis of code cover-
age on DTP server:

Reporting Assertions
By default, UTE does not show details about specific test assertion failures in the generated HTML
report. Use the following properties to display test assertion failures in the report:

• report.contexts_details=true

• report.testcases_details=true

Tagging Unique Test Runs
Use the session.tag property to define a tag that can be assigned to results from a specific test run.
The tag is a unique identifier for the analysis process on a specific module. Using the same session tag
overwrites data with results from the most recent run. By default, the tag is set to the name of the exe-
cuted test configuration.

cpptestcli -config "builtin://Unit Testing" -input <result_filename>.utlog -publish -report
local_report

cpptestcli -config "builtin://Unit Testing" -input cpptest_results.utlog -input
cpptest_results.clog -publish -report local_report

session.tag=[name]
54

55

Code Coverage Engine
The DTP Code Coverage Engine (CCE) collects coverage information from unit testing, functional test-
ing, as well as other kinds of application execution. CCE supports a range of coverage metrics and can
be used for native and cross-application development. Collecting coverage information with CCE
involves three phases:

• Instrumenting and building source code

• Executing instrumented code

• Generating a report

The following instructions provide a general description of integrating with a build system. For details
on integrating with Make- or MSBuild-based projects, see the following chapters: “Integrating with
Make-based Build Systems”, page 59, “Integrating with MSBuild”, page 61.

Instrumenting and Building Source Code
Three steps are performed during this phase:

1. Source code is instrumented

2. Instrumented source code is compiled to the object file

3. All instrumented and non-instrumented objects are linked to the code coverage tool library, as
well as any additional libraries required to form the final testable binary artifact

These steps are typically performed during the build process and require that the coverage tool be inte-
grated with the user build system.

The cpptestcc tool instruments the source code and compiles it into the object file. The cpptestcc is
designed to be used as a compiler prefix in compilation command lines.

Original compilation command line:

Coverage mode compilation command line:

When the coverage mode compilation command line is executed, cpptestcc performs the following
operations:

• Compilation command line is analyzed to extract information about source files

• All detected source files are parsed and instrumented for coverage metrics

• Instrumented files are reconstructed in the specified location using the -workspace switch;
additional information about the code structure used during report generation is also stored

• Compilation command line is modified and the original source files are substituted with instru-
mented versions

• Compilation command line is executed, object(s) files are created in the same location as in
case of original command line

cc -I app/includes -D defines -c source.cpp

cpptestcc -compiler gcc_3_4 -line-coverage -workspace /home/test/proj/cov

-- cc -I app/includes -D defines -c source.cpp
56

You can add the [INSTALL_DIR]/bin directory to your PATH variable so that you do not have to use
full paths when specifying cpptestcc command. All examples in this documentation assume this has
been done.

The following pattern describes the syntax for coverage instrumentation:

cpptestcc -compiler <compiler configuration> <coverage metric specification> -work-
space <workspace directory> -- <compilation command line>

• <compiler configuration> refers to a supported compiler configuration, e.g., gcc_3_4.
See “Supported Compilers”, page 104, for a list of supported compilers.

• <coverage metric specification> refers to a supported coverage metric, e.g., line-cover-
age. For list of supported coverage metrics, see “Command Line Reference for cpptestcc”,
page 72.

• The cpptestcc command line is separated from compiler command line with the -- separator.

Linking Instrumented Code
The original linker command must be modified to include the additional library required by the code
coverage instrumentation. The following example shows how this is typically accomplished:

Original compilation command line:

Coverage mode compilation command line:

Executing Instrumented Code
Details of the execution environment depend on the application specifics, but the coverage tool
imposes the following limited dependencies on execution:

• If the coverage tool library was linked as a shared (dynamic-load) library, then you must ensure
that the library can be loaded when instrumented application is started. On Windows, this typi-
cally requires adding [INSTALL_DIR]/bin directory to the PATH environment variable. On
Linux systems, add [INSTALL_DIR]/runtime/lib to the LD_LIBRARY_PATH variable.

• If the coverage results transport channel was modified, all requirements resulting from the
modification have to be fulfilled. For example, if results are sent through TCP/IP socket or
rs232 then appropriate listening agents need to be started before the instrumented application
executes.

After the instrumented application finishes execution, the collected results must be stored in the file
that will be used for report generation.

Generating Reports
Final coverage report is generated from two types of information:

• Code structure information generated by cpptestcc during build process (stored in work-
space)

• Coverage results achieved from instrumented code execution

lxx -L app/lib app/source.o -lsomelib -o app.exe

lxx -L app/lib app/source.o somelib.lib <coverage

tool>/runtime/lib/cpptest.lib -o app.exe
57

Coverage report can be generated in an HTML format or sent to DTP Server. The following example
shows the command for generating a report:

In order to properly merge coverage data in DTP, you must specify one or more coverage image tags in
the command line or .properties settings file. The coverage image(s) is automatically sent to the con-
nected DTP server where it can be associated with a filter.

You can specify a set of up to three tags that can be used to create coverage images in DTP Server
with the report.coverage.images property:

Associate coverage images in DTP in the Report Center administration page (administration>
Projects> Filters> [click on a filter]).

You can also use the report.coverage.limit property to specify a lower coverage threshold:

Coverage results lower than this value are highlighted in the report. The default value is 40.

CCE Usage Example
In this example, the following code is from a c++ source file called main.c:

The normal file compilation command is gcc:

To instrument this file and compile the instrumented code to the object file, the compilation command
line must include the cpptestcc command prefix:

Two artifacts are created as s a result of the cpptestcc command invocation:

cpptestcli -config builtin://Coverage -input cpptest_results.clog -workspace /home/test/
proj/cov

report.coverage.images=[tag1; tag2; tag3]

report.coverage.limit=[value]

#include <iostream>

int main(int argc, char ** argv) {

 if (argc > 1) {

 std::cout << "Thank you for arguments" << std::endl;

 } else {

 std::cout << "Provide some arguments please !" << std::endl;

 }

 return 0;

}

g++ -c main.c -o main.o

cpptestcc -compiler gcc_3_4 -line-coverage -workspace /home/test/proj/cov

-- g++ -c main.c -o main.o
58

1. object with instrumented code

2. code structure information stored in the directory specified with -workspace option.

Once the source file is instrumented and compiled to the object file it, can be linked to form the final
executable. Normally this simple example would be linked with the following command:

Coverage instrumentation requires additional library so the linking command line needs to look as fol-
lows:

In this example, the static version of the coverage library was used. The dynamic/shared version, as
well as the source code, is also provided for building a customized version. For additional information,
see “Code Coverage Engine Runtime Library”, page 64, and “Customizing the Runtime Library”,
page 66.

Once the application is linked it can be executed to collect information about code coverage. Run the
following command:

The application will output the coverage log file, named cpptest_results.clog by default, in the cur-
rent work directory.

Finally, generate the report using the following command:

A report directory will be created containing the HTML report with code coverage information.

Integrating with Make-based Build Systems
Integrating CCE with a projects based on a GNU Make or similar build tools typically requires modifying
the build scripts. In most of the cases the command line invoked by compilation and linking rules
should be altered. This may require you to modify the make variables or, in some cases, the compila-
tion and linking rules definitions.

Integrating with Make Compilation Rule
Prefix the compiler command line with the cpptestcc command wrapper to integrate with the Make
compilation rule. To determine the best approach, start with analyzing build scripts and locating the def-
inition for the compilation rule. In some cases, there are different rules for specific files, such as rules to
handle C or C++ files. The following example shows how the compilation rule(s) may be defined:

In this example, the compiler is referenced with a CXX make variable. There are two options:

1. Add the prefix variable to the compilation rule, or

g++ main.o -o app.exe

g++ main.o <coverage tool install dir>/runtime/lib/cpptest.a -o app.exe

./app.exe

cpptestcli -config builtin://Coverage -workspace /home/test/proj/cov -input
cpptest_results.clog -report report_dir

$(PRODUCT_OBJ_ROOT)/%$(EXT_OBJ) : %$(EXT_CXX)

 $(CXX) $(CXXFLAGS) $(CXXSTATICFLAGS) -DAPPNAME=product
59

2. Overwrite the compiler variable

The following sections describe how to proceed with either approach

Adding the Prefix Variable to the Compilation Rule
Modify the compilation rule by prefixing the variable that references the compiler with an additional
variable:

Additionally, assign a value to the added variable (COV_TOOL) either at the time of the Make invocation
(example a) or in build scripts (example b):

Example a

Example b

In this option, the variable would likely be inside a condition dependent on an additional variable:

Overwriting the Compiler Variable
In this approach, the compiler variable is used to specify the coverage tool command line. This can be
done either at the time of the Make invocation (example c) or in build scripts (example d) after the orig-
inal value of the CXX variable is specified (to avoid overriding coverage tool command with original
compiler):

Example c

If your build scripts have separate compilation rules for different types of files, you may need to over-
write more than one variable, for example CC and CXX:

Example d

In this option, the variable would likely be inside a condition dependent on an additional variable:

Integrating with Make Linking Rule
Modify the linking rule to include the additional library required for code instrumentation. The
cpptestcc tool library can have different forms depending on specific project requirements. It can be a
shared/dynamic library, static library, or an object file. In all cases, the particular linker options may

$(PRODUCT_OBJ_ROOT)/%$(EXT_OBJ) : %$(EXT_CXX)

 $(COV_TOOL) $(CXX) $(CXXFLAGS) $(CXXSTATICFLAGS) -

DAPPNAME=product

make COV_TOOL="cpptestcc -compiler gcc_3_4 -line-coverage

-workspace /home/test/proj/cov -- "

ifeq (COV_BUILD,$(BUILD_TYPE))

 COV_TOOL="cpptestcc -compiler gcc_3_4 -line-coverage

-workspace /home/test/proj/cov -- "

endif

make CXX="cpptestcc -compiler gcc_3_4 -line-coverage -workspace /home/test/proj/cov -- g++"

ifeq (COV_BUILD,$(BUILD_TYPE))

 CXX="cpptestcc -compiler gcc_3_4 -line-coverage -workspace /home/test/proj/cov -- g++"

endif
60

have a different form, but modifying the Makefiles will be done in a very similar manner regardless of
the case.

For more details about using different forms of the cpptestcc tool runtime library, see “Using Cover-
age Tool for Complex Projects”, page 62. This section focuses on the general approach to modifying
linker command lines in Make-like environments.

To find an appropriate place for modification, begin with analyzing build scripts and locating the defini-
tion of the linking rule. The following example shows how the linking rule may be defined:

You can either add a special variable for representing the cpptestcc tool library, or append the cover-
age library to one of the variables already used in the linking rule.

Adding a Variable to Represent Coverage Tool Library
The following example shows what the modified rule may look like:

Additionally, assign a value to the added variable (COV_LIB) either at the time of the Make invocation
(example e) or in build scripts (example f):

Example e

Example f

In this option, the variable would likely be inside a condition dependent on an additional variable:

Appending Coverage Library to Existing Variable in the Linking Rule

Integrating with MSBuild
Your can integrate Code Coverage Engine with MSBuild. This integration is achieved with parasoft-
coverage files shipped with CCE in the [INSTALL_DIR]/integration/msbuild directory.

For more details, see the parasoft_dtp_plugin_msbuild_manual.pdf stored in the [INSTALL_DIR]/inte-
gration/msbuild directory.

$(PROJ_EXECUTABLE): $(PRODUCT_OBJ)

 $(LXX) $(PRODUCT_OBJ) $(OFLAG_EXE)$(PROJ_EXECUTABLE) $(LXXFLAGS) $(SYSLIB)
$(EXECUTABLE_LIB_LXX_OPTS)

$(PROJ_EXECUTABLE): $(PRODUCT_OBJ)

 $(LXX) $(PRODUCT_OBJ) $(OFLAG_EXE)$(PROJ_EXECUTABLE) $(LXXFLAGS) $(SYSLIB)
$(EXECUTABLE_LIB_LXX_OPTS) $(COV_LIB)

make COV_LIB="<COV_TOOL_INSTALLATION>/runtime/lib/cpptest.a "

ifeq (COV_BUILD,$(BUILD_TYPE))

 COV_LIB="<COV_TOOL_INSTALLATION>/runtime/lib/cpptest.a"

endif

ifeq (COV_BUILD,$(BUILD_TYPE))

 LXXFLAGS+="<COV_TOOL_INSTALLATION>/bin/engine/lib/cpptest.a"

endif
61

Using Coverage Tool for Complex Projects
The examples in this section describe several classes of projects and ways to approach integrating
CCE.

• Build includes compilation of multiple source files without static or dynamic libraries

Compilation phase:

For all sources files or selected subsets, compilation should be prefixed with cpptestcc tool
with options for enabling the desired coverage metrics.

Linking phase:

The linker command line should be modified to include the coverage tool library. In most of the
cases, you will include the static library:

• Build includes compilation of multiple source files and the preparation of multiple static librar-
ies, which are linked to the main objects

Compilation phase:

For all sources files or selected subsets, compilation should be prefixed with cpptestcc tool
with options for enabling desired coverage metrics. If coverage from static libraries should also
be collected, they need to be instrumented, as well.

Linking phase:

The linker command line should be modified to include the coverage tool library. In most of the
cases, you will include the static library. It is important to add the coverage tool library only
once, usually during executable linking. Static libraries created during the build should not
contain the coverage library.

• Build includes compilation of multiple source files and preparation of multiple dynamic/shared
libraries which are linked with main objects

Compilation phase:

For all sources files or selected subsets, compilation should be prefixed with cpptestcc tool
with options for enabling desired coverage metrics. If coverage from dynamic libraries should
also be collected, they need to be instrumented, as well.

Linking phase:

• Linking command lines for dynamic libraries should be modified to include the cover-
age tool shared/dynamic-load library.

• Linking command lines for static libraries should not be modified.

• Linking command line for executable should be modified to include coverage tool
shared/dynamic library

• Build includes the following:

• Compilation of multiple source files

• Preparation of multiple dynamic/shared libraries linked with main objects

• Multiple static libraries linked with main objects

Compilation phase:

For all sources files or selected subsets, compilation should be prefixed with cpptestcc tool
with options for enabling desired coverage metrics. If coverage from dynamic or shared librar-
ies should also be collected, they need to be instrumented, as well.

g++ source1.o source2.o <cov tool install dir>/runtime/lib/cpptest.a
62

Linking phase:

• Linking command lines for dynamic libraries should be modified to include the cover-
age tool shared/dynamic-load library.

• Linking command lines for static libraries should not be modified.

• Linking command line for executable should be modified to include coverage tool
shared/dynamic library

Annotating Results Stream with Test Start/Stop
Information
You can annotate code coverage results with test start/stop information to understand how a particular
test scenario affects code execution. Test start notification conveys information about the test name,
which can be used when processing test data and generating reports.

Test Start/Stop annotations functionality is available as an API and can be extended to many different
scenarios. For example, you can associate code coverage results with unit tests or associate code
coverage results with manual test scenarios performed during system testing.

Using the Test Start/Stop API
The API includes the following functions:

Include a dedicated header file in the source file that will invoke the API functions:

Use the -I option to specify the cpptest.h header file location when compiling the source file:

Specify a valid string as an argument to the CppTest_TestStart function. Null pointers or invalid
strings will cause undefined behavior.

Common Applications of the Test Start/Stop Scenarios
The following scenarios illustrate usage of the test start/stop notification API:

• Annotating coverage results with unit test case names

In this scenario, unit test case names are used as an argument specified to
CppTest_TestStart function invocation. For some of popular C/C++ unit testing frameworks,
dedicated connectors are provided to automate this task. For additional information about unit
testing framework connectors, see “Unit Test Connector”, page 49.

Function Description

void CDECL_CALL CppTest_TestStart(const char* testName Sends the notification to the results
stream about the beginning of a test
with specified name.

void CDECL_CALL CppTest_TestStop(void) Sends the notification to the results
stream about the end of previously
started test.

#include "cpptest/cpptest.h"

-I <Installation Directory>/runtime/include
63

To use a unit testing framework that does not have a dedicated connector, you can invoke
start/stop API functions at the beginning and end of the test case:

• Annotating coverage results with manual test scenario names for system testing sessions.
There are a few ways to achieve this goal:

• Calls to test start/stop API can be added directly to the tested source. They can be
activated with dedicated macros in the debug or test builds of the tested application.
The method for providing the name of the test scenario to the API function call
depends on the type of application. In some cases you can add a special option to the
menu of the tested application that is only visible in the debug build or the command
line. This would enable you to specify the name of the performed test scenario and
send the notification to results stream once the name is entered.

• The names of the test cases can be also read from the environmental variable set
before starting tested application.

• Use a special module implemented as a separate thread that is started in parallel to
the threads of tested application. The module could, for example, listen on the TCP/IP
socket and react when test start/stop command is send from external tool.

Code Coverage Engine Runtime Library
The CCE runtime library is a collection of helper functions and services used by source code instru-
mentation to emit coverage information at application runtime. Instrumented applications can not be
linked without the library. The runtime library can be linked to the final testable binary in multiple ways
depending on tested project type.

In addition to providing basic services for instrumented code, the library is also used to adapt the code
coverage solution to particular development environments, such as supporting nonstandard transport
for coverage results between tested embedded device and development host.

Pre-built Versions and Customized Builds
CCE ships with pre-built versions of the runtime library, which are suitable for using on the same plat-
form on which CCE is installed. In most of the cases, collecting code coverage information from
natively developed applications (i.e., MS Windows or Linux x86 and x86-64) can use pre-built versions
of runtime library.

All users developing cross-platform applications will need to prepare a custom build of the runtime
library using a suitable cross compiler and possibly linker. Source code of the code coverage runtime
library is shipped with CCE.

The process of preparing the runtime library custom build is typically limited to compilation of runtime
library source code. In some situations you may need to install some fragments of source code to
adapt code coverage to a particular development platform. This process is described in the following
sections.

#include "cpptest/cpptest.h"

TEST(TimerTest, smokeTest) {

 const char * tcName = testCaseName();

 CppTest_TestStart(tcName);

 int res = init_timer();

 ASSERT_TRUE(res != 0);

 CppTest_TestStop();

}

64

Using the Pre-built Runtime Library
The following binary files are included with the CCE:

Windows (x86 and x86-64)

Linux (x86 and x86-64)

If you need to use the runtime library in a form not provided as an out-of-the-box solution, prepare a
custom build of the runtime library that matches specific development environment requirements. For
more details about this please see “Customizing the Runtime Library”, page 66.

Integrating with the Linker Command Line
Integrating the CCE runtime library with a tested application linking process usually requires modifying
the linker command line and, in some cases, the execution environment. This describes how to modify
the linking process when using the pre-built versions shipped with CCE.

• Static library for Windows Cygwin GNU GCC compilers:

1. Locate the linker command line in your build scripts

2. Modify the build scripts so that the coverage runtime library is specified somewhere in
in the linker command line--preferably after all object files.

• Dynamic-link library for MS CL compilers:

1. Locate the linker command line in your build scripts

File Description

[INSTALL_DIR]/runtime/lib/cpptest.a 32-bit static archive to be used with Cygwin GNU
GCC compilers. To be added to linking command
line

[INSTALL_DIR]/runtime/lib/cpptest.lib 32-bit import library to be used with Microsoft CL
compilers. To be added to linking command line

[INSTALL_DIR]runtime/lib/cpptes64.lib 64-bit import library to be used with Microsoft CL
compilers. To be added to linking command line

[INSTALL_DIR]/bin/cpptest.dll 32-bit Dynamic-link library to be used with Microsoft
CL compilers. [INSTALL_DIR]/bin should be
added to PATH environmental variable

[INSTALL_DIR]/bin/cpptest64.dll 64-bit Dynamic-link library to be used with Microsoft
CL compilers. [INSTALL_DIR]/bin should be
added to PATH environmental variable

File Description

[INSTALL_DIR]/runtime/lib/lib-
cpptest.so

32-bit shared library. To be added linking command
line. [INSTALL_DIR]/runtime/lib should be added
to LD_LIBRARY_PATH

[INSTALL_DIR]/runtime/lib/
libcpptest64.so

64 bit shared library. To be added linking command
line. [INSTALL_DIR]/runtime/lib should be added
to LD_LIBRARY_PATH
65

2. Modify the build scripts so that the coverage runtime library is specified somewhere in
in the linker command line--preferably after all object files. For example:

3. Make sure that the [INSTALL_DIR]/bin directory is added to your PATH environment
variable so that the library can be located when the tested program is started. You may
also consider copying cpptest.dll (or cpptest64.dll) file to the same directory as
your executable file or to another location that is scanned for dynamic-link libraries
during tested application startup.

• Shared library for Linux GNU GCC compilers

1. Locate the linker command line in your build scripts

2. Modify the build scripts so that the coverage runtime library is specified somewhere in
in the linker command line--preferably after all object files. For example:

Note the addition of the -L [INSTALL_DIR]/runtime/lib and -lcpptest options.

3. Make sure that shared library can be found by tested executable by modifying
LD_LIBRARY_PATH environmental variable to include [INSTALL_DIR]/runtime/lib
location

Customizing the Runtime Library
You may need to customize the runtime library as a result of the following conditions:

• Different form of binary file is required

• Enabling a non-default communication channel for results transport

• Installing custom implementation of communication channel for results transport

• Enabling a non-default support for multithreaded applications

• Installing custom implementation of support for multithreaded applications

Library Source Code Structure

The runtime library source code shipped with CCE is in the [INSTALL_DIR]/runtime directory. The
following table describes the structure:

$(LXX) $(PRODUCT_OBJ) $(OFLAG_EXE)$(PROJ_EXECUTABLE) $(LXXFLAGS) $(SYSLIB)
$(EXECUTABLE_LIB_LXX_OPTS) <INSTALL>/runtime/lib/cpptest.lib

$(LXX) $(PRODUCT_OBJ) $(OFLAG_EXE)$(PROJ_EXECUTABLE) $(LXXFLAGS) $(SYSLIB)
$(EXECUTABLE_LIB_LXX_OPTS) -L <INSTALL>/runtime/lib -lcpptest

Component Description

include Directory containing library include files.

include/cpptest.h - library public interface

include/cpptest/* - library private interface

Content of the include directory is not designed for environment spe-
cific modifications.
66

Switching Communication Channel Support
The runtime library supports data collection through various communication channels. The communi-
cation channel used depends on the development environment. In most cases, storing results in a file
or files is appropriate, but in others TCP/IP sockets or RS232 transport may be required. Specific com-
munication channels can be enabled by setting the value to a dedicated macro during cpptest.c
library source file compilation. Add -D<MACRO> to the compilation command line to set the value. The
following table provides the full list of communication channel control macros:

src Directory containing library source code

src/cpptest.c - main and single source file of the runtime library

This file is designed for modifications and customizations.

Makefile Basic Makefile provided for building runtime library

target Directory containing set of Makefile include files with compiler specific
options for preparing runtime library builds for most popular develop-
ment environments

channel Directory containing set of Makefile include files with configuration for
supported communication channels.

Channel Description

CPPTEST_NULL_COMMUNICATION Empty implementation. If enabled no results
will be sent. Suitable for initial test builds and
debugging

CPPTEST_FILE_COMMUNICATION File-based implementation. ANSI C File I/O
interface is used. If enabled, results will be
written to a local drive file.

The following additional configuration macros
are also provided:

CPPTEST_LOG_FILE_NAME: Name of the
results file; default cpptest_results.clog

CPPTEST_LOG_FILE_APPEND: Creates new
results file or appends to existing. Default
value is 1 -> append, alternative 0 -> cre-
ate new

Component Description
67

CPPTEST_SPLIT_FILE_COMMUNICATION File-based implementation. ANSI C File I/O
interface is used. If enabled, results will be
written into a series of local drive files.

You can configure this channel with the follow-
ing macros:

CPPTEST_LOG_FILE_NAME: Name of the first
results file in the series; the default is
cpptest_results.clog. Other files will be
named in sequence, for example,
cpptest_results.clog.0001.

To pass the series to cpptestcli, ensure that all
the files in the series are placed in the same
directory and provide only the name of the first
file as an input. When you run the cpptestcli
command, other files will be merged with the
first file in the series and removed from the
directory.

CPPTEST_MAX_ALLOWED_NUMBER_OF_BYTES_P
ER_FILE: Specifies the maximum size of one
file in the series; default 2000000000 bytes (2
GB).

CPPTEST_UNIX_SOCKET_COMMUNICATION TCP/IP socket based implementation. POSIX
API is used. If enabled results are sent to
specified the TCP/IP port. The following addi-
tional configuration macros are provided:

CPPTEST_LOG_SOCKET_HOST: Specifies host IP
address string

CPPTEST_LOG_SOCKET_PORT: Specifies the
port number

CPPTEST_GETHOSTBYNAME_ENABLED: If set to
1, the host can be specified by domain name
(requires gethostbyname function to be
present)

CPPTEST_WIN_SOCKET_COMMUNICATION As above, MS Windows API is used

CPPTEST_UNIX_SOCKET_UDP_COMMUNICATION As above, UDP based implementation

Channel Description
68

If the runtime library is being built with the provided Makefile, then one of the make configuration files
provided in the [INSTALL_DIR]/runtime/channel directory can be used. For details see “Integrating
with Make-based Build Systems”, page 59.

Installing Support for Custom Communication Channel
If none of the communication channel implementations fit into your development environment, then a
custom implementation can be provided. The following instructions describe how to customize the runt-
ime library so that it uses a custom implementation of a communication channel:

1. Make a copy of [INSTALL_DIR]/runtime/src/cpptest.c and open the file for editing

2. Locate the section 1.13 "Custom Communication Implementation"

CPPTEST_RS232_UNIX_COMMUNICATION RS232 based implementation. POSIX API is
used. If enabled then results are sent via the
specified RS232 system device. The following
additional configuration macros are provided:

CPPTEST_RS232_DEVICE_NAME: System
device name

CPPTEST_RS232_BAUD_RATE: Transmission
baud rate

CPPTEST_RS232_BYTE_SIZE: Byte size

CPPTEST_RS232_PARITY: Parity control

CPPTEST_RS232_STOP_BIT: Stop bit usage

CPPTEST_RS232_TIMEOUT: Transmission time-
out value

CPPTEST_RS232_WIN_COMMUNICATION As above. MS Windows API is used.

CPPTEST_RS232_STM32F103ZE_COMMUNICATION STM32F103x USART based implementation.
STM Cortex library interface is used (ST/
STM32F10x/stm32f10x.h header file is
required)

CPPTEST_HEW_SIMIO_COMMUNICATION Renesas HEW simulator specific implementa-
tion.

CPPTEST_LAUTERBACH_FDX_COMMUNICATION Lauterbach TRACE32 based implementation
(FDX used)

CPPTEST_ITM_COMMUNICATION ARM CoreSight ITM unit based communica-
tion. Requires CMSIS header files.

CPPTEST_CUSTOM_COMMUNICATION Enables empty template for custom imple-
mentation

Channel Description
69

The custom communication implementation section contains empty templates for four different
methods:

3. Provide the implementation for these methods that match your environment requirements.

4. Compile cpptest.c with the following macro definition added to compilation command line:

"-DCPPTEST_CUSTOM_COMMUNICATION"

5. If the generated object file is insufficient, you can process the file even further to meet your
needs (e.g., to create a shared library)

Switching Multithreading API Support
The runtime library contains support for multithreaded applications. POSIX, MS Windows, and
VxWorks APIs are supported. You can enable support for a specific multithreading API by adding -
D<MACRO> to the compilation command line during cpptest.c compilation. The following table
describes the full list of multithreading API support control macros:

Installing Support for Custom Threading API
If you are using CCE with multithreaded applications that do not use a supported multithreading API,
you can customize the runtime library to work with your multithreading API. There are following steps
required:

1. Make a copy of [INSTALL_DIR]/runtime/src/cpptest.c and open the file for editing

2. Locate the section 2.5 "Custom Multithreading Implementation"

Function Description

void cpptestInitializeStream(void) This function is responsible initializing the communica-
tion channel, for example creating and connecting to a
socket or the initialization of UART device.

void cpptestFinalizeStream(void) This function is responsible for finalizing the communi-
cation channel. For example, it may be responsible for
closing TCP/IP socket.

int cpptestSendData

(const char *data, unsigned size)

This function is responsible for sending size bytes
from a data buffer.

void cpptestFlushData(void) This function is responsible for flushing the data. Its
meaning depends on the particular transport type. It
may have a limited application in some impementa-
tions. In this case it should be left empty.

Macro Description

CPPTEST_NO_THREADS Empty implementation. Coverage runtime is not pre-
pared to be used together with multithreaded applica-
tions

CPPTEST_WINDOWS_THREADS MS Windows multithreading API implementation

CPPTEST_UNIX_THREADS POSIX multithreading API implementation

CPPTEST_VXWORKS_THREADS VxWorks multithreading API implementation
70

Custom multithreading implementation section contain empty templates for two different meth-
ods

3. Provide the implementation for the methods that matches your environment requirements.

4. Compile cpptest.c with the following macro added to compilation command line:

"-DCPPTEST_CUSTOM_THREADS"

5. If the generated object file is insufficient, you can process the file even further to meet your
needs (e.g., to create a shared library)

Building the Runtime Library
CCE ships with a simple Makefile (see “Library Source Code Structure”, page 66) which simplifies the
process of building the runtime library. In many instances, however, the make file provided will not be
required because the source code is already optimized for the building process. The only step that is
always required is the compilation of the main cpptest.c source file. Any additional processing of the
produced object file will depend on the particular development environment and its requirements, such
as providing the runtime library as a shared library.

Building the Runtime Library Using the Provided Makefile
1. Change directory to [INSTALL_DIR]/runtime

2. If compilation flags need to be modified (e.g., adding specific cross-compiler specific or defini-
tions to enforce runtime library reconfiguration), provide a new make configuration file in the
target subdirectory. For convenience, copy one of the existing target configuration files and
modify its contents to fit your needs.

3. Invoke the following command line:

make TARGET_CFG=<target config file name> CHANNEL=<channel config file name>

4. A build subdirectory will be created with a single object cpptest.<OBJ_EXT>, which can be
used to link with instrumented application.

5. If the coverage runtime library needs to be linked to form a shared library, dynamic link library,
or any other type of binary, the Makefile needs to be customized for this purpose or a custom
build needs to be setup.

User Build of the Runtime Library
1. To setup a user build of coverage tool runtime library perform the following steps:

2. Copy the cpptest.c file from [INSTALL_DIR]/runtime/src/cpptest.c to your preferred loca-
tion

Function Description

static int cpptestLock(void) This function ensures synchronized operations inside
the coverage tool runtime library. If a thread locks
access to the runtime library service, it means an
atomic operation is in progress and no other thread
can use runtime library services. Once the lock is
released other threads can use runtime library ser-
vices

static int cpptestUnlock(void) Releases the lock on runtime library services.
71

3. Introduce any customizations as described in “Customizing the Runtime Library”, page 66

4. Set up a build system of your preference (e.g., IAR Embedded Workbench project or any other
type of source code builder)

5. Modify the compilation flags to contain the compiler include flag (typically -I) with the following
value:

-I[INSTALL_DIR]/runtime/include

6. Add any required configuration defines (typically -D), for example:

-DCPPTEST_FILE_COMMUNICATION -DCPPTEST_NO_THREADS

7. Invoke the command to run your builder (for example, select build command in the IDE)

8. Locate the resulting object file and use it to link with your instrumented application

Command Line Reference for cpptestcc

Option name Description Notes

-compiler <name|path> Specifies compiler
configuration name to be used
for code analysis and
instrumentation. Compiler
configuration name need to be
one of the supported compilers
names. See “Supported
Compilers”, page 104, or use
the -listcompilers option

Examples:

cpptestcc -compiler
gcc_3_4

cpptestcc -compiler
vc_11_0

Configuration file format:

cpptestcc.compiler <name>

-listcompilers Prints out all the names of sup-
ported compiler configurations

Configuration file format:

cpptestcc.listCompilers
72

-include <file|pattern>

-exclude <file|pattern>

Includes/excludes file(s) that
match the specified pattern
into/from instrumentation
scope. Options can be speci-
fied multiple times.

Final filtering is determined
only after all include/exclude
entries have been specified in
the order of their specification.

The following wildcards are
supported:

? - Any character

* - Any sequence of characters

To prevent shells from expand-
ing * wildcards to the list of files
or directories, you can use the
regex: prefix to specify the
value.

Example 1:

Assume the following project
layout:

<project root>

 + external_libs

 + src

 + include

The following cpptestcc com-
mand will cause all the files
from the external_libs direc-
tory to be excluded from instru-
mentation scope.:

cpptestcc -include
regex:*/<project root>/*
-exclude regex:*/<project
root>/external_libs
<remaining part of cmd>

Example 2:

Assume the following project:

<project root>

 <sourcefiles>.cpp

 <headerfiles>.hpp

The following command line
will instrument only header files
without instrumenting source
files:

cpptestcc -include
regex:* -exclude
regex:*.cpp <remaining
part of cmd>

Configuration file format:
cpptestcc.include
<path|pattern>

Option name Description Notes
73

-ignore <pattern> Ignores all source files match-
ing specified <pattern> dur-
ing processing. Option can be
specified multiple times.

Files matching the specified
pattern will not be parsed or
instrumented, but they will be
compiled in their original form.

The following wildcards are
supported:

? - Any character

* - Any sequence of characters

To prevent shells from expand-
ing * wildcards to the list of files
or directories, you can use the
regex: prefix to specify the
value.

Use this option to reduce build
time overhead by ignoring cov-
erage analysis on some sec-
tions of the code (e.g., external
libraries) or to ignore specific
file that expose problems dur-
ing processing (e.g., parse
error)

Example:

cpptestcc -ignore "*/Lib/
*" <remaining part of cmd>

cpptestcc -ignore
regex:*/file.c <remain-
ing part of cmd>

cpptestcc -ignore c:/
proj/file.c <remaining
part of cmd>

cpptestcc -ignore "*/
MyLib/*.cpp" -ignore
file.cpp <remaining part
of cmd>

Choosing between -ignore
and -include/-exclude:

In some cases, -ignore func-
tionality may appear to overlap
with the -include/-exclude
options. The difference is that
the -ignore option completely
removes the specified file from
processing so that it is not
parsed by coverage engine,
whereas the -include/-
exclude filters are applied after
source code is parsed, which
allows you to selectively instru-
ment or not instrument header
files.

Configuration file format:
cpptestcc.ignore
<path|pattern>

Option name Description Notes
74

-line-coverage Enables line coverage metric Runtime coverage results are
written to the results log as the
code is executed. This imposes
some overhead on the tested
code execution time, it but
assures that coverage data is
collected even if the application
crashes. This option can not be
used with -optimized-line-
coverage.

Configuration file format:
cpptestcc.lineCoverage

-optimized-line-coverage Enables optimized line cover-
age data

Runtime coverage results are
stored in memory and written
to the results log either after
the application finishes or on
user request. This results in
better performance, but results
may be lost if the application
crashes. This option can not be
used with -line-coverage.

Configuration file format:

cpptestcc.optimizedLine-
Coverage

-workspace <path> Specifies the workspace direc-
tory to be used during code
analysis and instrumentation.

The workspace location is used
to store important code struc-
ture information essential for
generating the final coverage
report. The workspace location
must be the same for
cpptestcc and cpptestcli.
tool invocation.

Configuration file format:

cpptestcc.workspace
<path>

-psrc <file> Specifies the configuration file
with additional options for
cpptestcc tool.

By default, cpptestcc
attempts to read the .psrc file
located in either the current
working directory or in user
HOME directory. Use -psrc to
specify options inside the con-
figuration file.

Configuration file format:

pscom.psrc <file>

-help Prints out help message and
exits.

Configuration file format:

cpptestcc.help

Option name Description Notes
75

Customizing DTP Engines for C/C++
Customization options for Static Analysis Engine are specified with a configuration file. The file should
be passed to Static Analysis Engine using the -settings switch:

The -settings switch may be specified multiple times. Entries with the same key will be overwritten:

General settings are applied in the following order:

1. [INSTALL_DIR]/etc/cpptestcli.properties; the base configuration file for Static Analysis
Engine and should not be modified.

2. [INSTALL_DIR]/cpptestcli.properties; contains templates for commonly used settings
(license, reporting etc.)

3. [USER_HOME]/cpptestcli.properties; optional

4. [WORKING_DIR]/cpptestcli.properties; optional

5. Custom settings passed with the command line switch -settings path/to/settings.prop-
erties (e.g., -settings ../settings.properties)

Custom settings passed with the command line switch -property [key=value]All of the above set-
tings can be overridden by custom settings that are passed with command line switches (e.g. -report,
-config, -dtp.share.enabled).

Modifying a Single Property
You can quickly modify a single property in a settings configuration file with the -property switch
without creating a dedicated configuration:

Viewing Current Settings
Use the -show-settings switch to print the current settings and customizations.

Advanced Configuration
For advanced configuration of C++test's native code analyzers, a dedicated configuration file (in a for-
mat supported by the analyzers) can be specified with -psrc <CONFIG_FILE> switch. Parasoft Sup-
port will provide content for the advanced configuration file.

cpptestcli -settings custom.properties -config "builtin://Recommended Rules" -com-
piler gcc_3_4 -input cpptest.bdf

cpptestcli -settings team.properties -settings project.properties -settings
user.properties -config "builtin://Recommended Rules" -compiler gcc_3_4 -input
cpptest.bdf

cpptestcli -property dtp.server=dtp.parasoft.com.pl

-config "builtin://Recommended Rules" -compiler gcc_3_4 -input cpptest.bdf
76

Using Variables
The following table shows variables that can be used in settings values.

Settings Reference
The following tables contain settings that are currently supported in DTP Engines.

We recommend you avoid using spaces, +, /, or any other special characters when setting variables
or values for configuration settings, as some API calls may require properly encoded URLs.

Variable Description Example

analysis_type Outputs a comma separated list of enabled analy-
sis types (e.g., Static, Generation and Execution)

${analysis_type}

env_var Outputs the value of the environmental variable
specified after the colon.

${env_var:HOME}

config_name Outputs the name of executed Test Configuration. ${config_name}

dtp_project Outputs the name of DTP project specified in the
settings file using dtp.project option.

${dtp_project}

project_module Outputs the name of the tested project's module. If
more than one module is provided as an input, the
first tested module name is output followed by an
ellipsis (...). The variable can be configured in the
settings file with the project.module option.

${module_name}

host_name Outputs the name of the host. ${host_name}

user_name Outputs the name of the current user. ${user_name}

os Outputs the name of the operating system. ${os}

arch Outputs the name of the operating system archi-
tecture

${arch}

exec_env Outputs the execution environment. Ths variable
is a concatenation of ${os} and ${arch} vari-
ables. It can be configured in the sittings file with
the exec.env option.

${exec_env}

scontrol_branch Outputs the source control branch name for the
tested project. If more than one branch name is
detected, the first branch name is output followed
by an ellipsis (...). The variable can be configured
in the settings file with the scontrol.branch
option.

${scontrol_branch}

tool_name Outputs the name of the tool (i.e., Jtest, C++test,
dotTEST).

${tool_name}

jvm_prop Outputs the value of the Java vm property speci-
fied after the colon.

${jvm_prop:os.name}
77

Base Configuration Settings

Setting Value Description/Notes

console.verbosity.level low

normal

high

Specifies the verbosity level for the
Console

low: configures the Console view to
show errors and basic information
about the current steps and status
(done, failed, up-to-date).

normal: (default) also shows com-
mand lines and issues reported dur-
ing test and analysis.

high: also shows warnings.

parallel.mode disabled

auto

manual

Determines which of the following
modes is active:

disabled: configures Parasoft Test
to use only one of the available
CPUs.

auto: (default) allows Parasoft Test
to control parallel processing set-
tings.

manual: allows you to manually con-
figure parallel processing settings to
suit your specific needs.

parallel.no_memory_limit true

false
Enables/disables restrictions
(beyond existing system limitations)
on the memory consumed by parallel
processing.

Default is false

parallel.free_memory_limit [percentage] Specifies the amount of memory that
should be kept free in low memory
conditions (expressed as a percent-
age of the total memory available for
the application). This is used to
ensure that free memory is available
for other processes.

Default is 25

parallel.max_threads [number] Specifies the maximum number of
parallel threads that can be executed
simultaneously. The actual number of
parallel threads is determined by the
number of CPUs, available memory,
and license settings.

The default value is equal to the
number of CPUs
78

file.encoding.mode default

auto

user

Specifies how file encoding is deter-
mined.

default: enables use of system
properties

auto: enables automatic detection of
encoding for the Far-East languages
specified with file.encod-
ing.lang

user: enables use of specified
encoding by file.encoding.name.

file.encoding.lang [code] Allows specify language’s numeric
code when file.encoding.mode
is set to auto:

Japanese = 1

Chinese = 2

Simplified Chinese = 3

Traditional Chinese = 4

Korean = 5

file.encoding.name [encoding] Allows you to specify the encoding
name when file.encoding.mode
is set to user:

ASCII-US

UTF-8

UTF-16

UTF-16LE

UTF-16BE

 …

settings.validation true

false
Enables/disables settings validation.

settings.rules.file.cpptest path Indicates the path to a file that
contains additional rules for settings
validation. The file should follow the
.properties format and include rules
according to the following examples:

engine.path=$ANY

engine.enabled=$BOOLEAN

engine.analysis.deep=$INTEGER

engine.severity.limit=$REGEXP{[1-
5]}

engine.verbosity.level=$REGEXP_IC{(
low)|(normal)|(high)}

Setting Value Description/Notes
79

Test Configuration Settings

Compiler Settings

Development Testing Platform Settings

Setting Value Description/Notes

cpptest.configuration [test configuration] Specifies the default test config-
uration when the -config
switch is absent. See “Specify-
ing Test Configurations”,
page 17.

configuration.dir.builtin [path] Path to directory with built-in test
configurations.

configuration.dir.user [path] Path to directory with user-
defined test configurations.

configuration.share.path [path] Path on DTP server share with
shared test configuration.

cpptest.custom.rule.dir [path to directory] Specifies the location of user-
defined coding standard rules.

Default is [INSTALL_DIR]/
rules/user

Setting Value Description/Notes

cpptest.compiler.dir.user [path to directory] Specifies the location of custom
compiler configuration files.

See “Compiler Configura-
tion”, page 21.

cpptest.compiler.family [compiler identifier] Specifies the default compiler
configuration to use during anal-
ysis, when -compiler switch is
absent.

See “Compiler Configura-
tion”, page 21.

Setting Value Description/Notes

dtp.server [host] Specifies the host name of the
DTP server.

dtp.port [port] Specifies the port number on
DTP server port. The default
settings is 443.

dtp.user

dtp.password

[username]

[password]
Specifies authentication to con-
nect to DTP server.
80

dtp.project [project_name] Specifies the name of the DTP
project that you want linked to.
This settings is optional.

dtp.autoconfig true

false
Enables auto configuration with
settings stored on the DTP
server. The default is false.

report.dtp.publish true

false
Determines whether the current
installation is reporting test
results to DTP server. The
default is false.

report.dtp.publish.src off

min

full

Determines whether tested
source code is published to DTP
server.

off: code is not published to
DTP server.

min: publishes minimal part of
sources. In most cases, source
code without references to
source control, e.g., auto-gener-
ated code, is published.

full: publishes all sources
associated with the specified
scope.

The default is full if
report.dtp.publish is
enabled, otherwise the default is
off

dtp.share.enabled true

false
Enables/disables connection to
Team Server. The default is
false.

cpptest.license.use_network true

false
Enables/disables license
retrieval from License Service.
The default setting is true.

cpptest.license.network.type dtp

ls
Sets the network license type.

dtp:file count license that limits
usage to a certain number of
files as determined by your
licensing agreement

ls: floating license (machine
locked) that limits usage to a
certain number of machines

cpptest.license.local.password [password] Specifies the local license pass-
word.

cpptest.license.local.expiration [expiration] Specifies the local license expi-
ration date.

Setting Value Description/Notes
81

Scope and Authorship Settings

cpptest.license.network.edition desktop_edition

server_edition

custom_edition

Specifies the type of license that
will be retrieve from License
Service for this installation.
Default is custom_edition

cpptest.license.custom_edition_features [feature_name, ...] Specifies active features for cus-
tom license edition.

cpptest.license.wait.for.tokens.time [minutes] Specifies the time that tool will
wait for a license if a license is
not currently available.

Setting Value Description/Notes

scope.local true

false
Enables/disables code author-
ship computation based on the
local user and system files mod-
ification time. Default is true

scope.scontrol true

false
Enables/disables code author-
ship computation based on data
from a supported source control
system. Default is false

scope.xmlmap true

false
Enables/disables task assign-
ment based on an XML mapping
file that defines how tasks
should be assigned for particular
files or sets of files. See “Creat-
ing Authorship XML Map
Files”, page 26 for syntax
information. Default is false

scope.xmlmap.file [path] Specifies the path to XML map-
ping file that defines how tasks
should be assigned for particular
files or sets of files.

cpptest.scope.module.[MODULE_NAME] [path to a module
root location]

Defines the module within a root
location. See “Defining Source
File Structures (Modules)”,
page 22.

authors.ignore.case true

false
Enables/disables author name
case sensitivity.

Example:

true: David and david are con-
sidered the same user.

Default is false

Setting Value Description/Notes
82

Suppression Settings

authors.mappings.location local

shared
Specifies where the authorship
mapping file is stored. Default is
local.

See authors.user and
authors.mapping options for
details.

When set to shared, mappings
could be specified in file located
on DTP share. See
authors.shared.path
option for details.

authors.shared.path [path] Specifies the location of authors
mapping file in DTP share.

Example:

authors.shared.path=xte
st/authors_map.txt

authors.user{n} [user_name, email,
full_name]

Specifies a specific author by
user name, email, and full
name.

Example:

authors.user1=dan,dan@p
arasoft.com,Dan Stowe

authors.user2=jim,jim@p
arasoft.com,Jim White

authors.mapping{n} [from_user, to_user] Specifies a specific author map-
ping.

Example:

authors.mapping1=old_us
er,new_user

authors.mapping2=broken
_user,correct_user

Setting Value Description/Notes

suppression{n}.file.ext [ext] Specifies the extension of types of files
that should be scanned for comment sup-
pressions.

Example:

suppression1.file.ext=xml

suppression2.file.ext=java

Set the comment prefix with the
suppression{n}.comment setting.

Setting Value Description/Notes
83

Technical Support Settings

suppression{n}.comment [comment] Specifies comment prefix for types of files
identified in suppression.file.ext
setting.

Example:

suppression1.comment=//

suppression2.comment=<!--

suppression{n}.comment.suffix [comment suffix] Defines the suppression comment suffix
when file extensions has been specified
with the suppression.file.ext set-
ting. If not specified then suppression
comments will not be suffixed.

Example:

suppression1.comment.suffix=-->

suppression{n}.block.only true|fales Enables/disables block-only comment
suppressions support when file extensions
have been specified with the
suppression.file.ext setting.

Default is false.

suppression.local.dir [path] Specifies the custom directory for storing
local suppressions. An absolute path
should be provided.

Example:

suppression.local.dir=file:///
C:/parasoft/suppression/storage

suppression.local.dir=../
suppression/storage

Setting Value Description/Notes

techsupport.enabled true

false
Enables/disables global auto-
matic technical support data col-
lection is globally enabled with
verbose logging.

Default is false

Setting Value Description/Notes
84

Report Settings

logging.verbose true

false
Enables/disables verbose logs.

Verbose logs are stored in the
xtest.log file in the location
specified with the local.stor-
age.dir setting.

Verbose logging state persists
across sessions (restored on
application startup).

The log is a rolling file with a
fixed maximum size. A backup is
created whenever the max size
is reached .

Default is false

logging.scontrol.verbose true

false
Enables/disables output from
source control commands in
verbose logs. Note that output
from source control may include
fragments of analyzed source
code.

Default is false

techsupport.create.on.exit true

false
Enables/disables automatic
archive creation when the appli-
cation is shut down.

The techsupport.enabled
setting must also be enabled for
packages to be created automat-
ically.

Default is true.

techsupport.archive.location [path] Specifies the custom directory
where support packages should
be created.

techsupport.include.reports true

false
Enables/disables the inclusion of
reports in the technical support
package.

Setting Value Description/Notes

session.tag [name] Specifies a tag for signing
results form the test session.
The tag is a unique identifier for
the specified analysis process
made on a specified module.
Reports for different test ses-
sions should be marked with dif-
ferent session tags.

Setting Value Description/Notes
85

build.id [id] Specifies a build identifier used
to label results. It may be unique
for each build but may also label
more than one test sessions that
were executed during a speci-
fied build.

The default settings is build-
yyyy-MM-dd HH:mm:ss

project.module [name] Specifies a custom name for the
project's module. The setting
may be used to describe unique
runs. If unspecified, the tested
module is detected automatically
based on code provided to anal-
ysis.

exec.env [env1;env2...] Specifies a list of tags that
describe the environment where
the run was executed. Tags may
describe operating system (e.g.,
Windows, Linux), architecture
(e.g., x86, x86_64), compiler,
browser, etc. The exec.env
tags enable the entire session to
be described. A detailed descrip-
tion of the environment may also
be included in the test suite, test,
or test case levels via services
API.

report.location [path] Specifies the directory where
report should be created.

report.format xml

html

pdf

csv

custom

Specifies the report format. Use
a comma separated list of for-
mats to generate multiple for-
mats.

Default is xml

report.custom.extension [ext] Specifies the report file exten-
sion of the XSL file for a custom
format.

Use with report.for-
mat=custom and
report.custom.xsl.file.

report.custom.xsl.file [path] Specifies the location of the XSL
file for a custom format.

Use with
report.format=custom and
report.custom.extension

Setting Value Description/Notes
86

report.developer_errors true

false
Determines whether manager
reports include details about
developer errors. The default is
true.

report.developer_reports true

false
Determines whether the system
generates detailed reports for all
developers (in addition to a sum-
mary report for managers). The
default is false.

report.authors_details true

false
Determines whether the report
includes an overview of the
number and type of tasks
assigned to each developer. The
default is true.

report.contexts_details true

false
Determines whether the report
includes an overview of the files
that were checked or executed
during testing. The default is
true.

report.suppressed_msgs true

false
Determines whether report
includes suppressed messages.
The default setting is false.

report.metadata true

false
Determines whether additional
metadata about findings should
be downloaded from DTP. Only
findings that are already present
on DTP are affected. The DTP
server must also support the
metadata service for this settting
to have an effect. Default is
true.

report.scontrol off

min

full

Specifies if and how much addi-
tional information from source
control is included in the report:

min: repositories, file paths and
revisions

full: includes the same infor-
mation as min, as well as task
revisions and comments.

Default is off

report.associations true

false
Enables/disables showing
requirements, defects, tasks,
and feature requests associated
with a test in the report. The
default is true.

Setting Value Description/Notes
87

issue.tracking.tags [tag1,tag2,...] Specifies a list of issue tracking
tags. The following tags are sup-
ported by default: pr, fr, task,
asset, req.

report.assoc.url.[tag] [url] Generates link to association
inside the HTML report. The
URL is a query string containing
an [%ID%] placeholder for the
PropertyAttribute value.

report.active_rules true

false
Determines if report contains a
list of the rules that were
enabled for the test. The default
setting is true.

report.rules [url] Specifies a directory for storing
static analysis rules HTML files
(retrieved by clicking the Print-
able Docs button in the Test
Configuration's Static Analysis
tab).

Examples:

report.rules=file:///C:/
parasoft/gendoc/

report.rules=../gendoc/

report.test_params true

false
Determines whether report
includes test parameter details.

The default setting is true.

report.testcases_details true

false
Enables/disabled details about
specific Google Test assertion
failures in the generated HTML
report.

Default is false

report.coverage.images [tag1,. . .] Specifies a set of tags that will
be used to create coverage
images in DTP Server.

DTP supports up to 3 coverage
images per report.

report.coverage.limit [limit] Value that specifies the lower
coverage threshold. Coverage
results lower than this value are
highlighted in the report.

Default is 40

report.metrics.attributes [attr1;attr2;...] Specifies a list of additional
attributes for metric results. The
following attributes are sup-
ported by default: module,
namespace, type, method.

Setting Value Description/Notes
88

report.archive true

false
Enables/disables archiving
reports into a ZIP file.

report.graph.start_date [MM/dd/yy] Specifies start date for trend
graphs that track static analysis
task, test execution, and cover-
age.

Use with
report.graph.period=[?d|
?m|?y]

report.graph.period [?d|?m|?y] Determines the duration from
the start date for trend graphs
that track static analysis task,
test execution, and coverage.

Use with
report.graph.start_date=
[MM/dd/yy]

report.mail.enabled true

false
Enables/disables report emails
to developers and additional
recipients specified with the
report.mail.cc setting.

If enabled, all developers that
worked on project code will auto-
matically be sent a report that
contains the errors/results
related to his or her work.

The default setting is false.

report.mail.server [host] Specifies the mail server used to
send reports.

report.mail.port [port] Specifies the port for SMTP
server. The default port is 25.

report.mail.security [security] Specifies SMTP server connec-
tion security. STARTTLS and
SSL are supported. The default
is STARTTLS.

report.mail.subject [subject line] Specifies the subject line of the
emails sent.

report.mail.username

report.mail.password

report.mail.realm

[user_name]

[password]

[realm]

Specifies the settings for SMTP
server authentication. The realm
value is required only for those
servers that authenticate using
SASL realm.

report.mail.domain [domain] Specifies the mail domain used
to send reports.

report.mail.time_delay [time] Specifies a time delay between
emailing reports (to avoid bulk
email restrictions).

Setting Value Description/Notes
89

report.mail.from [email|user_name] Specifies the "from" line of the
emails sent.

report.mail.attachments true

false
Enables/disables sending
reports as attachments. All com-
ponents are included as attach-
ments; before you can view a
report with images, all attach-
ments must be saved to the disk.

The default setting is false.

report.mail.compact trends

links
Specifies how report information
is delivered in the email.

trends: email contains a trend
graph, summary tables, and
other compact data; detailed
data is not included.

links: email only contains a
link to a report available on DTP
server.

This setting is not configured by
default

report.mail.format html

ascii
Specifies content type for the
email. The default setting is
html.

report.mail.cc [email; ...] Specifies email address for
sending comprehensive man-
ager reports. Multiple addresses
must separated with a semico-
lon. This setting is commonly
used to send reports to manag-
ers or architects, as well as
select developers.

report.mail.include [email, ...] Specifies email addresses of
developers that you want to
receive developer reports. Multi-
ple addresses must separated
with a semicolon.

This setting is commonly used to
send developer reports to devel-
opers if developer reports are
not sent automatically (e.g.,
because the team is not using a
supported source control sys-
tem).

This setting overrides addresses
specified in the 'exclude' list.

report.mail.exclude [email; ...] Specifies email addresses that
should be excluded from auto-
matically receiving reports.

Setting Value Description/Notes
90

report.mail.exclude.developers true

false
Enables/disables report emails
to developers not explicitly listed
in the report.mail.cc set-
ting. This setting is used to pre-
vent reports from being mailed
to individual developers.

The default setting is false.

report.mail.unknown [email|user_name] Specifies where to email reports
for errors assigned to
"unknown".

report.mail.on.error.only true

false
Enables/disables email reports
to the manager when an error is
found or a fatal exception
occurs. Developer emails are
not affected by this setting;
developer emails are sent only
to developers who are responsi-
ble for reported errors.

The default setting is false.

report.setup.problems top

bottom

hidden

Determines placement of setup
problems section in report.

The default setting is bottom.

report.setup.problems.category_limit [numerical value] Specifies a limit to the number of
messages reported in a single
setup problem category.

Default is 10

report.setup.problems.display_limit [numerical value] Specifies a limit to the total
number of messages displayed
in the HTML report in the setup
problem section.

Default is 100

report.setup.problems.console true

false

Determines whether setup
problems will be printed on the
console.

The default setting is true.

report.ue_coverage_details_htmls LC

DC
Specifies type of coverage
included in an additional report,
which includes source code
annotated with line-by-line cov-
erage details, when a test's
HTML report links to it.

LC: line coverage

DC: decision coverage

report.separate_vm.xmx [size] Specifies how much memory
should be used for reports gen-
eration. The default is 1024M.

Setting Value Description/Notes
91

General Source Control Settings

AccuRev Source Control Settings

report.separate_vm true

false
Enables/disables generating
reports as a separate virtual
machine.

Default is false.

report.separate_vm.launch.file [path] Specifies path to launch file
which should be used during
reports generation.

dupcode.sorting.mode oldest|newest|paths Determines how elements in the
code duplication findings are
sorted.

oldest: the oldest result
appears at the top.

newest: the newest result
appears at the top.

paths: sorts by full path names
in ascending alphabetical order
(A to Z).

The default is paths.

report.coverage.version 1

2
Specifies the version of the XML
coverage report:

1: the standard version will be
used.

2: the size of the XML report will
be optimized.

The default value is 1.

Setting Name Value Description/Notes

scontrol.timeout [seconds] Specifies timeout value for oper-
ations with source control. The
default value is 60.

scontrol.branch [name] Enables you to specify a custom
name for the tested branch. This
setting may be used to describe
unique runs. If it is not specified,
the tested branch is detected
automatically based on code
provided to analysis.

Setting Name Value Description/Notes

scontrol.rep{n}.type accurev AccuRev repository type identi-
fier.

Setting Value Description/Notes
92

ClearCase Source Control Settings

CVS Source Control Settings

scontrol.accurev.exec [path] Path to external client execut-
able (accurev).

scontrol.rep{n}.accurev.host [host] AccuRev server host.

scontrol.rep{n}.accurev.port [port] AccuRev server port. Default
port is 1666.

scontrol.rep{n}.accurev.login [login] AccuRev user name.

scontrol.rep{n}.accurev.password [password] AccuRev password.

Setting Name Value Description/Notes

scontrol.rep{n}.type ccase ClearCase repository type name.

scontrol.ccase.exec [path] Path to external client executable
(cleartool).

scontrol.rep{n}.ccase.vob [path] Specifies the VOB's mount point - the
path at which the VOB will be accessed
by user.

Examples:

scontrol.rep.ccase.vob=X:\myvob

scontrol.rep.ccase.vob=/vobs/myvob

scontrol.rep{n}.ccase.vob_tag [tag] The VOB's unique tag in the ClearCase
network region.

Setting Name Value Description/Notes

scontrol.rep{n}.type cvs CVS repository type identifier.

scontrol.rep{n}.cvs.root [root] Full CVSROOT value.

Setting Name Value Description/Notes
93

scontrol.rep{n}.cvs.pass [password] Plain or encoded password. The
encoded password should match
password in the .cvspass file.

For CVS, use the value in .cvs-
pass from within the user's home
directory.

For CVSNT, use the value store
in the registry under
HKEY_CURRENT_USER\Soft-
ware\Cvsnt\cvspass

The password is saved in the
registry when you first log into
the CVS repository from the
command line using cvs
login. To retrieve the pass-
word, go to the registry (using
regedit) and look for the value
under
HKEY_CURRENT_USER-
>CVSNT> cvspass. This dis-
plays your entire login name
(e.g., :pserver:exam-
pleA@exampleB:/exampleC)
and encrypted password value.

scontrol.rep{n}.cvs.useCustomSSHCredentials true

false
Enables/disables using the cvs
login and password for EXT/SSH
connections. Default is false.

scontrol.rep{n}.cvs.ext.server [cvs] Specifies which CVS application
to start on the server side if con-
necting to a CVS server in EXT
mode. Has the same meaning as
the CVS_SERVER variable.
Default is cvs.

scontrol.rep{n}.cvs.ssh.loginname [login] Specifies the login for SSH con-
nections (if an external program
can be used to provide the
login).

scontrol.rep{n}.cvs.ssh.password [password] Specifies the password for SSH
connection.

scontrol.rep{n}.cvs.ssh.keyfile [file] Specifies the private key file to
establish an SSH connection
with key authentication.

scontrol.rep{n}.cvs.ssh.passphrase [passphrase] Specifies the passphrase for
SSH connections with the key
authentication mechanism.

scontrol.rep{n}.cvs.useShell true

false
Enables/disables an external
program (CVS_RSH) to estab-
lish a connection to the CVS
repository. Default is false.

Setting Name Value Description/Notes
94

Git Source Control Settings

Mercurial Source Control Settings

scontrol.rep{n}.cvs.ext.shell [path] Specifies the path to the execut-
able to be used as the
CVS_RSH program. Command
line parameters should be speci-
fied in the cvs.ext.params
property.

scontrol.rep{n}.cvs.ext.params [parameters] Specifies the parameters to be
passed to an external program.
The following case-sensitive
macro definitions can be used to
expand values into command
line parameters:

{host} repository host

{port} port

{user} cvs user

{password} cvs password

{extuser} parameter
cvs.ssh.loginname

{extpassword} parameter
cvs.ssh.password

{keyfile} parameter
cvs.ssh.keyfile

{passphrase} parameter
cvs.ssh.passphrase

Setting Name Value Description/Notes

scontrol.rep{n}.type git Git repository type identifier.

scontrol.git.exec [path] Path to git executable. If not set,
assumes git command is on the
path.

scontrol.rep{n}.git.url [url] The remote repository URL (e.g.,
git://hostname/repo.git).

scontrol.rep{n}.git.workspace [path] The directory containing the local
git repository.

Setting Name Value Description/Notes

scontrol.rep{n}.type hg Mercurial reposity type identifyer.

Setting Name Value Description/Notes
95

Perforce Source Control Settings

Serena Dimensions Source Control Settings

scontrol.hg.exec [path] Path to external client execut-
able. Devault is hg

scontrol.rep{n}.hg.url [url] The remote repository URL (e.g.,
http://hostname/path).

scontrol.rep{n}.hg.workspace [path] The directory containing the local
Mercurial repository.

Setting Name Value Description/Notes

scontrol.rep{n}.type perforce Perforce repository type identi-
fier.

scontrol.perforce.exec [path] Path to external client executable
(p4).

scontrol.rep{n}.perforce.host [host] Perforce server host.

scontrol.rep{n}.perforce.port [port] Perforce server port. Default port
is 1666.

scontrol.rep{n}.perforce.login [login] Perforce user name.

scontrol.rep{n}.perforce.password [password] Perforce password, optional if
ticket is used for authentication.

scontrol.rep{n}.perforce.client [client] The client workspace name as
specified in the P4CLIENT envi-
ronment variable or its equiva-
lents. Root directory for specified
workspace should be configured
correctly for local machine.

Setting Name Value Description/Notes

scontrol.rep{n}.type serena Serena Dimensions repository type
identifier.

scontrol.serena.dmroot [path] Path to the Serena Dimensions exe-
cutable. Example:

C\:\\Program Files
(x86)\\Serena\\Dimensions
2009 R2\\CM\\

scontrol.rep{n}.serena.login [login] Serena user name.

scontrol.rep{n}.serena.password [password] Password.

scontrol.rep{n}.serena.host [host] Serena Dimensions server host name.

Setting Name Value Description/Notes
96

StarTeam Source Control Settings

scontrol.rep{n}.serena.dbname [name] Name of the database for the product
you are working with.

scontrol.rep{n}.serena.dbconn [connection] Connection string for that database.

scontrol.rep{n}.serena.locale [locale] The language used, (e.g., en_US)

scontrol.rep{n}.serena.mapping [mapping] If the project has been downloaded/
moved to a location other than default
work area, use this option to specify a
mapping between the project or
stream with the Serena repository and
the local project. If you are working in
the default work area, you do not need
to define mappings.

Setting Name Value Description/Notes

scontrol.rep{n}.type starteam StarTeam repository type identifier.

scontrol.rep{n}.starteam.host [host] StarTeam server host.

sscontrol.rep{n}.starteam.port [port] StarTeam server port. Default port is
49201.

scontrol.rep{n}.starteam.login [login] Login name.

scontrol.rep{n}.starteam.password [password] Password (not encoded).

scontrol.rep{n}.starteam.path [path] Specifies the project, view, or folder that
you are currently working with.

You can specify a project name (all views
will be scanned when searching for the
repository path), project/view (only the
given view will scanned) or project/view/
folder (only the specified Star Team
folder will be scanned). This setting is
useful for working with large multi-project
repositories.

Examples:

scontrol.rep.starteam.path=proj1

scontrol.rep.starteam.path=proj1/view1

scontrol.rep.starteam.path=proj1/
view1/folderA

scontrol.rep.starteam.path=proj1/
view1/folderA/folderB

Setting Name Value Description/Notes
97

Subversion Source Control Settings

Synergy/CM Source Control Settings

scontrol.rep{n}.starteam.workdir [path] Specifies a new working directory for the
selected view's root folder (if the path
represents a view) or a new working
directory for the selected folder (if the
path represents a folder) when the
scontrol.rep.starteam.path set-
ting points to a StarTeam view or folder.

Examples:

scontrol.rep.starteam.workdir=C:\\stor
age\\dv

scontrol.rep.starteam.workdir=/home/
storage/dv

Setting Name Value Description/Notes

scontrol.rep{n}.type svn Subversion repository type identi-
fier.

scontrol.svn.exec [path] Path to external client executable
(svn).

scontrol.rep{n}.svn.url [url] Subversion URL specifies proto-
col, server name, port and start-
ing repository path. Example:

svn://buildmachine.foobar.com/
home/svn

scontrol.rep{n}.svn.login [login] Login name.

scontrol.rep{n}.svn.password [password] Password (not encoded).

Setting Name Value Description/Notes

scontrol.rep{n}.type synergy Synergy/CM repository type iden-
tifier.

scontrol.synergy.exec [path] Path to external client executable
(ccm).

scontrol.rep{n}.synergy.host [host] Computer on which synergy/cm
engine runs. Local host is used
when missing. For Web mode,
the host must be a valid Synergy
Web URL with protocol and port
(e.g., http://synergy.server:8400).

scontrol.rep{n}.synergy.dbpath [path] Absolute synergy database path
(e.g., \\host\db\name).

Setting Name Value Description/Notes
98

Microsoft Team Foundation Server Source Control Settings

Microsoft Visual SourceSafe Source Control Settings

scontrol.rep{n}.synergy.projspec [specification] Synergy project specification
which contains project name and
its version (e.g., name-
version).

scontrol.rep{n}.synergy.login [login] Synergy user name.

scontrol.rep{n}.synergy.password [password] Synergy password (not encoded).

scontrol.rep{n}.synergy.port [port] Synergy port.

scontrol.rep{n}.synergy.remote_client [client] (UNIX only) Specifies that you
want to start ccm as a remote cli-
ent. Default value is false.
Optional. This is not used for Web
mode.

scontrol.rep{n}.synergy.local_dbpath [path] Specifies the path name to which
your database information is cop-
ied when you are running a
remote client session. If null, then
the default location will be used.
This is not used for Web mode.

Setting Name Value Description/Notes

scontrol.rep{n}.type tfs TFS repository type identifier.

scontrol.rep{n}.tfs.url [url] URL to TFS repository, e.g.,
http://localhost:8080/
tfs

scontrol.rep{n}.tfs.login [login] TFS user name.

scontrol.rep{n}.tfs.password [password] TFS password.

Setting Name Value Description/Notes

scontrol.rep{n}.type vss Visual SourceSafe repository type
identifier.

scontrol.vss.exec [path] Path to external client executable
(ss).

scontrol.rep{n}.vss.ssdir [path] Path of repository database.

scontrol.rep{n}.vss.projpath [path] VSS project path.

scontrol.rep{n}.vss.login [login] VSS login.

scontrol.rep{n}.vss.password [password] VSS password.

Setting Name Value Description/Notes
99

Visual Studio Configuration Settings

Setting Name Value Description/Notes

cpptest.input.msvc.compiler [path] Specifies the compiler executable.

The default compiler is cl.exe

cpptest.input.msvc.add.compiler.options [compiler_option] Specifies additional compiler options.

If you specify more than one option, sepa-
rate the values with a space character.

The product’s property file is preconfig-
ured to use -I. for this setting. If no
value is present, the setting will be
ignored.

cpptest.input.msvc.solution [solution_name] Specifies the solution name.

By default, the solution name is the same
as the solution file name, but if a project
file name is specified as an input parame-
ter, this property can be used to set the
solution name.

cpptest.input.msvc.config [configuration_name] Specifies the configuration used during
the build.

The default is the first configuration in the
project file.

cpptest.input.msvc.platform [platform_name] Specifies the platform used during the
build.

The default is the first platform in the
project file.
100

101

Integrations
• Integrating with Source Control Systems

• Using DTP Engines in an IDE

• Integrating with CI Tools

Integrating with Source Control Systems

102

Integrating with Source Control
Systems
DTP Engines can collect information from source control systems and use the data to assign owner-
ship of violations, filter analyzed files based on time or modification history, and report information
about controlled files to DTP Server. Use the C++test 9.5 or later interface to configure integration with
source control systems:

1. In your IDE , choose Parasoft > Preferences and click Source Controls

2. Configure your repository and source control client and click Apply.

3. In the Preferences panel menu, click Scope and Authorship

4. Enable the Use source control (modification author) to compute scope option and click
Apply.

5. In the Preferences panel menu, click Parasoft

6. Click the share to open the Export to localsettings file panel.

7. Select the Source Controls, Scope and Authorship, and any other options you want to save.

8. Choose a location and click OK.

9. Add the following line to the settings file, which ensures that information on source control
details are saved to the report:

10. Either pass the file to the command line or copy the settings in the administration panel of a
project in DTP server (Parasoft Test settings tab) if applicable.

11. Run the analysis.

report.scontrol=min

Integrating with CI Tools

103

Integrating with CI Tools

Integrating with Jenkins
DTP Engines for C/C++ can be integrated with Jenkins continuous integration software. The Parasoft
Findings Plugin for Jenkins allows you to visualize static analysis and test results as trend graphs and
warnings.

Parasoft Findings Plugin is available directly in Jenkins. See Parasoft Findings Plugin for details.

You can download the plugin source files form GitHub, see Parasoft Findings Plugin Project. If you
need additional information on how to rebuild the plugin, contact Parasoft Support.

https://wiki.jenkins-ci.org/display/JENKINS/Parasoft+Findings+Plugin
https://github.com/jenkinsci/parasoft-findings-plugin
https://wiki.jenkins-ci.org/display/JENKINS/Parasoft+Findings+Plugin
https://github.com/jenkinsci/parasoft-findings-plugin

Supported Compilers
The following compiler configurations are included with the DTP Engines for C/C++:

Vendor Compiler Host
Platform

Identifier Comments

Altrium TASKING Altium TASKING Vx-toolset for Tri-
Core C/C++ Compiler 4.0

Windows vxtc_4_0

ARM ARM® Compiler 5.0 Windows rvct_5_0

ARM® GNU GCC 4.5.x Windows armgcc_4_5

ARM® RealView® 3.0 Windows,
Linux

rvct_3_0

ARM® RealView® 3.1 Windows,
Linux

rvct_3_1

ARM® RealView® 4.0 Windows rvct_4_0

ARM® RealView® 4.1 Windows rvct_4_1

GNU GNU GCC 3.3.x Windows,
Linux

gcc_3_3

GNU GCC 3.3.x (x64) Linux gcc_3_3-64

GNU GCC 3.4x Windows,
Linux

gcc_3_4

GNU GCC 3.4.x (x64) Linux gcc_3_4-64

GNU GCC 4.0.x Windows,
Linux

gcc_4_0

GNU GCC 4.0.x (x64) Linux gcc_4_0-64

GNU GCC 4.1.x Windows,
Linux

gcc_4_1

GNU GCC 4.1.x (x64) Linux gcc_4_1-64

GNU GCC 4.2.x Windows,
Linux

gcc_4_2

GNU GCC 4.2.x (x64) Linux gcc_4_2-64

GNU GCC 4.3.x Windows,
Linux

gcc_4_3

GNU GCC 4.3.x (x64) Linux gcc_4_3-64

GNU GCC 4.4.x Windows,
Linux

gcc_4_4

GNU GCC 4.4.x (x64) Linux gcc_4_4-64

GNU GCC 4.5.x Windows,
Linux

gcc_4_5
104

GNU GCC 4.5.x (x64) Linux gcc_4_5-64

GNU GCC 4.6.x Windows,
Linux

gcc_4_6

GNU GCC 4.6.x (x64) Linux gcc_4_6-64

GNU GCC 4.7.x Windows,
Linux

gcc_4_7

GNU GCC 4.7.x (x64) Linux gcc_4_7-64

GNU GCC 4.8.x Windows,
Linux

gcc_4_8

GNU GCC 4.8.x (x64) Windows,

Linux

gcc_4_8-64

GNU GCC 4.9.x Windows,
Linux

gcc_4_9

GNU GCC 4.9.x (x64) Windows,

Linux

gcc_4_9-64

GNU GCC 5.x Windows,
Linux

gcc_5

 GNU GCC 5.x (x64) Windows,
Linux

gcc_5-64

GNU GCC 6.x Windows,
Linux

gcc_6

GNU GCC 6.x (x64) Windows,
Linux

gcc_6-64

Green Hills Green Hills® Software Compiler 5.1
V850

Windows ghs_5_1

Green Hills® Software Compiler 5.0
PowerPC

Windows ghs_5_0

Green Hills® Software C/C++ Com-
piler v2013.1.x for PowerPC

Windows ghsppc_2013_1

IAR IAR Compiler 5.4x for ARM® Windows iccarm_5_4

IAR Compiler 5.5x for ARM® Windows iccarm_5_5

IAR Compiler 6.1x for ARM® Windows iccarm_6_1 C only

IAR Compiler 6.3x for ARM® Windows iccarm_6_3 C only

IAR Compiler 6.6x for ARM® Windows iccarm_6_6

IAR Compiler 7.4x for ARM® Windows iccarm_7_4

IAR Compiler 7.8x for ARM® Windows iccarm_7_8.

IAR Compiler 5.4x for MSP430® Windows icc430_5_4 SAE only

Vendor Compiler Host
Platform

Identifier Comments
105

IAR Compiler for MSP430® v. 6.1x Windows icc430_6_1 SAE only

Keil ARM® Compiler 5.0 for uVision Windows rvct_5_0_uV

ARM® RealView® 3.1 for uVision Windows rvct_3_1_uV

ARM® RealView® 4.0 for uVision Windows rvct_4_0_uV

ARM® RealView® 4.1 for uVision Windows rvct_4_1_uV

Microsoft Microsoft® Visual C++® 9.0 Windows vc_9_0

Microsoft® Visual C++® 9.0 (x64) Windows vc_9_0-64

Microsoft® Visual C++® 10.0 Windows vc_10_0

Microsoft® Visual C++® 10.0 (x64) Windows vc_10_0-64

Microsoft® Visual C++® 11.0 Windows vc_11_0

Microsoft® Visual C++® 11.0 (x64) Windows vc_11_0-64

Microsoft® Visual C++® 12.0 Windows vc_12_0

Microsoft® Visual C++® 12.0 (x64) Windows vc_12_0-64

Microsoft® Visual C++® 14.0 Windows vc_14_0

Microsoft® Visual C++® 14.0 (x64) Windows vc_14_0-64

National Instru-
ments

National Instruments LabWindows/
CVI 2015 Clang C/C++ Compiler v3.3
for Win32

Windows niclang_3_3 SAE only

Renesas Renesas RX C/C++ Compiler 2.2x Windows renrx_2_2 SAE only

Renesas M16C/R8C C Compiler 5.4x Windows rm16c_5_4 SAE only

Renesas SH SERIES C/C++ Compiler
V.9.03.xx

Windows hew_9_3

Renesas SH SERIES C/C++ Compiler
V.9.04.xx

Windows hew_9_4

Renesas RX V2.05.x Wndows renrx_2_5

Texas Instru-
ments

TI® ARM C/C++ Compiler v5.1.x Linux,
Windows

tiarm_5_1

TI® MSP430 C/C++ Compiler v3.2 Windows timsp430_3_2

TI® MSP430 C/C++ Compiler v4.0 Windows timsp430_4_0

TI® TMS320C2000 C/C++ Compiler
v4.1

Windows tic2000_4_1 SAE only

TI® TMS320C2000 C/C++ Compiler
v5.2

Windows tic2000_5_2

TI® TMS320C2000 C/C++ Compiler
v6.0

Windows tic2000_6_0

Vendor Compiler Host
Platform

Identifier Comments
106

Custom-developed and Deprecated Compilers
Configurations for the following custom-developed and deprecated compilers are available for down-
load in the Parasoft Marketplace at https://marketplace.parasoft.com.

TI® TMS320C2000 C/C++ Compiler
v6.2

Windows tic2000_6_2

TI® TMS320C6x C/C++ Compiler v5.1 Windows tic6000_5_1 SAE only

TI® TMS320C6x C/C++ Compiler v6.0 Windows tic6000_6_0

TI® TMS320C6x C/C++ Compiler v6.1 Windows,
Linux

tic6000_6_1

TI® TMS320C6x C/C++ Compiler v7.3 Windows tic6000_7_3

TI® TMS320C6x C/C++ Compiler v7.4 Windows tic6000_7_4

TI® TMS470 C/C++ Compiler v4.9.x Windows tiarm_4_9

Wind River Wind River® Diab 5.7.x Windows,
Linux

diab_5_7

Wind River® Diab 5.8.x Windows,
Linux

diab_5_8

Wind River® Diab 5.9.x Windows,
Linux

diab_5_9

Wind River® GCC 3.3.x Windows wrgcc_3_3

Wind River® GCC 3.4.x Windows,
Linux

wrgcc_3_4

Wind River® GCC 4.1.x Windows,
Linux

wrgcc_4_1

Wind River® GCC 4.3.x Windows,
Linux

wrgcc_4_3

Vendor Compiler Host
Platform

Identifier Comments

Altera Altera Nios II 5.1 b73® GCC 3.4.x Linux nios2gcc_3_4 SAE Only

Altera Nios® GCC 2.9 Linux niosgcc_2_9 SAE Only

Altium TASKING Altium TASKING Vx-toolset for TriCore
C/C++ Compiler 2.5

Windows vxtc_2_5 C only

Altium TASKING Vx-toolset for TriCore
C/C++ Compiler 3.3

Windows vxtc_3_3

Altium TASKING Vx-toolset for TriCore
C/C++ Compiler 3.4

Windows vxtc_3_4

Vendor Compiler Host
Platform

Identifier Comments
107

Altium TASKING Vx-toolset for TriCore
C/C++ Compiler 3.5

Windows vxtc_3_5

TASKING 80C196 C compiler v6.0 r1 Windows c196_6_0 SAE only

Altium TASKING Classic Compiler for
C166/ST10 v. 6.0

Windows tc166_6_0 SAE Only

Analog Devices Analog Devices C/C++ Compiler 7.0
for ADSP SHARC

Windows ad21k_7_0 SAE Only

Analog Devices C/C++ Compiler 7.0
for ADSP TigerSHARC

Windows adts_7_0 SAE Only

ARM ARM® Developer Suite 1.2 Windows,
Linux

ads_1_2

ARM® RealView® 2.2 Windows rvct_2_2

Embarcadero/
Borland

Borland C++ Compiler 5.6.x for Win32 Windows bcc32_5_6 SAE only

Embarcadero C++ Compiler 6.2x for
Win32

Windows bcc32_6_2 SAE only

Embarcadero C++ Compiler 6.9x for
Win32

Windows bcc32_6_9 SAE only

Cosmic COSMIC Software ® 68HC08 C Cross
Compiler V4.6.x

Windows hc08_4_6 SAE only

eCosCentric eCosCentric® GCC 3.4.x Linux ecosgcc_3_4 SAE only

Freescale Freescale CodeWarrior ANSI-C/cC++
Compiler 5.0.x for HC12

Windows cwhc12_5_0 SAE only

Freescale C/C++ Compiler v. 5.1 for
Embedded ARM

Windows cwarm_5_1 SAE Only

Fujitsu FR Family SOFTUNE C/C++ Compiler
V6

Windows fr_6_5

GNU GNU GCC 2.9.x Windows,
Linux

gcc_2_9

GNU GCC 3.2.x Windows,
Linux

gcc_3_2

Green Hills Green Hills® Software Compiler 4.0
Native

Windows ghs_4_0

Green Hills® Software Compiler 4.2
Native

Linux ghs_4_2

Green Hills® Software Compiler 3.4
V850

Windows ghs_3_4

Green Hills Software Compiler for PPC
v. 3.5

Windows ghsppc_3_5

Vendor Compiler Host
Platform

Identifier Comments
108

Green Hills Software Compiler for PPC
v. 4.0.x

Windows ghsppc_4_0

Green Hills Software Compiler for PPC
v. 4.2.x

Windows ghsppc_4_2

IAR IAR Compiler 1.4x for STM8® Windows iccstm8_1_40 SAE only

IAR Compiler 5.3x for ARM® Windows iccarm_5_3 C only

IAR Compiler 5.3x for MSP430® Windows icc430_5_3

IAR Compiler for MSP430 v. 4.2x Windows icc430_4_2 SAE only

IAR Compiler for RX v. 2.5x Windows iccrx_2_50

Keil Keil C51 8.x Windows c51_8 SAE only

Keil C166 7.0 Windows kc166_7_0 SAE only

Mentor Graphics/
CodeSourcery

CodeSourcery Sourcery G++ Lite
2009q1-203

Windows,
Linux

csgccarm_4_3 SAE Only

Microchip Microchip MPLAB® C Compiler for
dsPIC v3.2x

Windows pic30_3_23 SAE only

Microchip MPLAB® C32 Compiler for
PIC32 v2.0x

Windows pic32_2_0 SAE only

Microsoft Microsoft® Visual C++® 6.0 Windows vc_6_0

Microsoft® Visual C++® 7.1 Windows vc_7_1

Microsoft® Visual C++® 8.0 Windows vc_8_0

Microsoft® Visual C++® 8.0 (x64) Windows vc_8_0-64

Microsoft® Embedded Visual C++®
4.0

Windows evc_4_0

Microsoft® Visual C++® 8.0 for Win-
dows Mobile

Windows evc_8_0

Microsoft® Visual C++® 9.0 for Win-
dows Mobile

Windows evc_9_0

National Instru-
ments

National Instruments LabWindows/CVI
9.0

Windows nicvi_9_0 SAE Only,
standard
non-third
party CVI
compiler

National Instruments LabWindows/CVI
2013 Clang C/C++ Compiler v2.9 for
Win32

Windows niclang_2_9 SAE only

QNX QNX® GCC 2.9.x Windows qcc_2_9

QNX® GCC 3.3.x Windows qcc_3_3

QNX® GCC 4.2.x Windows qcc_4_2

Vendor Compiler Host
Platform

Identifier Comments
109

QNX® GCC 4.4.x Windows qcc_4_4

Renesas Renesas SH SERIES C/C++ Compiler
V.5.1x.x

Windows ew_5_1 SAE Only

STMicroelectron-
ics

STMicroelectronics® ST20 Windows st20_2_2 SAE only

STMicroelectronics® ST40 Windows st40_3_1 SAE only

Texas Instru-
ments

TI® ARM C/C++ Compiler v5.0.x Windows tiarm_5_0 SAE Only

TI® TMS320C54x C/C++ Compiler
v4.2

Windows tic54x_4_2 SAE only

TI® TMS320C55x C/C++ Compiler
v4.3

Windows tic55x_4_3

Wind River Wind River® Diab 5.5.x Windows,
Linux

diab_5_5

Wind River® Diab 5.6.x Windows,
Linux

diab_5_6

Wind River® EGCS 2.9 Windows wregcs_2_9

Wind River® GCC 2.9 Windows wrgcc_2_9

Vendor Compiler Host
Platform

Identifier Comments
110

111

Getting Help
Use the the -help switch to access usage information on the command line.

Technical Support
You can configure DTP Engines to create package for technical support. Add the following settings to
your .properties configuration file:

A technical support package will be created in the output directory at the end of an analysis run.

 Troubleshooting

Floating Machine ID
Changes in the network environment may affect the interface that is used to compute your machine ID
and result in machine ID instability. You can use the PARASOFT_SUPPORT_NET_INTERFACES
environment variable to specify a stable interface and prevent the machine ID from floating.

1. Set up the PARASOFT_SUPPORT_NET_INTERFACES environment variable.

2. Set the variable value to a stable Ethernet network interface. Do not use virtual, temporary or
loopback interfaces.

• On Windows: Set the value to the MAC address of your network card. You can use the
ipconfig -all command to obtain the address. Example:

• On Linux: Set the value to one of the network interfaces from the "inet" or "inet6" fam-
ily. For example: You can use the ifconfig command to obtain the list of available
interfaces. Example:

If the problem persists, you can obtain diagnostic information by setting up the environment variable
PARASOFT_DEBUG_NET_INTERFACES and setting its value to true. This will print to the stan-
dard output the checking procedure that can be shared with technical support , as well as the inter-
face that is used to compute your machine ID. The interface will be marked with the [SELECTED]
prefix.

cpptestcli.exe -help

techsupport.enabled=true

techsupport.create.on.exit=true

techsupport.archive.location=[OUTPUT DIRECTORY]

SET PARASOFT_SUPPORT_NET_INTERFACES=00-10-D9-27-AC-85

export PARASOFT_SUPPORT_NET_INTERFACES=eth1

Third-Party Content
DTP Engines for C/C++ incorporate items that have been sourced from third parties. The names of the
items and their license agreements have been listed in the table. Click the license name to see the
details.

Item License

commons-collections.jar Apache License 2.0

commons-vfs.jar Apache License 2.0

avalon-framework.jar Apache License 2.0

batik-all.jar Apache License 2.0

fop.jar Apache License 2.0

chardet.jar Mozilla Public License

bcprov.jar MIT License

saxon.jar Mozilla Public License

jfreechart.jar GNU LGPL License

jcommon.jar GNU LGPL License

cvslib.jar CDDL License

javax.xml.stream_1.0.1.jar Eclipse Public License

javax.activation_1.1.1.jar Apache License 2.0

jakarta-log4j.jar Apache License 2.0

xmlgraphics-commons.jar Apache License 2.0

fst.jar Apache License 2.0

truezip.jar Apache License 2.0

jjawin.jar DevelopMentor OpenSource Soft-
ware License

trilead-ssh2.jar Trilead AG License

javanet.staxutils_1.0.0.jar BSD License

commons-codec.jar Apache License 2.0

commons-httpclient.jar Apache License 2.0

org.apache.commons.io_1.4.0.v20081110-
1000.jar

Apache License 2.0

org.apache.commons.logging_1.1.3.jar Apache License 2.0

fluent-hc.jar Apache License 2.0

httpclient.jar Apache License 2.0
112

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
https://www.mozilla.org/en-US/MPL/2.0/
https://opensource.org/licenses/MIT
https://www.mozilla.org/en-US/MPL/2.0/
https://www.mozilla.org/en-US/MPL/2.0/
https://www.gnu.org/licenses/lgpl.html
https://www.gnu.org/licenses/lgpl.html
https://opensource.org/licenses/CDDL-1.0
https://eclipse.org/org/documents/epl-v10.php
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://jawinproject.sourceforge.net/LICENSE.txt
https://github.com/jenkinsci/trilead-ssh2/blob/master/LICENSE.txt
http://www.opensource.org/licenses/bsd-license.php
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

httpcore.jar Apache License 2.0

httpclient-cache.jar Apache License 2.0

htpmime.jar Apache License 2.0

org.apache.jcs_1.3.4.jar Apache License 2.0

org.codehaus.stax2_3.2.4.jar Apache License 2.0

org.json_1.0.0.v201507290100.jar JSON License

javax.mail_1.5.0.jar CDDL License

org.suigeneris.jrcs.diff_0.4.2.jar GNU LGPL License

org.apache.felix.scr-1.6.2.jar Apache License 2.0

osgi.core-5.0.0.jar Apache License 2.0

Log4Cplus Apache License 2.0

log4j-1.2.17.jar Apache License 2.0

org.apache.felix.main-4.2.0.jar Apache License 2.0

org.apache.felix.scr-1.6.2.jar Apache License 2.0

Microsoft Visual C++ Redistributable
Libraries

Microsoft Visual C++ Redistrib-
utable Libraries (Visual Stu-
dio License)

PCRE (Perl-Compatible Regular Expres-
sions)

BSD License

Java JRE Oracle Binary Code License

Parsifal XML Parser Public Domain and GNU LGPL
License

Python Python Software Foundation
License

ConvertUTF.cc/.h code Unicode Consortium License

groovy-all-2.4.7.jar Apache License 2.0

Item License
113

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.json.org/license.html
https://opensource.org/licenses/CDDL-1.0
https://www.gnu.org/licenses/lgpl.html
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
https://msdn.microsoft.com/en-us/library/ms235299.aspx
http://www.opensource.org/licenses/bsd-license.php
http://www.oracle.com/technetwork/java/javase/terms/license/index.html
https://www.gnu.org/licenses/lgpl.html
https://opensource.org/licenses/Python-2.0
http://unicode.org/
https://github.com/apache/groovy/blob/master/LICENSE

	PARASOFT END USER LICENSE AGREEMENT
	Table of Contents
	Introduction
	Static Analysis Engine (SAE)
	Unit Test Connector (UTC)
	Code Coverage Engine (CCE)

	Getting Started
	System Requirements
	Windows 32-bit
	Windows 64-bit
	Linux 32-bit
	Linux 64-bit

	Installing DTP Engines
	Setting the License
	Local License
	Obtaining the Machine ID

	Network License

	Connecting to DTP Server
	Creating an Encoded Password

	Connecting to Source Control

	Static Analysis Engine
	Basic Analysis
	Executable
	Prerequisites
	Compiler
	Compiler Discovery
	About Usage Examples

	Analyzing a Single File
	Analyzing a Makefile-based Project
	About Build Data Files
	Using cpptestscan and cpptesttrace Utilities

	Re-analyzing a Project without Re-building
	Generating a .csv Report
	Testing a Microsoft Visual Studio Project or Solution
	Specifying Test Data Location

	Specifying Test Configurations
	Viewing Available Test Configurations
	Built-in Test Configurations
	Creating Custom Rules

	Compiler Configuration
	Specifying Multiple Compilers
	Example

	Working with Custom Compiler Configurations

	Defining Input Scope
	Analyzing a Single File
	Analyzing a Makefile-based Project
	Analyzing Code Using Existing Build Data
	Only the source files defined in the build data file will be analyzed. Header files included by the source files will be excluded from analysis. See the following sections for additional information:

	Defining Source File Structures (Modules)
	Example of Module Structure
	Defining a Basic Module Structure
	Defining a Module with Multiple Root Locations

	Fine-tuning the Input Scope

	Configuring Authorship
	About Authorship Configuration Priority
	Configuring How Authorship is Computed
	Additional Authorship Configurations

	Creating Authorship XML Map Files
	You can use wildcards to map authors to sets of files. The following table contains examples:
	Description

	Suppressing Violations
	Line Suppression
	Line Suppression Examples
	Block Suppression
	Block Suppression Examples

	Flow Analysis
	Configuring Depth of Flow Analysis
	Setting Timeout Strategy
	Running Flow Analysis in Incremental Mode
	Running Flow Analysis with Swapping of Analysis Data Enabled
	Configuring Verbosity of Flow Analysis
	Specifying Terminating Functions
	Specifying Multithreading Options
	Functions for locking
	Functions for unlocking
	Complete the table with the following information:
	Sleep functions
	Complete the table with the following information:
	Destroy lock functions
	Complete the table with the following information:

	Specifying Resources
	Configuring Resource Allocators
	Configuring Resource Closers

	Reusing Flow Analysis Data for Desktop Analysis
	Compiler-specific Settings

	Metrics Analysis
	Setting Metrics Thresholds

	Code Duplicate Analysis
	Using DTP Engines in an IDE

	Reporting
	Specifying Report Output Location
	Specifying Report Format
	Viewing Reports
	Header
	Static Analysis
	All Findings
	Findings by Author
	Findings by File
	Active Rules
	Metrics Summary
	Test Execution
	All Findings
	Findings by Author
	Executed Tests (Details)
	Test Parameters

	Sending Results to Development Testing Platform (DTP) Server
	Publishing Source Code to DTP Server
	Publishing Sources to DTP Without Running Code Analysis

	Unit Test Connector
	Google Test Connector
	Reporting Google Test Results
	Improving the Test Case File Association
	Associating Tests with Code Coverage

	CppUnit and CppUtest Connector
	Installing Unit Test Connectors into Test Setups
	Installing Unit Test Connector into CppUnit Setup

	Installing Unit Test Connector into CppUtest Setup
	Reporting CppUnit and CppUtest Test Results
	Associating Tests with Code Coverage

	Reporting Assertions
	Tagging Unique Test Runs

	Code Coverage Engine
	Instrumenting and Building Source Code
	Linking Instrumented Code

	Executing Instrumented Code
	Generating Reports
	CCE Usage Example
	Integrating with Make-based Build Systems
	Integrating with Make Compilation Rule
	Adding the Prefix Variable to the Compilation Rule
	Overwriting the Compiler Variable

	Integrating with Make Linking Rule
	Adding a Variable to Represent Coverage Tool Library

	Integrating with MSBuild
	Using Coverage Tool for Complex Projects
	Annotating Results Stream with Test Start/Stop Information
	Using the Test Start/Stop API
	Common Applications of the Test Start/Stop Scenarios

	Code Coverage Engine Runtime Library
	Pre-built Versions and Customized Builds
	Using the Pre-built Runtime Library
	Windows (x86 and x86-64)
	Linux (x86 and x86-64)

	Integrating with the Linker Command Line

	Customizing the Runtime Library
	Library Source Code Structure
	The runtime library source code shipped with CCE is in the [INSTALL_DIR]/runtime directory. The following table describes the structure:

	Switching Communication Channel Support
	Installing Support for Custom Communication Channel
	Switching Multithreading API Support
	Installing Support for Custom Threading API

	Building the Runtime Library
	Building the Runtime Library Using the Provided Makefile
	User Build of the Runtime Library

	Customizing DTP Engines for C/C++
	Modifying a Single Property
	Viewing Current Settings
	Advanced Configuration
	Using Variables
	Settings Reference
	Base Configuration Settings
	Test Configuration Settings
	Compiler Settings
	Development Testing Platform Settings
	Scope and Authorship Settings
	Suppression Settings
	Technical Support Settings
	Report Settings
	General Source Control Settings
	AccuRev Source Control Settings
	ClearCase Source Control Settings
	CVS Source Control Settings
	Git Source Control Settings
	Mercurial Source Control Settings
	Perforce Source Control Settings
	Serena Dimensions Source Control Settings
	StarTeam Source Control Settings
	Subversion Source Control Settings
	Synergy/CM Source Control Settings
	Microsoft Team Foundation Server Source Control Settings
	Microsoft Visual SourceSafe Source Control Settings
	Visual Studio Configuration Settings

	Integrations
	Integrating with Source Control Systems
	Integrating with CI Tools
	Integrating with Jenkins

	Supported Compilers
	Custom-developed and Deprecated Compilers

	Getting Help
	Technical Support
	Troubleshooting
	Floating Machine ID

	Third-Party Content

